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Background: The neutrophil-to-high-density lipoprotein cholesterol ratio (NHR) 
has emerged as a novel inflammatory marker with prognostic significance. This 
study aims to explore the association between NHR and adverse prognosis in 
patients with acute large vessel occlusion (LVO) stroke who achieved complete 
recanalization after mechanical thrombectomy (MT).

Methods: This retrospective study analyzed acute ischemic stroke (AIS) 
patients with LVO who underwent MT at three stroke centers in Dalian, China, 
between January 2016 and November 2023. Complete recanalization was 
defined as achieving a modified Thrombolysis in Cerebral Infarction (mTICI) 
grade 3. Blood parameters were assessed within 24 h after MT. We compared 
intergroup differences based on NHR tertiles and employed the multivariate 
logistic regression analysis to assess the relationship between NHR and adverse 
outcomes.

Results: This study included 348 AIS patients with LVO, of whom 215 (61.8%) 
had adverse clinical outcomes at 90 days. The multivariate logistic regression 
analysis revealed a significant association between an elevated NHR and 90-day 
adverse outcomes (OR 2.311, 95% CI 1.248–4.278, p = 0.008). A restricted cubic 
spline curve demonstrated a linear dose–response relationship between NHR 
and adverse outcomes, with a p-value of 0.348 for non-linearity.

Conclusion: Our findings revealed that an elevated NHR could increase the risk 
of adverse prognosis following complete recanalization after MT in acute LVO 
stroke patients, which indicated that NHR could serve as a potential inflammatory 
marker for identifying high risk patients.

KEYWORDS

neutrophil-to-high-density lipoprotein cholesterol ratio, adverse prognosis, complete 
recanalization, mechanical thrombectomy, large vessel occlusion

OPEN ACCESS

EDITED BY

Pradeep Kumar,  
All India Institute of Medical Sciences, India

REVIEWED BY

Dongwei Sun,  
University of California, Riverside, 
United States
Koji Tanaka,  
Fujita Health University, Japan
Jayanta Gupta,  
Florida Gulf Coast University, United States
Kerollos Abdelsayed,  
Minneapolis Heart Institute Foundation 
(MHIF), United States

*CORRESPONDENCE

Lin Yin  
 lyin_neuro@126.com

RECEIVED 29 November 2024
ACCEPTED 12 May 2025
PUBLISHED 04 June 2025

CITATION

Ci S, Li D, Wang F, Li K and Yin L (2025) 
Correlation between 
neutrophil-to-high-density lipoprotein 
cholesterol ratio (NHR) and adverse prognosis 
in patients who achieve complete 
recanalization after thrombectomy for acute 
large vessel occlusion stroke.
Front. Neurol. 16:1536535.
doi: 10.3389/fneur.2025.1536535

COPYRIGHT

© 2025 Ci, Li, Wang, Li and Yin. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE  Original Research
PUBLISHED  04 June 2025
DOI  10.3389/fneur.2025.1536535

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2025.1536535&domain=pdf&date_stamp=2025-06-04
https://www.frontiersin.org/articles/10.3389/fneur.2025.1536535/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1536535/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1536535/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1536535/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1536535/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1536535/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1536535/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1536535/full
mailto:lyin_neuro@126.com
https://doi.org/10.3389/fneur.2025.1536535
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2025.1536535


Ci et al.� 10.3389/fneur.2025.1536535

Frontiers in Neurology 02 frontiersin.org

Introduction

Mechanical thrombectomy (MT) has been established as an 
effective treatment for acute ischemic stroke (AIS) caused by large 
vessel occlusion (LVO) (1). Successful recanalization is typically 
defined as achieving modified Thrombolysis in Cerebral 
Infarction (mTICI) grade 2b-3 (2). Previous studies have 
demonstrated that successful recanalization can be achieved in 
over 83% of patients after MT (3, 4). Despite successful 
recanalization, nearly half of the patients still exhibit unfavorable 
clinical outcomes at 90 days, a phenomenon termed futile 
recanalization (5–7). Current studies on futile recanalization 
primarily focus on patients who achieve successful recanalization 
(mTICI 2b-3) after MT; however, the understanding of potential 
factors associated with poor outcomes in patients who achieve 
complete recanalization (mTICI 3) remains limited. A systematic 
review and meta-analysis indicated that mTICI 3 is associated 
with better outcomes and safety compared to mTICI 2b, and the 
recanalization grade represents the most important modifiable 
predictor of patient prognosis (8). VanHorn et  al. found that 
patients with complete recanalization still had a high proportion 
of adverse outcomes (9). Therefore, actively exploring the factors 
associated with futile recanalization in patients with mTICI 
grade 3 may help optimize patient management and improve 
clinical outcomes.

The inflammatory immune response plays a crucial role in the 
pathophysiology, treatment outcomes, and prognosis of ischemic 
stroke (10). Among leukocytes, neutrophils are the first immune 
cells to increase in circulation shortly after the onset of ischemic 
stroke (11). Neutrophils in the blood infiltrate ischemic or 
infarcted tissue through the compromised blood–brain barrier 
(BBB) and release inflammatory mediators, thereby increasing the 
risk of BBB disruption, reperfusion injury, hemorrhagic 
transformation, and malignant brain edema (12). High-density 
lipoprotein cholesterol (HDL-C) regulates macrophages and 
adipocytes via cholesterol transporters, exerting anti-
inflammatory (13) and anti-atherosclerosis effects (14). As a 
potential inflammatory marker, the neutrophil-to-high-density 
lipoprotein cholesterol ratio (NHR) has demonstrated certain 
prognostic value. This blood indicator is inexpensive and readily 
available. Huang et al. found that an elevated NHR is a potential 
predictor of long-term mortality and recurrence rates in elderly 
patients with acute myocardial infarction (15). A previous study 
indicated that NHR may be associated with an increased risk of 
adverse short-term outcomes following intravenous thrombolysis 
in AIS patients (16). However, its correlation with futile 
recanalization at mTICI3 remains unclear. This study aimed to 
investigate the relationship between NHR and adverse prognosis 
in LVO patients who achieved complete recanalization after MT.

Methods

This multicenter retrospective study consecutively enrolled 
patients with AIS who underwent MT at three stroke centers: the 
Second Hospital of Dalian Medical University, the First Hospital 
of Dalian Medical University, and the Central Hospital of Dalian 
University of Technology, between January 2016 and November 

2023. The inclusion criteria were as follows: (1) age ≥18 years, (2) 
received MT within 24 h and achieved complete recanalization 
with mTICI grade 3, and (3) occlusion of the internal carotid 
artery or M1/M2 segments of the middle cerebral artery. The 
exclusion criteria were as follows: (1) pre-onset modified Rankin 
Scale (mRS) score >2; (2) severe infection, malignant tumor, or 
immune dysfunction; (3) severe cardiac, hepatic, renal, or other 
major organ diseases; (4) missing medical records or data; and (5) 
90-day loss to follow-up. This study was approved by the Ethics 
Committee of the Second Affiliated Hospital of Dalian 
Medical University.

Data collection included patient demographics and clinical 
characteristics such as age, sex, medical history (including 
hypertension, diabetes, hyperlipidemia, and atrial fibrillation), 
smoking status, systolic and diastolic blood pressure, National 
Institutes of Health Stroke Scale (NIHSS) score, Alberta Stroke 
Program Early CT Score (ASPECTS), intravenous thrombolysis, 
stroke subtype according to the Trial of Org 10,172  in 
Acute Stroke Treatment (TOAST) criteria, anesthesia type, 
retriever passes, time from onset to puncture (OTP), and time 
from onset to recanalization (OTR). Laboratory tests conducted 
within 24 h after MT measured neutrophil, lymphocyte, and 
platelet counts, as well as cholesterol, triglycerides, low-density 
lipoprotein cholesterol (LDL-C), HDL-C, and NHR. ASPECTS 
was evaluated using non-contrast computed tomography (NCCT). 
The site of vascular occlusion was confirmed using digital 
subtraction angiography (DSA). All neuroimaging data were 
independently reviewed by two experienced neurointerventionists 
who were blinded to the patients’ clinical information, and 
discrepancies were resolved by consensus. Recanalization was 
assessed using the mTICI score, with complete recanalization 
defined as an mTICI score of 3 (17). Each center followed up with 
postoperative patients via telephone or outpatient clinic visits to 
assess the 90-day mRS score. An mRS score of 0–2 was defined as 
a good outcome, while a score of 3–6 was considered a 
poor outcome.

Statistical analysis

Continuous variables were presented as means with standard 
deviations or medians with interquartile ranges (IQRs). The 
normality of the distribution was assessed using the Kolmogorov–
Smirnov test. Categorical variables were reported as frequencies 
and percentages. Group differences in continuous variables were 
evaluated using the Wilcoxon test, whereas the chi-squared or 
Fisher’s exact test was used for categorical variables. The study 
population was stratified into tertiles based on the NHR range, 
and continuous variables were analyzed using a one-way analysis 
of variance (ANOVA) or the Kruskal-Wallis test. Confounding 
factors included in the multivariate logistic regression models 
were those that showed statistical significance in the univariate 
analysis. Model 1 remained unadjusted, Model 2 was adjusted for 
demographic factors, and Model 3 accounted for clinically relevant 
factors. Statistical analyses were performed using SPSS Version 
27.0 software (IBM Corp., Armonk, NY, USA) and R version 4.2.3 
(R Core Team, Vienna, Austria). A p-value of <0.05 was considered 
statistically significant (Figure 1).
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Results

A total of 917 patients with anterior circulation and LVO who 
underwent MT were included in this study, of whom 348 met the 
eligibility criteria. The median age was 70 years (IQR, 62–76), 
with 228 (65.5%) being male and 215 (61.8%) experiencing 
adverse clinical outcomes at 90 days. Patients were stratified into 
three NHR tertiles: first (<6.29), second (6.29–9.50), and third 
(>9.50). Higher NHR tertiles were associated with a higher 
proportion of male participants (p < 0.001), hyperlipidemia 
(p < 0.001), poor 90-day prognosis (p < 0.005), elevated platelet 
counts (p = 0.014), elevated neutrophil counts (p < 0.001), 
elevated TG levels (p < 0.001), and lower HDL-C levels (p < 0.001) 
(Table  1). Ordered logistic regression analysis demonstrated 
significant differences in mRS scores across NHR tertiles, with an 
adjusted OR of 0.4897 (95% CI: 0.3021–0.7945, p = 0.004) between 
the lowest and highest tertiles (Figure  2). To explore the 

association between NHR and prognosis, patients were divided 
into good and adverse prognosis groups for the univariate 
analysis. Patients with adverse prognoses tended to be  older 
(p < 0.001), had a higher prevalence of diabetes mellitus 
(p = 0.014), had elevated baseline NIHSS scores (p < 0.001), had 
reduced ASPECTS scores (p < 0.001), had higher baseline systolic 
blood pressure (p = 0.026), and had a higher incidence of general 
anesthesia use (p = 0.012). Laboratory findings indicated that 
these patients also had higher neutrophil counts (p < 0.001), lower 
lymphocyte counts (p = 0.001), and elevated NHR levels 
(p = 0.004) (Table  2). Three models were developed for the 
multivariate logistic regression analysis. Model 1, which was 
unadjusted, revealed that the highest NHR group was significantly 
associated with an increased risk of adverse prognosis after 
thrombectomy (OR 2.371, 95% CI: 1.368–4.112, p = 0.002). Model 
2, which was adjusted for demographic factors such as age, 
demonstrated that NHR remained a significant risk factor for 

FIGURE 1

Flowchart showing the number (n) of patients included in the analysis. LVO, large vessel occlusion; MT, mechanical thrombectomy; mTICI, modified 
Thrombolysis in Cerebral Infarction; NHR, neutrophil-to-high-density lipoprotein cholesterol ratio.
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adverse prognosis (OR 2.887, 95% CI: 1.618–5.151, p < 0.001). 
Model 3, further adjusted for clinically relevant confounders 
(diabetes, general anesthesia, baseline NIHSS, ASPECTS, baseline 
systolic blood pressure, and lymphocyte count) based on Model 
2, confirmed the persistence of this association (OR 2.311, 95% 

CI: 1.248–4.278, p = 0.008). When analyzed as a continuous 
variable, NHR yielded consistent results (OR 1.445 per 1-SD 
increase, 95% CI: 1.095–1.908, p = 0.009) (Table 3). A restricted 
cubic spline curve analysis demonstrated a positive linear dose–
response relationship between the NHR and adverse prognosis (A 

TABLE 1  Demographic and clinical characteristics based on NHR tertiles.

Variable Total
(n = 348)

NHR<6.29
(n = 115)

6.29 ≤ NHR≤9.50
(n = 116)

NHR>9.50
(n = 117)

p-value

Age, median (IQR) 70.0 (62.0–76.0) 71.0 (63.8–77.3) 68.0 (60.0–75.0) 70.0 (61.0–76.0) 0.053

Sex, n (%) <0.001

 � Male 228 (65.5) 60 (52.2) 79 (68.1) 89 (76.1)

 � Female 120 (34.5) 55 (45.8) 37 (30.8) 28 (23.3)

HTN, n (%) 199 (57.2) 74 (66.1) 56 (46.6) 69 (59.0) 0.010

DM, n (%) 94 (27.0) 31 (27.0) 28 (24.1) 35 (29.9) 0.611

Dyslipidemia, n (%) 155 (44.5) 30 (26.1) 47 (40.5) 78 (66.7) <0.001

AF, n (%) 154 (44.3) 59 (51.3) 50 (43.1) 45 (38.5) 0.137

Smoking, n (%) 117 (33.6) 36 (31.3) 31 (26.7) 50 (42.7) 0.029

Intravenous thrombolysis, n (%) 155 (44.5) 55 (47.8) 58 (50.0) 42 (35.9) 0.066

NIHSS, median (IQR) 16 (13–20) 16 (13–20) 16 (12–20) 18 (14–22) 0.015

ASPECTS, median (IQR) 8 (7–10) 9 (7–10) 9 (8–10) 8 (6–9) 0.004

Baseline SBP, median (IQR) 146 (130–165) 144 (130–165) 143 (123–160) 151 (133–169) 0.034

Baseline DBP, median (IQR) 81 (73–90) 82 (72–89) 80 (70–90) 85 (75–96) 0.059

OTP, median (IQR) 245.0 (185.3–340.0) 235.0 (170.8–317.5) 270.0 (205.0–350.0) 246.0 (195.0–344.0) 0.031

OTR, median (IQR) 325.0 (254.5–420.0) 291.0 (231.5–400.1) 345.0 (265.0–438.0) 330.0 (267.0–440.0) 0.011

Occlusion site, n (%) 0.883

 � ICA 122 (35.1) 39 (33.9) 41 (35.3) 42 (35.9)

 � MCA-M1 161 (46.3) 56 (48.7) 54 (46.6) 51 (43.6)

 � MCA-M2 31 (10.1) 13 (11.3) 11 (9.5) 11 (9.4)

 � Tandem 30 (8.6) 7 (6.1) 10 (8.6) 13 (11.1)

TOAST, n (%) 0.888

 � LAA 165 (44.8) 51 (44.3) 45 (38.8) 60 (51.3)

 � Cardioembolic 183 (52.6) 61 (53.0) 69 (59.5) 53 (45.3)

 � Others 9 (2.6) 3 (2.6) 2 (3.7) 4 (1.4)

Neutrophils, 109/L, median 

(IQR)

8.47 (6.58–10.34) 6.15 (5.05–7.31) 8.54 (7.10–9.75) 11.02 (9.17–13.53) <0.001

Lymphocytes, 109/L, median 

(IQR)

1.14 (0.80–1.54) 1.07 (0.76–1.51) 1.20 (0.90–1.60) 1.11 (0.80–1.51) 0.179

Platelets, 109/L, median (IQR) 186 (150–224) 176 (140–214) 188 (160–228) 191 (161–232) 0.014

TC, mmol/L, median (IQR) 4.30 (3.66–5.05) 4.23 (3.72–5.16) 4.41 (3.82–5.23) 4.16 (3.51–4.81) 0.067

TG, mmol/L, median (IQR) 1.13 (0.81–1.51) 0.94 (0.69–1.25) 1.16 (0.92–1.53) 1.24 (0.91–1.65) <0.001

HDL-C, mmol/L, median (IQR) 1.08 (0.90–1.27) 1.27 (1.10–1.49) 1.08 (0.90–1.25) 0.93 (0.77–1.06) <0.001

LDL-C, mmol/L, median (IQR) 2.60 (2.05–3.28) 2.40 (1.95–3.22) 2.79 (2.12–3.45) 2.52 (2.03–3.22) 0.065

General anesthesia, n (%) 62 (17.8) 17 (14.8) 14 (12.1) 31 (26.5) 0.009

Passes of retriever ≥3, n (%) 83 (23.9) 25 (21.7) 33 (28.4) 25 (21.4) 0.362

90-day mRS 3–6, n (%) 215 (61.8) 62 (53.9) 67 (57.8) 86 (73.5) 0.005

HTN, hypertension; DM, diabetes mellitus; AF, atrial fibrillation; NIHSS, National Institute of Health Stroke Scale; ICA, internal carotid artery; MCA, middle cerebral artery.
TOAST, Trial of Org 10,172 in Acute Stroke Treatment classification; LAA, large artery atherosclerosis; OTP, time from onset to puncture; OTR, time from onset to recanalization.
IQR, interquartile range.
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p-value of 0.348 for non-linearity) (Figure 3). A receiver operating 
characteristic (ROC) curve was plotted to evaluate the predictive 
performance of NHR. The results demonstrated that the area 
under the curve (AUC) was 0.592 (95% CI: 0.531–0.653; 
p = 0.004), with an optimal cutoff value of 9.486 (Figure 4). The 
logistic curve demonstrated that the probability of adverse 
prognosis gradually increased with elevated NHR levels (Figure 5). 
Subgroup analyses revealed that factors such as age, sex, 
hypertension, diabetes, atrial fibrillation, smoking, intravenous 
thrombolysis, number of passes, baseline NIHSS, baseline 
ASPECTS, and stroke subtyping did not significantly influence 
the correlation between NHR and adverse prognosis (all p-values 
for interaction >0.05) (Figure 6).

Discussion

To our knowledge, this is the first study to evaluate 
the correlation between NHR and futile recanalization after 
MT in acute LVO stroke patients. It was found that elevated 
NHR levels within 24 h post-surgery were significantly 
associated with adverse prognosis in patients achieving 
complete recanalization.

Neuroinflammation is associated with BBB disruption, 
neuronal damage, and worse clinical outcomes following ischemic 
stroke (18). After the initial cerebral ischemic injury, the 
inflammatory response exacerbates the damage. Neutrophils are 
identified as pivotal drivers of ischemic brain injury development 
(19, 20). Research indicates that neutrophils are the first 
peripheral blood cells to cross the BBB following ischemic stroke, 
with their numbers increasing rapidly within hours of stroke onset 
(21). By releasing reactive oxygen species, proteases (e.g., 
metalloproteinases, elastase, and cathepsin G), cytokines (e.g., 
IL-6, IL-8, and TNF-α), and chemokines (e.g., CCL2, CCL3, and 
CCL5), the BBB is compromised, thereby aggravating ischemic 
damage and cerebral edema (22). Moreover, neutrophil 
extracellular traps (NETs) formed due to excessive neutrophil 
activation can trap other blood cells, resulting in pathological 
thrombosis and amplifying neuroinflammatory responses (23). 

Angiogenesis and vascular remodeling are essential for post-
stroke brain repair (24). Kang et al. found that peptidyl arginine 
deiminase 4 (PAD4), an enzyme required for NETs formation, is 
upregulated in peri-ischemic brain tissue. Overexpression of 
PAD4 exacerbates vascular damage and impedes angiogenesis and 
vascular repair by releasing additional NETs (25). Several clinical 
studies have confirmed the potentially detrimental effects of 
neutrophils on ischemic brain tissue. Cui et al. reported that an 
increase in neutrophil counts on the second day after the onset of 
large hemispheric infarction (LHI) was associated with brain 
herniation and early death (26). Meanwhile, Semerano et  al. 
demonstrated that higher neutrophil counts at admission and on 
the first day following thrombectomy were significantly associated 
with poor functional outcomes and increased mortality at 
90 days (27).

HDL-C exerts anti-atherosclerotic and anti-inflammatory 
effects, thereby reducing BBB disruption in patients with 
acute ischemic stroke (AIS) (28). Atherosclerosis is a common 
cause of ischemic stroke and is characterized by the 
accumulation of macrophages and T lymphocytes in the arterial 
intima (29, 30). Macrophages take up oxidized low-density 
lipoprotein and transform it into foam cells. In contrast, HDL-C 
can promote cholesterol efflux from foam cells and exhibits 
antioxidant and anti-inflammatory properties (31). In 
addition to its role in reverse cholesterol transport, HDL-C 
interacts with platelets, the coagulation cascade, and the vascular 
endothelium. Native HDL-C prevents platelet hyperreactivity 
by restricting cholesterol overload within platelets and modulating 
platelet signaling pathways after binding to platelet HDL 
receptors such as scavenger receptor B and apolipoprotein E 
receptor 2. Its anti-thrombotic properties are also associated 
with the inhibition of coagulation cascade reactions and the 
promotion of clot fibrinolysis. Moreover, HDL-C stimulates 
endothelial cells to produce nitric oxide and prostacyclin, which 
are potent inhibitors of platelet activation (32). In a cohort 
study of Chinese community-based hypertensive patients, 
higher HDL-C levels were identified as an important protective 
factor against first-time ischemic stroke (33). Li et al. found that 
reduced HDL-C levels were independently associated with an 

FIGURE 2

Distribution of modified Rankin Scale (mRS) scores at 90 days stratified by NHR tertiles.
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increased adverse prognosis at 3 months after AIS and cerebral 
hemorrhage (34).

Furthermore, HDL-C and neutrophil levels demonstrated 
reciprocal functional inhibition. Animal experiments conducted 
by Scanu et  al. showed that HDL-C can reduce neutrophil 
infiltration by inhibiting cytokine synthesis, including IL-6 and 

IL-1β, thereby alleviating inflammatory responses (35). 
Apolipoprotein A-I, the primary component of HDL-C (36), 
decreases neutrophil production by reducing granulocyte colony-
stimulating factor levels and restricts neutrophil chemotaxis to 
localized inflammatory sites by inhibiting IL-8 synthesis in 
activated neutrophils (37, 38). Previous studies have indicated that 

TABLE 2  Comparison of demographics and clinical characteristics between poor and good outcome groups.

Variable Total
(n = 348)

Poor outcome 
(mRS3-6)
(n = 215)

Good outcome 
(mRS0-2)
(n = 133)

p-value

Age, median (IQR) 70.0 (62.0–76.0) 72.0 (64.0–78.0) 66.0 (58.5–72.5) <0.001

Gender, n (%) 0.507

 � Male 228 (65.5) 138 (64.2) 90 (67.7)

 � Female 120 (34.5) 77 (35.8) 43 (32.3)

HTN, n (%) 199 (57.2) 129 (60.0) 70 (52.9) 0.177

DM, n (%) 94 (27.0) 68 (31.6) 26 (19.5) 0.014

Dyslipidemia, n (%) 155 (44.5) 102 (47.4) 53 (39.8) 0.166

AF, n (%) 154 (44.3) 102 (47.4) 52 (39.1) 0.128

Smoking, n (%) 117 (33.6) 66 (30.7) 51 (38.3) 0.142

Intravenous thrombolysis, n (%) 155 (44.5) 94 (43.7) 61 (45.9) 0.696

NIHSS, median (IQR) 16 (13–20) 18 (14–22) 16 (12–18) <0.001

ASPECTS, median (IQR) 8 (7–10) 8 (6–9) 9 (7–10) <0.001

Baseline SBP, median (IQR) 146 (130–165) 150 (132–166) 141 (125–160) 0.026

Baseline DBP, median (IQR) 81 (73–90) 82 (75–90) 80 (70–92) 0.398

OTP, median (IQR) 245.0 (185.3–340.0) 247.0 (195.0–340.0) 240.0 (172.5–341.5) 0.447

OTR, median (IQR) 325.0 (254.5–420) 330.0 (260.0–428.0) 305.0 (239.0–413.0) 0.158

Occlusion site, n (%) 0.740

 � ICA 122 (35.1) 81 (37.7) 41 (30.8)

 � MCA-M1 161 (46.3) 88 (40.9) 73 (54.9)

 � MCA-M2 31 (10.1) 24 (11.2) 11 (8.3)

 � Tandem 30 (8.6) 22 (10.2) 8 (6.0)

TOAST, n (%) 0.436

 � LAA 165 (44.8) 94 (43.7) 62 (46.6)

 � Cardioembolic 183 (52.6) 117 (54.4) 66 (49.6)

 � Others 9 (2.6) 4 (1.9) 5 (3.8)

Neutrophils, 109/L, median (IQR) 8.47 (6.58–10.34) 8.82 (7.08–11.18) 7.58 (5.95–9.50) <0.001

Lymphocytes,109/L, median (IQR) 1.14 (0.80–1.54) 1.07 (0.73–1.45) 1.28 (0.96–1.69) 0.001

Platelets, 109/L, median (IQR) 186 (150–223) 183 (148–217) 195 (155–235) 0.054

TC, mmol/L, median (IQR) 4.30 (3.66–5.05) 4.32 (3.66–5.07) 4.30 (3.64–5.06) 0.780

TG, mmol/L, median (IQR) 1.13 (0.81–1.51) 1.08 (0.78–1.50) 1.15 (0.86–1.58) 0.751

HDL-C, mmol/L, median (IQR) 1.08 (0.90–1.27) 1.10 (0.92–1.29) 1.06 (0.89–1.26) 0.221

LDL-C, mmol/L, median (IQR) 2.60 (2.05–3.28) 2.59 (2.01–3.25) 2.63 (2.08–3.32) 0.348

NHR, median (IQR) 7.74 (5.70–10.53) 7.92 (6.09–11.33) 7.23 (5.10–9.43) 0.004

General anesthesia, n (%) 62 (17.8) 47 (21.9) 15 (11.3) 0.012

Passes of retriever ≥3, n (%) 83 (23.9) 50 (23.3) 33 (24.8) 0.741

HTN, hypertension; DM, diabetes mellitus; AF, atrial fibrillation; NIHSS, National Institute of Health Stroke Scale; ICA, internal carotid artery; MCA, middle cerebral artery.
TOAST, the Trial of Org 10,172 in Acute Stroke Treatment classification; LAA, large artery atherosclerosis; OTP, time from onset to puncture; OTR, time from onset to recanalization.
NHR, neutrophil-high-density lipoprotein ratio; IQR, interquartile range.
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activated neutrophils can mediate the oxidation of HDL through 
oxidant-generating enzymes, such as myeloperoxidase, NADPH 
oxidase, and nitric oxide synthase. This process impairs the 
cholesterol efflux capacity and promotes atherosclerosis and 
inflammatory responses (39, 40). In addition, Carlucci et al. found 
that low-density granulocytes, a distinct neutrophil subset present 

in systemic lupus erythematosus, interact with modified HDL to 
promote foam cell formation and contribute to the progression of 
inflammatory high-risk plaques (41). Thus, elevated NHR levels 
may be associated with increased neutrophil count or decreased 
HDL-C levels. Inflammation and dyslipidemia are key factors 
influencing the pathophysiology of ischemic stroke (42). As a 

TABLE 3  Multivariable logistic regression models for poor outcome after MT.

NHR Model 1
OR (95% CI)

p value Model 2
OR (95% CI)

p value Model 3
OR (95% CI)

p-value

NHR as a continuous variable

Per 1-SD increase 1.46 (1.151–1.853) 0.002 1.620 (1.259–2.084) <0.001 1.445 (1.095–1.908) 0.009

NHR tertile

Tertile1 (<6.29) Reference Reference Reference

Tertile2 (6.29–9.50) 1.169 (0.695–1.966) 0.556 1.436 (0.833–2.476) 0.193 1.618 (0.913–2.865) 0.099

Tertile3 (>9.50) 2.371 (1.368–4.112) 0.002 2.887 (1.618–5.151) <0.001 2.311 (1.248–4.278) 0.008

FIGURE 3

The positive linear relationship between NHR and adverse prognosis 90 days after RCS analysis.
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FIGURE 4

ROC curve analysis of NHR in predicting poor prognosis at 90 days.

FIGURE 5

Logistic curve of the predicted probability of poor prognosis and 
NHR.

comprehensive indicator, NHR could better reflect patients’ 
inflammatory status and lipid metabolism throughout the entire 
pathological process of stroke.

Our study has several limitations. First, as a retrospective study, 
the exclusion of participants with missing data may have resulted 
in the loss of valuable information and introduced some bias into 
the results. Second, although this was a multicenter study, the 
sample size was relatively small and did not account for the 
potential effects of diet, medication, and health status on lipid 
levels. Therefore, future prospective studies with larger sample sizes 
and more centers are required to validate our findings. Third, the 
relationship between NHR and early functional deterioration or 
related complications (such as symptomatic intracranial 
hemorrhage, malignant brain edema, post-stroke pneumonia, and 
urinary tract infection) was not explored. Finally, this study only 
included NHR within 24 h after MT, and the relatively low AUC of 
NHR indicated its limited predictive performance. Future studies 
should explore dynamic changes in NHR and compare its predictive 
performance with other inflammatory markers to comprehensively 
evaluate the prognostic value of NHR as an inflammatory predictor.

Conclusion

Our findings suggest that an elevated NHR is associated with 
an increased risk of adverse prognosis following complete 
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recanalization after MT in acute LVO stroke patients. NHR 
could, therefore, serve as a potential inflammatory marker for 
identifying high-risk patients. Early intervention targeting the 
inflammatory state may help improve clinical outcomes 
following thrombectomy.
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FIGURE 6

Stratified analysis of the relationship between the NHR and adverse prognosis at 90 days. The model was adjusted for age, sex, hypertension, diabetes, 
atrial fibrillation, smoking, intravenous thrombolysis, number of passes, baseline NIHSS score, baseline ASPECTS, and stroke subtype. In each subgroup 
analysis, separate stratified variables were not included.
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