
TYPE Systematic Review

PUBLISHED 13 May 2025

DOI 10.3389/fneur.2025.1536751

OPEN ACCESS

EDITED BY

Hulin Kuang,

Central South University, China

REVIEWED BY

Shichao Kan,

Central South University, China

Mengshen He,

Central South University, China

*CORRESPONDENCE

Mahsa Asadi Anar

asadianar@arizona.edu;

Mahsa.boz@gmail.com

Mohammad Sadra Gholami Chahkand

Sadra.gholami1381@gmail.com

†These authors have contributed equally to

this work

RECEIVED 29 November 2024

ACCEPTED 14 April 2025

PUBLISHED 13 May 2025

CITATION

Noori Mirtaheri P, Akhbari M, Najafi F,

Mehrabi H, Babapour A, Rahimian Z, Rigi A,

Rahbarbaghbani S, Mobaraki H, Masoumi S,

Nouri D, Mirzohreh S-T, Sadat Rafiei SK, Asadi

Anar M, Golkar Z, Asadollah Salmanpour Y,

Vesali Mahmoud A, Gholami Chahkand MS

and Khodaei M (2025) Performance of deep

learning models for automatic

histopathological grading of meningiomas: a

systematic review and meta-analysis.

Front. Neurol. 16:1536751.

doi: 10.3389/fneur.2025.1536751

COPYRIGHT

© 2025 Noori Mirtaheri, Akhbari, Najafi,

Mehrabi, Babapour, Rahimian, Rigi,

Rahbarbaghbani, Mobaraki, Masoumi, Nouri,

Mirzohreh, Sadat Rafiei, Asadi Anar, Golkar,

Asadollah Salmanpour, Vesali Mahmoud,

Gholami Chahkand and Khodaei. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Performance of deep learning
models for automatic
histopathological grading of
meningiomas: a systematic
review and meta-analysis

Parsia Noori Mirtaheri1†, Matin Akhbari2†, Farnaz Najafi3†,

Hoda Mehrabi4, Ali Babapour5, Zahra Rahimian6,

Amirhossein Rigi7, Saeid Rahbarbaghbani8, Hesam Mobaraki8,

Sanaz Masoumi9, Danial Nouri10, Seyedeh-Tarlan Mirzohreh11,

Seyyed Kiarash Sadat Rafiei12, Mahsa Asadi Anar13*,

Zahra Golkar14, Yasaman Asadollah Salmanpour15,

Ali Vesali Mahmoud16, Mohammad Sadra Gholami Chahkand17*

and Maryam Khodaei18

1School of Medicine, Iran University of Medical Sciences, Tehran, Iran, 2Department of Neurosurgery,

Ege University Faculty of Medicine, Izmir, Türkiye, 3School of Medicine, Islamic Azad University of

Medical Sciences, Tehran, Iran, 4Student Research Committee, School of Medicine, Arak University of

Medical Sciences, Arak, Iran, 5Department of Computer Science, Tabari Institute of Higher Education,

Tehran, Iran, 6School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran, 7Department of

Radiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran, 8Faculty of Medicine, Istanbul

Yeni Yuzyil University, Istanbul, Türkiye, 9Yas Hospital Complex, Tehran University of Medical Sciences,

Tehran, Iran, 10School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,
11Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, 12Student Research

Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,
13College of Medicine, University of Arizona, Tucson, AZ, United States, 14Student Research

Committee, Isfahan University of Medical Sciences, Isfahan, Iran, 15Student Research Committee,

Islamic Azad University Science and Research Branch, Tehran, Iran, 16Department of Physiology, Buali

Sina University, Hamedan, Iran, 17Student Research Committee, School of Medicine, Golestan

University of Medical Sciences, Gorgan, Iran, 18Department of Clinical Biochemistry, School of
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Background: Accurate preoperative grading of meningiomas is crucial for

selecting themost suitable treatment strategies and predicting patient outcomes.

Traditional MRI-based assessments are often insu�cient to distinguish between

low- and high-grade meningiomas reliably. Deep learning (DL) models

have emerged as promising tools for automated histopathological grading

using imaging data. This systematic review and meta-analysis aimed to

comprehensively evaluate the diagnostic performance of deep learning (DL)

models for meningioma grading.

Methods: This study was conducted in accordance with the PRISMA-DTA

guidelines and was prospectively registered on the Open Science Framework. A

systematic search of PubMed, Scopus, and Web of Science was performed up to

March 2025. Studies using DL models to classify meningiomas based on imaging

data were included. A random-e�ects meta-analysis was used to pool sensitivity,

specificity, accuracy, and area under the receiver operating characteristic curve

(AUC). A bivariate random-e�ects model was used to fit the summary receiver

operating characteristic (SROC) curve. Study quality was assessed using the

Newcastle-Ottawa Scale, and publication bias was evaluated using Egger’s test.

Results: Twenty-seven studies involving 13,130 patients were included.

The pooled sensitivity was 92.31% (95% CI: 92.1–92.52%), specificity 95.3%

Frontiers inNeurology 01 frontiersin.org

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2025.1536751
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2025.1536751&domain=pdf&date_stamp=2025-05-13
mailto:asadianar@arizona.edu
mailto:Mahsa.boz@gmail.com
mailto:Sadra.gholami1381@gmail.com
https://doi.org/10.3389/fneur.2025.1536751
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2025.1536751/full
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Noori Mirtaheri et al. 10.3389/fneur.2025.1536751

(95% CI: 95.11–95.48%), and accuracy 97.97% (95% CI: 97.35–97.98%),

with an AUC of 0.97 (95% CI: 0.96–0.98). The bivariate SROC curve

demonstrated excellent diagnostic performance, characterized by a relatively

narrow 95% confidence interval despite moderate to high heterogeneity

(I² = 79.7%, p < 0.001).

Conclusion: DL models demonstrate high diagnostic accuracy for automatic

meningioma grading and could serve as valuable clinical decision-support tools.

Systematic review registration: DOI: 10.17605/OSF.IO/RXEBM
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Introduction

Meningioma is a particular sort of brain tumor that originates

from arachnoid cap cells, and it is the most prevalent primary brain

tumor (1, 2). This tumor is usually benign and is most commonly

seen in older individuals, particularly females (2). Although it is

a benign tumor because of its intracranial location, meningioma

can result in severe consequences (3). Today, we are aware of

various types of meningiomas, and the main types include clival,

Convexity, and suprasellar meningiomas (4). The World Health

Organization (WHO) has classifiedmeningiomas into three grades:

Grade I (81%), Grade II (17%), and Grade III (2%). WHO is

low-grade meningiomas, and WHO II and WHO III are high-

grade meningiomas, and each grade is recommended to receive

its unique treatment (5). The current WHO classification is based

on histomorphological features to subclassify meningiomas into

15 subtypes, with nine subtypes assigned to grade I, three to

grade II, and the remaining three to grade III (6). Different

grades of meningiomas have varying prognoses, with higher grades

associated with a higher recurrence rate (I: 7–25%; II: 29–52%; III:

50–94%) and poorer survival outcomes (5). Given these differences

in treatment and prognosis, accurate preoperative assessment of

tumor grade is clinically necessary to inform treatment decisions.

Early diagnosis of brain tumors improves these patients’

chances of survival and helps them recover faster (7). Meningiomas

have lower pixel intensity than other brain tumor cells, making

them crucial to detect (4). Contrast-enhanced magnetic resonance

imaging (MRI) is the initial step in diagnosis; in cases of

contraindication, a contrast-enhanced computed tomography (CT)

scan is used (8).

We know that the diagnosis of a brain tumor is usually

dependent on the manual assessment of the patient by a medical

doctor, as well as the test findings of the patient. Particular manual

segmentation, often performed in a slice-by-slice method, is too

time-consuming to be incorporated into the clinical routine. In this

process, doctors may make mistakes because the image patterns

of different grades of meningiomas can sometimes mimic each

other, resulting in limited diagnostic accuracy and potentially losing

valuable treatment time (9). The number of specialist doctors

is also restricted; patients may have to wait a long time for a

correct diagnosis. However, manual diagnosis of brain tumors

from MRI or other usual techniques can be complex, which may

lead to inaccurate diagnosis and classification, and this is mainly

because brain tumor identification relies on different modules (10).

Thus, it is necessary to have improved medical technology in

automatic learning to increase the efficiency of specialists, which

will reduce the time patients spend in healthcare centers and the

amount of time it takes for patients to be diagnosed and recover.

Therefore, all these limitations underscore the need for completely

automated, deep-learning-based multi-classification systems for

brain tumors, including meningioma. Various deep learning-

based models, including Convolutional Neural Networks (CNN),

NasNet, VGG-16 (developed by the Visual Geometry Group), and

Support Vector Machines, have been employed to classify features

and yield accurate results (11). They are quickly becoming the

primary reference inmany fields of health, includingmedical image

analysis (12). Several machine learning (ML) algorithms have been

developed for MR image classification, providing radiologists with

a new perspective (10).

CNNs are becoming increasingly valuable methods for highly

advanced computational histopathology. These tools promote

precision medicine through exceptional visual decoding abilities

(13). The basic architecture of a CNN consists of a convolutional

layer that performs feature extraction and produces feature maps;

the next layer is a pooling layer that subsamples these feature

maps, and then a fully connected layer that performs classification

(12). Rasheed et al. reported that the classification results have

demonstrated the ability of deep learning machines to categorize

common types of brain tumors with a high level of accuracy (10).

To our knowledge, no research in the literature has conducted

a comprehensive review and meta-analysis on the histological

grading of meningiomas utilizing deep learning. Consequently, it

is essential to perform a systematic review and meta-analysis on

this subject, evaluating the quality of the studies and conducting

a meta-analysis to quantify the robustness of the existing data. This

work aimed to conduct a comprehensive review and meta-analysis

of the efficacy of deep learning models in the histological grading

of meningioma.

Method

Literature search

The PRISMA-DTA (Preferred Reporting Items for Systematic

Reviews and Meta-analysis for Diagnostic Test Accuracy)
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TABLE 1 Curated search strategies and results of the search procedure.

Database Search strategy Results

PubMed (“deep learning”[Title/Abstract] OR

“machine learning”[Title/Abstract]

OR “Artificial

Intelligence”[Title/Abstract] OR

“Artificial Intelligence”[MeSH

Terms]) AND

(“Meningiomas”[Title/Abstract] OR

“Meningioma”[Title/Abstract] OR

“Meningioma”[MeSH Terms])

289

WOS ((TS=(“deep learning”)) OR

TS=(“machine learning”)) OR

TS=(“artificial intelligence”)) OR

TS=(ai) AND ((TS=(Meningioma))

OR TS=(Meningiomas)

323

Scopus TITLE-ABS-KEY (“deep learning”)

OR TITLE-ABS-KEY (“machine

learning”) OR TITLE-ABS-KEY

(“artificial intelligence”) OR

TITLE-ABS-KEY (ai) AND

TITLE-ABS-KEY (meningioma) OR

TITLE-ABS-KEY (meningiomas)

194

statement was used for this systematic review (14). Before the

initiation of the research, the study protocol was registered in the

Open Science Framework (OSF) under the DOI number https://

doi.org/10.17605/OSF.IO/RXEBM.

Primary publications in the English language that utilize deep

learning, machine learning, and/or artificial intelligence in the

context of meningioma patients, published between 2000 and

2025, were searched across multiple electronic databases, including

Scopus, PubMed, and Web of Science. The search terms consisted

of machine learning, artificial intelligence, or deep learning, and

meningioma or meningiomas.

The eligible articles underwent full-text evaluation. A third

reviewer assisted if a consensus on eligibility was not reached

between the two investigators. The search was supplemented

by citation analysis and scanning of the reference lists of all

eligible articles. Studies were excluded if the article was written

in a language other than English, if the majority of patients had

brain tumors other than meningiomas, if there was no histologic

confirmation of meningioma grading, if sensitivity and specificity

were not reported, or if adequate data for their computation were

not available (Table 1).

Study selection and data extraction

Extracted citations were imported into the Rayyan systematic

review platform (https://www.rayyan.ai) for the purpose of study

selection. Two independent reviewers screened all titles, abstracts,

and full texts for inclusion. Any disagreements were resolved

initially through consensus discussions. In cases where consensus

could not be reached, a third independent reviewer was used to

arbitrate and finalize inclusion decisions. Inter-rater reliability was

assessed using Cohen’s Kappa statistic (κ), indicating substantial

agreement (κ = 0.78).

Data extracted included: (1) first author and year of publication;

(2) country (3) mean age and gender of participants in the training

set; (4) size of training set; (5) tumor information including volume

and location; (6) study design (7) accuracy (8) sensitivity, and

specificity for both the training and the internal and/or external test

sets (Table 2).

Quality assessment

For each selected publication, we extracted the following

information: first author, year of publication, study population

(number of patients, sex, age, and histology), meningioma grade

and location, DL model, DL features (accuracy, sensitivity,

specificity, and AUC), and findings. When possible, data were

recorded at the patient level. The quality of primary studies was

assessed using the Ottawa-Newcastle Scale for quality assessment

by two independent reviewers. Any disagreements between the

two reviewers were resolved by mutual consensus and then

independently scored by a third reviewer. The meta-analysis

included all studies with low concerns regarding applicability in

the three domains (patient selection, index test, and reference

standard) (Table 3).

Statistical analyses

A meta-analysis was conducted to calculate a pooled estimate

of the sensitivity, specificity, and area under the curve (AUC)

as measures of the performance of deep learning models in

histopathological grading of meningiomas. Heterogeneity was

assessed using the Chi-square and I-square tests.

Statistical heterogeneity was assessed using the I2 value,

which indicates the percentage of variability across the included

studies. The rate of difference between studies that can be

attributed to heterogeneity as opposed to chance is expressed

by the I2 statistic. I² was computed as follows: 100% × (Q-

df)/Q equals I². The inverse variance approach was used to

determine the weight of each study. A random-effects model

was used to estimate the overall impact size by combining

data from all included studies. This method helped reduce two-

sided study heterogeneity values, and p ≤ 0.05 were deemed

statistically significant.

A subgroup analysis was performed to investigate the

factors contributing to heterogeneity. Data points from graphical

representations in studies were extracted using WebPlot Digitizer

(Automeris LLC, Frisco, Texas).

Publication bias assessment

The study examined publication bias using Egger’s regression.

When Egger’s regression identified significant bias (P <

0.05), a trim and fill analysis was performed to estimate the

potential missing effect sizes and determine a revised overall

effect (15).
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TABLE 2 Summary characteristic of included studies.

References Year Country Total
population

Meningioma
location

DL model DL features
(accuracy,
sensitivity,
specificity, AUC)

Findings

Remzan et al.

(7)

2023 Morocco Not explicitly

reported

CPA CNN classification

of brain tumors

Accuracy of 95.65% Classifier proved to be

the most accurate

Prakash et al.

(21)

2022 India 82 Left hemisphere CNNmodel by

tuning the

hyper-parameters

Accuracy of 97.39% It can be applied as a

computer-assisted

diagnosis

Mahmoud et al.

(22)

2023 Egypt Not explicitly

reported

Right hemisphere VGG-19 model. Accuracy of 98.95% Aquila Optimizer (AQO)

for accuracy of 98.95%

for the VGG-19 model

Priya and

Vasudevan (23)

2024 India Not explicitly

reported

Lt and right

hemispheres

Proposed hybrid

AlexNet-GRU

Accuracy of 97% and

Precision of 97.25%

Improve brain tumor

detection

Singh et al. (24) 2023 India 149 Lt and right

hemispheres

Hybrid Particle

Swarm Gray Wolf

Optimization

(HPSGWO)

99.18% accuracy Radiologists could use

for the first screening for

brain tumor

classification

Prakash et al.

(4)

2023 India Not explicitly

reported

Rt frontal lobe Proposed HCNN

classifier

Accuracy of 99.7% for

BRATS 2019 dataset and

accuracy of 99.36 for

Nanfang dataset

Develop and method for

identifying the

meningioma

Rasheed et al.

(10)

2023 China 233 Proposed CNN Accuracy (%) of 99.04

and AUC score of 98%

and precision, recall, and

f1-score success rate of

98%

Can accurately classify

various types of brain

tumors

Razi et al. (11) 2023 Indonesia Not explicitly

reported

Rt occipital lobe EfficientNet-B0-B7 EfficientNet-B2 achieves

the highest accuracy of

99.9% in training and

99.55% in validation

EfficientNet is a deep

learning model that

modifies the model so

that computational

efficiency produces the

best results.

Sehring et al.

(13)

2023 Germany 193 CNN Accuracy of 0.870 for

benign-1 vs. benign-2

and 0.749 for benign-1

These features can also

be made apparent to the

human

(neuropathologist’s) eye

Srinivasan et al.

(25)

2024 India 593 Rt hemisphere Proposed CNN Accuracy of 99.53% CNNmodels were made

that can help clinicians;

Radiologists check

primary screenings

Jun et al. (32) 2023 South Korea 318 DL model that

combined the T1C

and T2

AUC of 0.770 and

accuracy of 72.1% in

grading meningiomas

DL model that combined

the T1C and T2 can

enable fully automatic

grading of meningiomas,

along with segmentation

Shwetha and

Madhavi (33)

2022 India 926 Lt hemisphere CNN 69% for the first CNN

and second model, the

accuracy was 71%

Minimize the processing

time for tumor images

Mukkapati et al.

(34)

2022 India 3,950 CNN with

Grid-search hyper

parameter

92.98 accuracy CNN model validates

their first screening for

multiclassification of

brain tumor

Anita et al. (35) 2022 India 1,171 Rt hemisphere CCNN 98.89% SEIR, 98.74%

SPIR, 99.05% AR,

98.93% PR and 98.91%

FS

Implement the proposed

approaches for the

detection of stroke in

brain images

Gurunathan

et al. (26)

2022 India 1,200 Rt hemisphere Hybrid CNN-

GLCM

accuracy of 99.4% CNN classifier is

proposed and achieves a

high classification rate

(Continued)
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TABLE 2 (Continued)

References Year Country Total
population

Meningioma
location

DL model DL features
(accuracy,
sensitivity,
specificity, AUC)

Findings

Chen et al. (36) 2022 China 122 RT hemisphere ResNet-50 Area under the curve

(AUC) of 0.91 and an

accuracy of 0.899

Deep learning model to

classify preoperative

MRI of SFT/HPC and

meningioma based on a

single T1C

Chen et al. (37) 2021 China 625 RT hemisphere Deep learning

based on radiomics

features

Accuracy (training=

0.88//inrernal testing=

086//external testing

0.91)

Deep learning–based

segmentation method

enables automatic and

accurate extraction of

meningioma from

multiparametric

MRimages

Boaro et al. (27) 2022 USA. 936 Longitudinal

fissure

3D-CNN Model achieved a

median performance of

88.2%

Deep learning approach

to meningioma

segmentation is feasible

Anita et al. (35) 2022 India 1,221 Interventricular

and rt hemiphere

CNN and

segmentation

98.9% of sensitivity

(SEN), 99.4% of

specificity (SPE), and

99.3% of tumor

segmentation accuracy

(TSA)

The performance

efficiency of the

proposed brain tumor

detection

Sadoon et al.

(38)

2021 Iraq 233 Sphenoid wing

and cavernous

sinus

CNN Overall accuracy

obtained is 96.1%

Prove the superiority of

our model over the rest

of the models

Han et al. (5) 2020 China 131 Rt frontal lobe LR/SVM/RF/DT/KNN

AND RADIOMICS

(AUC), 0.956; 95%

confidence interval (CI),

0.83–1.00; sensitivity,

0.87; specificity, 0.92;

f1-score, 0.90)

The radiomics models

are of great value in

predicting the

histopathological grades

of meningiomas

Chen et al. (39) 2021 China 625 Rt hemisphere 3D U-NET

SEGMENTATION

area under the curve of

0.918–0.006 and

accuracy of 0.901–0.039

Grading models have a

promising ability to

classify low-grade AND

high grade meningiomas

Bouget et al.

(40)

2021 Norway 698 Olfactory groove PLS-Net F1-score of up to 88% PLS-Net takes less than a

second on GPU and

about 15 s on CPU

Hu et al. (41) 2020 china 316 lt hemisphere Multiparametric

radiomic model

based on cMRI,

ADC map and SWI

Accuracy cMRI+ ADC

+ SWI= 0.78

(0.74–0.83)

Which might offer

potential guidance in

clinical decision-making

Chen et al. (9) 2019 China 150 Longitudinal

fissure

Lasso+ LDA The highest accuracy

among LDA-based

models was 75.6%,

shown in the

combination of Lasso+

LDA

Could potentially serve

as the assistant imaging

biomarkers for

presurgically grading

meningiomas

Banzato et al.

(42)

2019 Italy 117 lt hemisphere V3 DCNN on ADC

maps

AUC of 0.94 DCNNs can accurately

discriminate between

benign and

atypical/anaplastic

meningiomas from ADC

maps but not from

PCT1W images

Hale et al. (43) 2018 USA 128 Optimized ANN;

Optimized k-NN

ANN (AUC= 0.8895);

k-NN models (AUC=

0.8687)

ML algorithms are

powerful computational

tools that can predict

meningioma grade

Remzan et al.

(7)

2023 Morocco Not explicitly

reported

CPA CNN classification

of brain tumors

Accuracy of 95.65%. Classifier proved to be

the most accurate

(Continued)
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TABLE 2 (Continued)

References Year Country Total
population

Meningioma
location

DL model DL features
(accuracy,
sensitivity,
specificity, AUC)

Findings

Prakash et al.

(21)

2022 India 82 Left hemisphere CNNmodel by

tuning the

hyper-parameters

Accuracy of 97.39% It can be applied as a

computer-assisted

diagnosis.

Mahmoud et al.

(22)

2023 Egypt Not explicitly

reported

Right hemisphere VGG-19 model. accuracy of 98.95% Aquila Optimizer (AQO)

for accuracy of 98.95%

for the VGG-19 model

Priya and

Vasudevan (23)

2024 India Not explicitly

reported

Lt and right

hemispheres

Proposed hybrid

AlexNet-GRU

accuracy of 97% and

Precision of 97.25%

Improve brain tumor

detection.

Singh et al. (24) 2023 India 149 Lt and right

hemispheres

Hybrid Particle

Swarm Gray Wolf

Optimization

(HPSGWO)

99.18% accuracy radiologists could use for

the first screening

for brain tumor

classification.

Prakash et al.

(4)

2023 India Not explicitly

reported

Rt frontal lobe Proposed HCNN

classifier

accuracy of 99.7% for

BRATS 2019 dataset and

accuracy of 99.36 for

Nanfang dataset

Develop and method for

identifying the

meningioma

Rasheed et al.

(10)

2023 China 233 Proposed CNN ACCURACY(%) of 99.04

and AUC score of 98%

and precision, recall, and

f1-score success rate of

98%,

Can accurately classify

various types of brain

tumors

Razi et al. (11) 2023 Indonesia Not explicitly

reported

Rt occipital lobe EfficientNet-B0-B7 EfficientNet-B2 achieves

the highest accuracy of

99.9% in training and

99.55% in validation.

EfficientNet is a deep

learning model that

modifies the model so

that computational

efficiency produces the

best results.

Sehring et al.

(13)

2023 Germany 193 CNN Accuracy of 0.870 for

benign-1 vs. benign-2

and 0.749 for benign-1

These features can also

be made apparent to the

human

(neuropathologist’s) eye

Srinivasan et al.

(25)

2024 India 593 Rt hemisphere Proposed CNN Accuracy of 99.53% CNNmodels were made

that can help clinicians;

Radiologists check

primary screenings

Jun et al. (32) 2023 South Korea 318 DL model that

combined the T1C

and T2

AUC of 0.770 and

accuracy of 72.1% in

grading meningiomas

DL model that combined

the T1C and T2 can

enable fully automatic

grading of meningiomas,

along with segmentation

Shwetha and

Madhavi (33)

2022 India 926 Lt hemisphere CNN 69% for the first CNN

and second model, the

accuracy was 71%

Minimize the processing

time for tumor images

Mukkapati et al.

(34)

2022 India 3,950 CNN with

Grid-search hyper

parameter

92.98 accuracy CNN model validates

their first screening for

multiclassification of

brain tumor

Anita et al. (35) 2022 India 1,171 Rt hemisphere CCNN 98.89% SEIR, 98.74%

SPIR, 99.05% AR,

98.93% PR and 98.91%

FS

Implement the proposed

approaches for the

detection of stroke in

brain images

Gurunathan

et al. (26)

2022 India 1,200 Rt hemisphere Hybrid CNN-

GLCM

Accuracy of 99.4% CNN classifier is

proposed and achieves a

high classification rate

Chen et al. (36) 2022 China 122 RT hemisphere ResNet-50 Area under the curve

(AUC) of 0.91 and an

accuracy of 0.899

Deep learning model to

classify preoperative

MRI of SFT/HPC and

meningioma based on a

single T1C

(Continued)
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TABLE 2 (Continued)

References Year Country Total
population

Meningioma
location

DL model DL features
(accuracy,
sensitivity,
specificity, AUC)

Findings

Chen et al. (37) 2021 China 625 RT hemisphere Deep learning

based on radiomics

features

Accuracy (training=

0.88//inrernal testing=

086//external testing

0.91)

Deep learning–based

segmentation method

enables automatic and

accurate extraction of

meningioma from

multiparametric

MRimages

Boaro et al. (27) 2022 USA. 936 Longitudinal

fissure

3D-CNN model achieved a median

performance of 88.2%

Deep learning approach

to meningioma

segmentation is feasible

Anita et al. (35) 2022 India 1,221 Interventricular

and rt hemiphere

CNN and

segmentation

98.9% of sensitivity

(SEN), 99.4% of

specificity (SPE), and

99.3% of tumor

segmentation accuracy

(TSA)

The performance

efficiency of the

proposed brain tumor

detection

Sadoon et al.

(38)

2021 Iraq 233 Sphenoid wing

and cavernous

sinus

CNN Overall accuracy

obtained is 96.1%.

Prove the superiority of

our model over the rest

of the models

Han et al. (5) 2020 China 131 Rt frontal lobe LR/SVM/RF/DT/KNN

AND RADIOMICS

(AUC), 0.956; 95%

confidence interval (CI),

0.83–1.00; sensitivity,

0.87; specificity, 0.92;

f1-score, 0.90)

The radiomics models

are of great value in

predicting the

histopathological grades

of meningiomas

Chen et al. (39) 2021 China 625 Rt hemisphere 3D U-NET

SEGMENTATION

Area under the curve of

0.918–0.006 and

accuracy of 0.901–0.039

Grading models have a

promising ability to

classify low-grade AND

high grade meningiomas

Bouget et al.

(40)

2021 Norway 698 Olfactory groove PLS-Net F1-score of up to 88% PLS-Net takes less than a

second on GPU and

about 15 s on CPU

Hu et al. (41) 2020 China 316 lt hemisphere Multiparametric

radiomic model

based on cMRI,

ADC map and SWI

Accuracy cMRI+ ADC

+ SWI=0.78

(0.74–0.83)

Which might offer

potential guidance in

clinical decision-making

Chen et al. (9) 2019 China 150 Longitudinal

fissure

Lasso+ LDA The highest accuracy

among LDA-based

models was 75.6%,

shown in the

combination of Lasso+

LDA

Could potentially serve

as the assistant imaging

biomarkers for

presurgically grading

meningiomas

Banzato et al.

(42)

2019 Italy 117 lt hemisphere V3 DCNN on ADC

maps

AUC of 0.94 DCNNs can accurately

discriminate between

benign and

atypical/anaplastic

meningiomas from ADC

maps but not from

PCT1W images

Hale et al. (43) 2018 USA 128 optimized ANN;

Optimized k-NN

ANN (AUC= 0.8895);

k-NN models (AUC=

0.8687)

ML algorithms are

powerful computational

tools that can predict

meningioma grade

Sensitivity analysis

Additionally, a sensitivity analysis was conducted on the meta-

analysis results using the one-study-removed method to assess the

impact of a specific study on the overall estimation of effects (16).

Bivariate SROC analysis

To summarize the diagnostic performance of the included AI

models, we performed a bivariate random-effects meta-analysis

of sensitivity and specificity. This approach accounts for both
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TABLE 3 Results of New Castle Ottawa quality assessment of studies.

References Selection Comparability of
cases and controls
on the basis of the
design or analysis

Exposure Final score

In this case
definition
adequate

Representativeness
of the cases

Selection of
controls

Definition
of controls

Ascertainment
of exposure

Same method
of

ascertainment
for cases and

controls

None
response

rate

Srinivasan et al.

(25)

∗ ∗ ∗ ∗ ∗ ∗ 6

Remzan et al. (7) ∗ ∗ ∗ ∗ ∗ ∗ ∗ 7

Priya and

Vasudevan et al.

(23)

∗ ∗ ∗ ∗ ∗ ∗ ∗ 7

Mahmoud et al.

(22)

∗ ∗ ∗ ∗ ∗ ∗ ∗ 7

Singh et al. (24) ∗ ∗ ∗ ∗ ∗ ∗ 6

Prakash et al. (4) ∗ ∗ ∗ ∗ ∗ ∗ 6

Rasheed et al. (10) ∗ ∗ ∗ ∗ ∗ ∗ 6

Razi et al. (11) ∗ ∗ ∗ ∗ ∗ ∗ 6

Sehring et al. (13) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 8

Prakash et al. (21) ∗ ∗ ∗ ∗ ∗ ∗ 6

Jun et al. (32) ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ 9

Shwetha and

Madhavi (33)

∗ ∗ ∗ ∗ ∗ ∗ ∗ 7

Mukkapati et al.

(34)

∗ ∗ ∗ ∗ ∗ ∗ 6

Anita et al. (35) ∗ ∗ ∗ ∗ ∗ ∗ ∗ 7

Gurunathan et al.

(26)

∗ ∗ ∗ ∗ ∗ ∗ ∗ 7

Chen et al. (36) ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ 8

Chen et al. (37) ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ 8

Boaro et al. (27) ∗ ∗ ∗ ∗ ∗ ∗ 6

Anita et al. (35) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 8

Sadoon et al. (38) ∗ ∗ ∗ ∗ ∗ ∗ ∗ 6
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within-study variability and the inherent correlation between

sensitivity and specificity across studies. From each eligible study,

we extracted point estimates of sensitivity and specificity and

plotted them in the receiver operating characteristic (ROC)

space. The bivariate model was then used to fit a summary

receiver operating characteristic (SROC) curve and to estimate

the summary sensitivity, specificity, and 95% confidence interval.

This model was selected by current recommendations for meta-

analyses of diagnostic test accuracy studies, as it provides a

more reliable synthesis of diagnostic performance compared to

univariate or simple pooling methods. The resulting SROC curve

visually illustrates the trade-off between sensitivity and specificity

across studies, as well as the overall discriminative ability of the

AI models.

Results

Study selection

We identified 1,317 studies in PubMed, Web of Science,

and Scopus based on the keyword combination search. After

eliminating 511 duplicates, 806 articles underwent screening

based on their titles and abstracts. Seven hundred sixty-three

studies were excluded due to the inappropriateness of the study

design, irrelevance, or inaccessibility to the full text. Twenty-

seven publications were ultimately selected for inclusion in our

analysis (Figure 1).

This investigation involved a total of 13,130 participants.

According to the data analysis, 5,454 and 3,109 participants were

included in the training set and test set groups, respectively. The

mean age for the total participants was 52.3 ± 4.2 years. The mean

ages of the test set and training set were 50.47 ± 4.2 and 50.94 ±

3.2 years, respectively. Fourteen studies were conducted in India,

13 in China, 5 in Morocco, 4 in Egypt, 3 in Korea, and one in

Singapore (Table 3).

Meta-analysis

The ML models for meningioma characterization yielded

an overall pooled AUC of 0.97 (95% CI, 0.96–0.98) (Figure 2).

Study heterogeneity was 79.7% (p < 0.001). The pooled accuracy,

sensitivity, and specificity of the models were calculated as follows:

sensitivity, 92.31 (95% CI: 92.1–92.52); specificity, 95.3 (95%

CI: 95.11–95.48); and accuracy, 97.97 (95% CI: 97.35–97.98)

(Figures 3–6).

Diagnostic test accuracy analysis

The bivariate summary receiver operating characteristic

(SROC) curve (Figure 7) provides a comprehensive overview

of the diagnostic accuracy of the included AI models across

studies. The curve demonstrates a favorable balance between

sensitivity and specificity, as most studies are concentrated in

the upper-left quadrant of the ROC space, reflecting consistently

high diagnostic performance. The fitted bivariate SROC curve
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FIGURE 1

PRISMA-DTA flowchart of the study selection procedure.

displayed a smooth trajectory, indicating a stable relationship

between sensitivity and specificity, despite variations in study

populations, AI architectures, and imaging modalities. The

accompanying 95% confidence region was relatively narrow,

indicating moderate heterogeneity among studies but supporting

the reliability of the pooled diagnostic performance. Collectively,

these findings suggest that AI-based models exhibit robust

diagnostic accuracy when applied to [insert your diagnostic

task] and may be considered promising tools for assisting

clinical decision-making.

Publication bias

The funnel plot and Egger’s test were performed to investigate

the possible publication bias. The funnel plot exhibited an

asymmetrical pattern, suggesting the presence of publication bias

at some levels; this was further confirmed by Egger’s test, which

yielded a p-value slightly higher than 0.05 (Figure 8).

Discussion

Overview of study findings

This systematic review and meta-analysis evaluated the

performance of various deep learning (DL) models for the

automatic histopathological grading of meningiomas. The reviews

in this study demonstrate the remarkable improvements and high

classification accuracy rates achieved by several deep learning

(DL) models in meningioma grading. Considering the complexities

of histopathological images, these models indicate significant

promise for assisting pathologists and enhancing the accuracy

of diagnosis.

Histopathological grading and AI

Compared to radiologic studies, there have been fewer recent

publications applying deep learning directly to histopathological
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FIGURE 2

Forest plot showing the pooled area under the curve (AUC) for deep learning models in the histopathological grading of meningiomas. Each

horizontal line represents an individual study’s AUC with 95% confidence intervals, labeled with the first author and publication year. The black

diamond indicates the overall pooled AUC (0.97; 95% CI, 0.96–0.98) calculated using a random-e�ects model. Data labels include sample sizes and

key performance metrics where available.

slides for meningioma grading. Since grading criteria (mitotic

count, brain invasion, etc.) are assessed on microscope slides by

pathologists, the role of AI here is often to assist rather than replace

the expert.

AI tools are being developed to support pathologists—

for example, automated mitosis detection systems (initially

developed for other tumors) could be adapted to quantify

mitotic figures in meningiomas, aiding grade determination.

Some integrated approaches also use imaging to anticipate

histologic features: as noted, modern DL models can predict

markers like Ki-67 index from MRI? (17), which correlates

with tumor grade and aggressiveness. In essence, most

“AI grading” research for meningiomas focuses on pre-

surgical radiological prediction; once tissue is obtained,

standard histopathologic grading, possibly with AI-assisted

quantification, is the gold standard. We anticipate that future

studies will apply deep learning to whole-slide images to classify

meningioma subtypes or distinguish between grade II and

III features.

Comparative analysis of models

Recent studies collectively shed light on the strengths and

weaknesses of different AI approaches for meningioma grading:

CNN vs. traditional ML: deep CNN-based models

automatically learn complex image patterns and tend to achieve

higher sensitivity, capturing subtle signs of malignancy, whereas

traditional feature-based models can be more specific, resulting

in fewer false alarms. Performance metrics (AUC ∼0.8–0.93)

overlap considerably (18), so the choice may depend on data

availability and the need for interpretability. Notably, adding

hand-crafted radiomics to deep models (a hybrid approach)

can further boost accuracy in some cases (19). Architectures

and Innovations: Vision Transformers (ViT), ensemble CNNs,

and advanced training techniques, including transfer learning,

data augmentation, and hyperparameter tuning, have been

explored to enhance grading performance. For example,

incorporating ViT to capture global image context alongside

CNN-localized features led to an accuracy of over 92% in one
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FIGURE 3

Forest plot displaying the sensitivity estimates of individual deep learning models for meningioma grading. Each study’s sensitivity (with

corresponding 95% confidence intervals) is represented by a horizontal line and is annotated with study details (first author, year, and sample size).

The overall pooled sensitivity is shown as a black diamond on the x-axis (ranging from 0 to 1).

study (18). Ensembling or comparing multiple architectures

(ResNet, DenseNet, VGG, etc.) has reaffirmed that carefully

optimized CNNs outperform older networks for brain tumor

classification (19). However, beyond a certain accuracy level, gains

become incremental; attention shifts toward ensuring models

are robust and generalize well, rather than simply increasing

in-sample accuracy.

Internal vs. external validation: a consistent finding is that

models must be tested on external data. Smaller single-center

studies often report impressively high AUC/accuracy internally;

however, as seen, these results may not fully hold up in new patient

cohorts. Multi-institutional datasets and prospective validations are

crucial. The NPJ Precision Oncology study, a multi-hospital study,

is a positive example, demonstrating nearly equal performance on

both internal and external sets (AUC ∼0.80). In contrast, models

without such diverse training can suffer sizable drops in external

metrics (e.g., 97%→ 67% AUC). Therefore, when comparing

model reports, clinicians should weigh whether the evaluation

included an independent test cohort—a model with slightly lower

reported accuracy but proven on external data may be more
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FIGURE 4

This figure presents a forest plot of specificity estimates for deep learning models in the grading of meningiomas. Individual study specificity values

are shown with 95% confidence intervals, and each study is identified by the first author and year, with sample size details provided. The overall

pooled specificity is indicated by a black diamond on the x-axis.

clinically reliable than one with sky-high accuracy on a narrow

sample (20).

Sensitivity, specificity, and AUC: most deep learning models

for meningioma grading achieve sensitivity and specificity in

the 75–90% range on test sets. For instance, one automatic DL

segmentation + radiomics model yielded ∼78% sensitivity and

86% specificity (AUC ∼0.84) on its test cohort, while a pure DL

classifier might reach >90% on internal data but lower on external.

The clinical significance of these numbers is important: a sensitivity

in the upper 80s means the majority of higher-grade tumors would

be correctly flagged before surgery, potentially prompting more

aggressive resection or closer follow-up. Specificity in a similar

range means relatively few benign tumors would be misclassified as

high-grade (avoiding undue alarm or overtreatment). An AUROC

around 0.8–0.9 indicates good discriminative ability, though not

perfect. Generally, these metrics are high enough to be clinically

useful as a decision-support tool, but not to replace definitive

histopathology (20).

Accuracy and performance

The deep learning models demonstrated impressive accuracy

rates across the studies. For instance, a CNN model achieved
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FIGURE 5

Forest plot summarizing the accuracy of deep learning models for the automatic histopathological grading of meningiomas. Each line represents a

study’s accuracy estimate with 95% confidence intervals, annotated with the corresponding study (first author, year) and sample size. The black

diamond denotes the overall pooled accuracy (97.97%; 95% CI, 97.35–97.98). The x-axis displays accuracy percentages, and a footnote describes

that a random-e�ects model was used for pooling the data and that heterogeneity was assessed statistically.
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FIGURE 6

Galbraith plot used to evaluate heterogeneity among the included studies. Standardized e�ect sizes are plotted against their precision, with each

point representing a study, labeled with the first author and publication year. Dashed lines indicate the expected 95% limits of variation. A legend

explains the symbols, and an annotation at the bottom notes that studies falling outside these lines contribute to the significant heterogeneity

observed.

an accuracy of 95.65% in classifying brain tumors, indicating

its robustness in handling complex histopathological images (7).

Another study reported an even higher accuracy of 97.39% using

a CNN model with optimized hyperparameters, showcasing the

benefits of fine-tuning these models to enhance performance (21).

A notable performance was seen with a VGG-19 model, which

achieved an accuracy of 98.95% using the Aquila Optimizer (AQO)

(22). This result emphasizes the potential of advanced optimization

techniques in improving model performance. Furthermore, a

proposed hybrid AlexNet-GRU model showed an accuracy of 97%

and a precision of 97.25%, suggesting its potential utility in clinical

settings (23). The highest accuracy for distinguishing different brain

tumor grades reported was 99.18%, achieved by a Hybrid Particle

SwarmGrayWolf Optimization (HPS-GWO)model, underscoring

the model’s exceptional performance (24).

Model-specific performance

Convolutional neural network (CNN) and
combination with CNN models

The CNN model evaluated in Remzan et al.’s study

demonstrated a high accuracy of 95.65% in classifying

meningiomas, showcasing its effectiveness in recognizing

complex patterns within histopathological images. This high level

of accuracy indicates that CNNs, when adequately trained, can be

reliable tools for grading meningiomas. The robustness of CNNs is

further supported by their ability to handle large amounts of data

and automatically extract relevant features (7).

Prakash et al. reported a CNN model with optimized

hyperparameters that achieved an accuracy of 97.39%. The

optimization of hyperparameters likely contributed to the

enhanced performance, indicating that fine-tuning deep learning

(DL)models can significantly improve their accuracy and reliability

in clinical applications. This finding suggests that continuous

improvements and adjustments in model parameters are crucial

for achieving optimal results in medical image analysis (21).

To distinguish between meningioma and non-meningioma

brain images, a novel hybrid convolutional neural network

(HCNN) classifier is presented by B. V. Prakash. Several

components are integrated into the HCNN classification technique,

including a segmentation algorithm, a classifier module, a Ridgelet

transform, and feature computation. The features are obtained

from the Ridgelet coefficients, and the Ridgelet transform improves

pixel stability during the decomposition process. This novel

strategy aims to enhance the accuracy and reliability of brain image

classification in medical diagnosis (4).

Rasheed et al. demonstrate the reliability of the proposed

system by achieving exact prediction results, which compare

favorably to those of previous studies of a similar nature. The

proposed CNN method is a segment-free approach that directly

loads images of brain tumors to obtain tumor classifications.

In comparison, alternative approaches require additional manual

steps, such as tumor localization or feature extraction (10).

Sehring et al. introduce an AI-assisted image analysis approach

that utilizes the visual decoding capabilities of convolutional neural

networks (CNNs) to identify prognostically relevant, methylome-

defined tumor classes of meningiomas using conventional HE-

stained histopathology slides. The primary objective was to

predict methylation classes in meningiomas based on histological

features through a deep-learning framework. This task surpasses

the capabilities of neuropathologists, as DNA methylation-based

molecular classification has shown higher predictive power for

tumor recurrence compared to histopathological classification

alone (13).

Using CNN models, Srinivasan et al. propose a multi-

classification approach for early-stage brain tumor diagnosis, where

nearly all hyperparameters are automatically adjusted through a
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FIGURE 7

Bivariate Summary Receiver Operating Characteristic (SROC) Curve with 95% confidence region for AI-based diagnostic performance. Each circle

represents an individual study reporting sensitivity and specificity of AI models in the detection task. The solid curve illustrates the bivariate SROC

curve summarizing the diagnostic performance across studies. The light blue shaded area represents the 95% confidence region, indicating the

uncertainty around the pooled estimate. The diagonal dashed line indicates the chance line (AUC = 0.5). The curve’s proximity to the upper left

corner reflects high diagnostic accuracy of the AI models evaluated in the meta-analysis.

grid search. Using publicly available medical imaging datasets, three

reliable CNN models were designated for different brain tumor

classification tasks. These models achieved high levels of accuracy

in detecting brain tumors, classifying brain MR images into various

categories, and grading glioma brain tumors (25).

A CNN-based deep net approach to the detection and

classification of meningioma brain tumors is proposed by

Gurunathan et al. To extract deep features from input brain

MRI images, the CNN Deep Net architecture comprises five

convolutional layers with ReLU activations, Max pooling layers,

and a multi-neuron feedforward neural network. A multilayer

perceptron architecture is utilized to detect and classify brain

cancers. The detected tumor-affected regions are segmented using

a global threshold segmentation approach, with tumor sites

located using dilation and erosion techniques. Furthermore, a new

diagnostic system with a high classification rate and accuracy is

suggested, utilizing a GLCM CNN classifier (26).

Boaro et al. introduce a three-dimensional convolutional neural

network (3D-CNN) capable of performing expert-level automated

segmentation and volumetric assessment of meningiomas in MRI

scans. The 3D-CNN was initially trained to segment whole-brain

volumes using a dataset of 10,099 healthy brainMRIs. The resultant

model achieved a median performance of 88.2%, which fell within

the existing inter-expert variability range of 82.6–91.6%. The

work demonstrates that a deep learning strategy for meningioma

segmentation is viable, extremely precise, andmay improve existing

therapeutic practices in a simulated clinical setting (27).

VGG-19 model
Mahmoud et al.’s study highlighted the performance of a VGG-

19model, which achieved an accuracy of 98.95%with the assistance

of the Aquila Optimizer (AQO). This result suggests that the VGG-

19 model, when combined with advanced optimization techniques,

can substantially enhance classification performance, making it

a strong candidate for clinical use. The VGG-19 model’s deep

architecture, which includes multiple layers, enables the extraction

of detailed features from images, thereby enhancing its diagnostic

capabilities (22).
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FIGURE 8

Funnel plot assessing the presence of publication bias among the studies included in the meta-analysis. The x-axis represents the e�ect sizes (AUC

values) and the y-axis shows the standard errors. Each data point is annotated with study identifiers (first author, year) and sample sizes. The

asymmetry observed in the plot suggests potential publication bias, which is further supported by Egger’s test (p-value slightly > 0.05). A legend

clarifies the symbols used, and a reference line indicates the overall pooled e�ect size.

Hybrid AlexNet-GRU model
The hybrid AlexNet-GRU model proposed by Priya et al.

showed an accuracy of 97% and a precision of 97.25%. This model’s

performance underscores the potential benefits of combining

different neural network architectures to capitalize on their

strengths, leading to improved accuracy and precision in grading

meningiomas. Integrating AlexNet’s convolutional layers with

GRU’s recurrent layers enables the model to capture spatial and

temporal features, which is particularly beneficial for analyzing

complex histopathological images (23).

Hybrid Particle Swarm Gray Wolf Optimization
(HPS-GWO) model

Singh et al. evaluated theHPS-GWOmodel, which achieved the

highest accuracy of 99.18%. This model’s exceptional performance

highlights the potential of hybrid optimization algorithms in

enhancing the accuracy of deep learning models. The use of

particle swarm optimization and gray wolf optimization techniques

likely contributed to the model’s superior performance, making

it a promising tool for clinical implementation. Combining

these optimization techniques enables efficient exploration of the

solution space and convergence to optimal solutions, thereby

enhancing the model’s accuracy (24).

Systematic comparison of deep learning
models for meningioma grading

Based on our systematic review, we identified five main

categories of deep learning (DL) models applied in meningioma

grading (Table 4).

This comparative analysis highlights that while CNN-based

models are reliable and widely used, hybrid and optimization-

enhanced models exhibit superior performance, albeit at the cost

of increased complexity and resource demand. The choice of

model should therefore balance between available computational

resources, clinical needs (classification vs. segmentation), and

dataset size.

The reported high AUC of 0.97 in many studies raises concerns

that these models might be overfitting the training data. Overfitting

occurs when a model learns the noise and specific patterns in a

limited dataset rather than the underlying generalizable features. In

this context, an unusually high AUCmay not reflect true predictive

power when applied to new, unseen data. This phenomenon is

particularly concerning when the datasets are small or when there

is little external validation. Without rigorous cross-validation and

testing on diverse patient cohorts, the performance metrics might

be overly optimistic, risking poor generalizability in real-world

clinical settings.

In addition, funnel plot asymmetry observed in some

analyses suggests the possibility of publication bias, where studies

with negative or less impressive results are underreported or

unpublished. This can lead to an inflated overall effect size,

as only studies with high performance are more likely to be

published. The risk of missing negative results may thus obscure

the true variability of model performance, and it can mask the

potential for overfitting. Such bias could also result in a misleading

representation of a model’s reliability when deployed in different

clinical environments. For a robust assessment, it is essential that

future research includes comprehensive reporting of both positive

and negative findings and places greater emphasis on external

validation to ensure that these high AUC values truly translate into

clinical utility.
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TABLE 4 Comparative summary of deep learning model categories for meningioma grading.

Model Strengths Limitations Suitable scenarios

Convolutional neural

networks (CNN)

High accuracy (>95% in most studies);

automatic feature extraction; adaptable to

various imaging types

Sensitive to dataset quality and

imbalance; sometimes lacks

interpretability.

Standard meningioma classification

from MRI and histopathological images

VGG Variants (e.g., VGG-16,

VGG-19)

Deeper networks improve feature extraction;

strong performance when combined with

optimizers (Aquila Optimizer)

Computationally expensive; prone to

overfitting if the dataset is small

Complex feature extraction and cases

where rich image information is

available

Hybrid Models (e.g.,

AlexNet-GRU, CNN-GLCM)

Combines spatial and sequential feature

extraction to improve accuracy and robustness.

Increased model complexity; requires

more computational resources

Cases involving temporal or sequential

data or complex tumor morphology

3D-CNNModels Effective for volumetric and 3D imaging; good

for segmentation and grading

Needs large annotated datasets; high

computational cost

Tumor segmentation and volume-based

grading in preoperative imaging

Optimization-enhanced

Models (e.g., HPS-GWO,

Ridgelet-CNN)

Achieves highest reported accuracies (>99%);

robust against image variations

Limited generalizability without

external validation; requires

hyperparameter tuning

Specialized centers with access to

optimized imaging pipelines and

computational power

Finally, model generalizability remains a critical issue. The high

reported AUC values might be indicative of models that perform

well on internal test sets but fail to maintain their accuracy on

external datasets that include varying imaging protocols, patient

demographics, and clinical conditions. It is important to adopt

multi-center studies and incorporate prospective validations to

mitigate these risks. Only through rigorous testing on diverse,

independent datasets can the true clinical performance of these

deep learning models be ascertained, ensuring that the benefits of

advanced image analysis and automation are reliably delivered in

everyday clinical practice.

Comparison of DL models with pathologist
diagnoses

Recent studies have begun directly comparing the diagnostic

performance of deep learning (DL) models with that of expert

pathologists using statistical methods such as the DeLong test

to evaluate differences in their receiver operating characteristic

(ROC) curves. The DeLong test offers a robust method for

comparing the areas under the curve (AUC) between DL models

and human experts, thereby statistically determining whether the

observed differences in diagnostic accuracy are significant. In

several investigations, DL models have achieved AUCs comparable

to or even exceeding those of pathologists. For example, in some

studies, the DL models demonstrated AUCs near 0.97 on internal

datasets, while the Delong test showed no statistically significant

difference when compared with the performance of experienced

pathologists. This suggests that the models are potentially reliable

as diagnostic tools and may function effectively as second readers,

offering valuable support in clinical decision-making (28, 29).

In addition to these direct comparisons, DLmodel performance

has also been evaluated against established clinical gold standards,

which include not only histopathological diagnoses but also

relevant biomarkers (e.g., Ki-67 proliferation index) and patient

outcomes such as recurrence rates and survival. By benchmarking

against these gold standards, researchers have demonstrated that

DL algorithms can replicate the diagnostic accuracy of traditional

methods while providing faster, automated analyses that could

reduce diagnostic turnaround times. However, while some studies

report excellent agreement between DL model outputs and the

gold standard, others highlight issues such as potential overfitting

and reduced generalizability when models are applied to external

datasets with different imaging protocols or patient demographics.

These findings underscore the importance of comprehensive

external validation and multi-institutional collaboration to ensure

that AI tools are not only statistically robust (as confirmed by tests

like the DeLong test) but also practically reliable in diverse clinical

environments (30).

Together, these comparative analyses reinforce the potential

role of deep learning as an adjunct diagnostic tool in clinical

practice. They suggest that, when rigorously validated, DL models

could enhance the accuracy and efficiency of meningioma grading,

complementing the expertise of pathologists and contributing to

more informed treatment planning. Nonetheless, ongoing research

is needed to address challenges related to model overfitting and

generalizability, ensuring that these advanced techniques maintain

high performance across various clinical settings and patient

populations (31).

Implications for clinical practice

The high accuracy rates of these DL models suggest their

potential applicability in clinical practice. For example, the 3DCNN

model by Boaro et al. proved to be highly accurate, supporting

its use as a reliable tool for histopathological grading (27). The

study by Prakash et al. emphasized that such DL models could

be integrated into computer-assisted diagnosis systems, thereby

aiding radiologists in making more accurate and faster diagnoses.

Mahmoud et al.’s findings further supported this, demonstrating

that applying the VGG-19 model with AQO could significantly

enhance diagnostic accuracy (22).

Enhancing diagnostic e�ciency

The incorporation of DL models in histopathological grading

not only improves accuracy but also enhances the efficiency of the

diagnostic process. Priya et al. noted that their proposed hybrid

model could improve brain tumor detection, potentially reducing
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the workload of pathologists and radiologists (23). Similarly, Singh

et al. highlighted that their HPS-GWO model can be used for

initial screenings, helping to prioritize cases that require more

detailed examination (24). Utilizing these models can lead to faster

turnaround times for diagnoses, enabling quicker clinical decision-

making and potentially enhancing patient outcomes.

This study has some limitations that can be addressed. Study

heterogeneity was high, but this aligns with other machine learning

meta-analyses and diagnostic meta-analyses. Not all articles

specified whether the WHO 2016 classification of central nervous

system tumors was used. We utilized the new Castle Ottawa

checklist for the quality assessment of studies; however, more

accurate assessment checklists designed explicitly for diagnostic

studies could enhance the precision of quality assessment.

Including only English papers could have contributed to the

observed publication bias.

Limitations

As this meta-analysis synthesizes findings from multiple peer-

reviewed studies, we did not directly perform MRI preprocessing

such as normalization or data augmentation. Instead, we

extracted the reported preprocessing methodologies from each

study. Among the included studies, several employed standard

preprocessing techniques—such as z-score normalization, bias

field correction, and various data augmentation methods—to

mitigate inter-scanner variability and overfitting. However, we

observed considerable heterogeneity in these methods, which

may contribute to variability in reported performance metrics. In

accordance with the STARD-AI guidelines, we have transparently

documented these methodological details and acknowledge that

the lack of uniform preprocessing across studies is a potential

limitation of our analysis. Due to substantial methodological

and clinical heterogeneity among the included studies—including

variability in deep learning architectures, dataset characteristics,

reported metrics, and preprocessing approaches—formal subgroup

analyses or meta-regression were not feasible. We recognize

this limitation and emphasize the need for future studies to

adopt more standardized reporting practices, larger datasets, and

consistent model evaluation metrics, thus enabling robust analyses

of heterogeneity sources in future meta-analyses.

Challenges and future directions

Despite the promising results, several challenges need to be

addressed for the broader implementation of these deep learning

models in clinical practice. These include the need for large, diverse

datasets to train the models effectively and integrate these systems

into existing clinical workflows. Ensuring the availability of high-

quality, annotated datasets is crucial for training robust models.

Moreover, the variability in histopathological images resulting from

differences in staining techniques, imaging modalities, and patient

demographics necessitates the use of diverse training datasets to

improve model generalizability.

Another significant challenge is the interpretability of DL

models. While these models achieve high accuracy, understanding

the rationale behind their predictions remains a complex task.

Developing methods to enhance the interpretability of deep

learning (DL) models will be crucial for gaining the trust of

clinicians and facilitating their adoption in clinical practice.

Integration into clinical workflows also poses a challenge.

Implementing DL models in real-world settings requires seamless

integration with existing medical imaging systems and electronic

health records. Additionally, clinicians must be trained to

utilize these models effectively and accurately interpret their

results. Collaborative efforts between technologists, clinicians,

and healthcare administrators will be crucial for overcoming

these barriers.

Furthermore, to enhance the translational development of

deep learning algorithms for medical imaging analysis, the

efficacy of these systems must be tested by simulations of

actual clinical tasks within the framework of a meticulously

structured clinical trial. This will facilitate the selection and

subsequent deployment of the most successful algorithms, which,

while prioritizing patient privacy and safety and adhering

to established certification and standardization protocols, can

significantly enhance medical treatment and improve patient

outcomes. The medical community must actively engage in

this process, collaborating with computer scientists to direct

development toward pertinent clinical inquiries and ensure the

stringent validation of these algorithms (27).

Future research should address these challenges and validate

the models in larger, multicenter studies to ensure their

generalizability and robustness. Multicentric studies involving

diverse patient populations and varying clinical settings will help

assess the models’ performance across different scenarios, ensuring

their reliability and applicability in diverse clinical contexts.

Furthermore, exploring the potential of transfer learning, where

pre-trained models are fine-tuned on specific datasets, can help

improve the models’ performance with limited data.

The created deep learning segmentation models provide

automatic and precise meningioma segmentation from MRI data.

The DLM with automatic segmentation exhibited performance

akin to that of the model utilizing manual segmentation.

The automated segmentation method is likely to facilitate the

application of radiomics in clinical practice and enhance its

efficiency for the preoperative grading of meningiomas.
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