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Although Multiple sclerosis (MS) and Leber hereditary optic neuropathy (LHON) 
have distinct pathophysiological mechanisms, they are both neurodegenerative 
conditions that involve mitochondrial dysfunction. MS is an autoimmune disease 
that is characterized by demyelination and neuroinflammation; and LHON is a 
mitochondrial disorder predominantly affecting the optic nerves, resulting in 
severe vision loss. Recent studies have highlighted the coexistence of these two 
conditions, particularly in females, suggesting that mitochondrial variants in LHON 
may predispose individuals to develop MS or affect its progression. Similar to MS, 
LHON-MS presents with visual impairment, neurological deficits, white matter lesions, 
and brain atrophy, which further supports a shared underlying pathophysiology. 
While MS is not inherently a mitochondrial disorder, its neuroinflammatory processes 
can lead to mitochondrial dysfunction. Reciprocally, mitochondrial impairment 
may be exacerbated in LHON-MS. Therefore, the role of mitochondrial dysfunction 
in these diseases is central, with impaired mitochondrial function contributing to 
cellular damage and neuroinflammation. This review explores the intersections of 
MS and LHON, emphasizing the need for further research to better understand 
mitochondrial dysfunction in these disorders.
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1 Introduction

Multiple sclerosis (MS) is a chronic autoimmune disease that leads to inflammation, 
demyelination, and neurodegeneration in the central nervous system (CNS) (1). The primary 
pathology underlying this disease is axonal demyelination. Lesion location and burden 
contribute to the variable clinical presentation and disease severity seen in this population. 
The disease is more common in women than in men, with a ratio of about 3:1, and in 
individuals of Northern European descent (2). In fact, MS is one of the most common 
autoimmune neurologic conditions worldwide with about 2.9 million individuals diagnosed 
(3). While optic neuritis (ON) can commonly be seen in MS, co-morbid mitochondrial eye 
disease has also been described in this population.
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Leber hereditary optic neuropathy (LHON) is a mitochondrial 
disorder characterized by bilateral central vision loss due to 
degeneration of retinal ganglion cells and the optic nerves. It is most 
commonly seen in young males (4–6). Several mitochondrial DNA 
variants which disrupt complex I of the respiratory chain have been 
associated with the disease (6–9). Interestingly, these variants have 
incomplete penetrance with only about 50% of males and 10% of 
females with these mutations ultimately developing the condition. 
This suggests additional genetic, epigenetic, and environmental factors 
may be involved (6, 10). In addition to the complex genetics at play, 
mutations may also be synergistic in some cases, producing specific 
phenotypes (11). As there are no definitive or curative treatments for 
LHON, the condition is considered neurodegenerative and progressive 
in most cases, although emerging interventions such as gene therapy 
are on the horizon (12, 13).

Previous reports have described cases of LHON and MS 
co-occurrence. This overlap is predominantly seen in female patients 
(14). It has been proposed that harboring LHON variants is a risk factor 
for developing MS (15). It is possible that mitochondrial DNA variants 
in persons with MS (PwMS) could potentially contribute to unique 
clinical subgroups, emphasizing the need for further investigation into 
the overlapping pathophysiology of LHON and MS (16). This narrative 
review will explore the complex interactions between mitochondrial 
disease and neuroinflammation to enhance our understanding of the 
shared mechanisms underlying these disorders.

2 Clinical and radiographic overlap in 
LHON and MS

The overlap between LHON and MS has gained attention in 
recent days, such that LHON-MS has been given a distinct name, 
Harding’s Disease (17). This association was initially reported by Lees 
et al. in 1964, who observed that LHON and MS could co-occur in 
the same individual (18). Harding et al. further expanded on this 
observation, documenting 11 cases in which LHON and MS 
symptoms coexisted, supporting the idea that LHON mutations 
might predispose individuals to neuroinflammation and associated 
conditions such as MS (17).

Recent studies support this association. An extensive review 
involving 55 LHON families and 40 patients with confirmed MS 
highlighted that primary LHON mutations are associated with an 
increased risk of developing MS (15). Notably, all three primary 
LHON mutations identified in European and North American 
populations (m.11778A > G, m.3460A > G, and m.14484 T > C) have 
been associated with symptoms similar to those of MS, including 
vision problems, motor function issues, and cognitive difficulties, 
suggesting a genetic predisposition (15). This association is 
particularly evident in females despite LHON predominantly affecting 
men, indicating that MS may be triggered in women with LHON 
when certain environmental factors are present (14, 18).

LHON-MS shares certain features with MS including age of onset, 
a female predilection, and a predominance of the relapsing–remitting 
MS phenotype (71.1%). However, it differs significantly in that 96% of 
LHON-MS patients experience visual involvement with only 10% 
reporting ocular pain and 72.1% lacking visual recovery, resulting in 
50% of patients registering as legally blind. In contrast, only 50% of 
patients with isolated MS have visual involvement with 85 to 95% 
recovering to better than 6/9 visual acuity (19–21). These features may 
be important when differentiating these disease processes as painless 
ON and lack of visual improvement with treatment would be atypical 
for isolated neuroinflammatory disorders (Table 1). This suggests that 
LHON-MS has a distinct clinical phenotype that may reflect a unique 
mechanistic interaction between LHON and MS.

Neuroimaging studies show that the imaging characteristics of 
LHON-MS closely resemble those of MS (Figure  1) (14, 17). Per 
McDonald’s 2017 criteria, neuroimaging abnormalities in MS typically 
occur in multiple areas of the CNS, showing patterns of indistinguishable 
white matter lesions and brain atrophy, which have also been reported 
in individuals with LHON-MS (14, 22). As compared to LHON alone, 
neuroimaging in patients with LHON-MS demonstrates more extensive 
white matter abnormalities and optic nerve damage (23).

3 LHON and mitochondrial dysfunction

LHON is a mitochondrial disorder that leads to severe visual 
impairment or blindness due to the degeneration of retinal ganglion 

TABLE 1 Clinical differences between LHON, ON, LHON-MS, NMOSD, and typical MS (6, 17, 19).

Typical MS NMOSD Optic neuritis (ON) LHON LHON-MS

Sex ratio (Female:Male) 2:1 4:1 3:1 1:4 2:1

Peak age of onset 20–40 years 30–40 years 25–40 years 20–35 years 20–35 years

Ocular pain Yes with ON 50% >90% Rare, <10% 10%

Visual recovery Common, >85% 

recover

Limited acutely Common, >90% in MOGAD Minimal, 

progressive

~25% acutely although 

typically progressive

Acute response to steroids Yes Yes although less profound, 

often requiring plasma 

exchange

Yes, rarely requires escalation to 

plasma exchange

Limited ~50%

Progression to blindness or 

visual disability

Rare Uncommon but present in 

severe cases

Rare Common ~50% of cases

Cortical lesions on MRI Necessary for 

diagnosis

Uncommon Rare, may indicate another diagnosis 

or association with MOG antibodies

Not anticipated Common, necessary for 

diagnosis

Leber’s hereditary optic neuropathy (LHON), Leber’s hereditary optic neuropathy and multiple sclerosis (LHON-MS), myelin oligodendrocyte glycoprotein (MOG), myelin oligodendrocyte 
glycoprotein associated disease (MOGAD), multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), optic neuritis (ON).
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cells (RGCs). The disease is mainly caused by point mutations in 
mitochondrial DNA (mtDNA) affecting the complex I subunits of the 
electron transport chain, which leads to less effective cellular energy 
production and higher susceptibility to cell death (24). The typical 
clinical presentation includes subacute bilateral visual loss, central 
scotoma, dyschromatopsia, and eventual optic disk atrophy, with 
early stages marked by pseudoedema and microangiopathy (6, 25).

The role of mitochondrial dysfunction in the pathogenesis of 
LHON is well established. Ghelli et  al. demonstrated that 
osteosarcoma-derived cytoplasmic hybrids (cybrids) with common 
LHON mutations (11,778/ND4, 3,460/ND1, and 14,484/ND6) 
undergo apoptotic cell death when under metabolic stress induced by 
galactose, which leads cells to rely on mitochondrial respiration for 
ATP production (26). This study showed that LHON cybrids exhibit 
signs of apoptosis such as chromatin condensation, nuclear DNA 
laddering, and increased cytochrome c release into the cytosol, with 
mutations 3,460/ND1 and 14,484/ND6 leading to greater apoptotic 
susceptibility compared to 11,778/ND4 (Figure 2) (24).

In addition to mitochondrial dysfunction, the regulation of 
superoxide production in RGCs compared to brain and 
neuroblastoma cells has been explored. Research by Levin found that 
RGCs produce superoxide at lower rates than brain mitochondria 
with tighter regulation, potentially preventing aberrant apoptosis 
signaling (25). Disruption of this balance by LHON-related mtDNA 
mutations could lead to increased superoxide levels, contributing to 
RGC death and optic neuropathy (25, 27).

The complexity of diagnosing LHON is in part due to its similarity 
to other conditions such as neuromyelitis optica spectrum disorders 
(NMOSD), isolated ON, and MS. Accurate diagnosis relies on high 
clinical suspicion and comprehensive diagnostic resources (Table 1), 
with definitive diagnosis achieved through identifying specific 
mtDNA mutations (Table 2) (28). Recent findings have also identified 
new autosomal recessive mutations in patients with LHON-like 
symptoms, broadening the spectrum of the disease (29).

Inflammation is initiated through the activation of pattern 
recognition receptors (PRRs) present in both immune and non-immune 
cells, which respond to microbial elements and endogenous signals 
known as damage-associated molecular patterns (DAMPs) (30). Under 
normal physiological conditions, DAMPs, including ATP and specific 
proteins, remain sequestered within cellular compartments and are 
unable to activate PRRs. However, cellular stress or death can alter 
membrane permeability, thereby facilitating the release of DAMPs and 
the subsequent initiation of inflammatory responses (30). Mitochondria 
play a pivotal role in this process for several reasons: they possess 
evolutionary similarities to bacteria indicating a potential interaction 
with PRRs; their dual membrane structure allows for the regulation of 
mitochondrial DAMP release; and they are crucial in mediating various 
forms of regulated cell death that promote DAMP redistribution and 
PRR activation (31–33). Thus, mitochondria serve as integral 
components in the regulation of inflammation, linking cellular stress 
responses to immune activation and contributing to the maintenance of 
homeostasis (34, 35). As such, it remains possible that in individuals 
with LHON-MS, mitochondrial dysfunction may be  triggering a 
secondary immune phenomenon.

4 Possible mitochondrial dysfunction 
in MS

Mitochondria play a key role in the generation of cellular energy and 
various metabolic functions in neurons and oligodendrocytes (36). 
Mitochondria in oligodendrocytes play a vital role in providing the 
necessary energy for myelin synthesis, which is critical for proper 
neuronal function (36). They also contribute to controlling lactate 
availability, which helps with axonal function. Furthermore, 
mitochondria regulate calcium levels and have the ability to induce 
apoptosis when there is an excess of calcium, especially during periods of 
ischemia (36). A recent study used fluorescent markers in mitochondria 
to gain understanding of how they behave dynamically in the myelin 
sheath (36). These markers revealed that mitochondria are spread out in 
the myelin sheath, with the greatest concentration located in the 
cytoplasmic ridges beside the axon (36, 37). This distribution indicates 
that mitochondria play a specific role in maintaining the integrity of 
myelin and the health of axons (38). Electron microscopy has shown that 
mitochondria in oligodendrocytes have a smaller cristae surface area 
than those in neurons, suggesting a decreased capacity for ATP 

FIGURE 1

Lesions of the CNS characteristic of LHON-MS. (A) Diffuse T2/FLAIR 
signal abnormalities throughout the white matter meeting 
McDonald’s 2017 criteria. (B) Atrophy of the optic nerves.
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production (36). The results emphasize the significance of mitochondrial 
function in sustaining the energy demands of oligodendrocytes and 
supporting cognitive functions while also providing a potential 
neuroprotective therapeutic avenue for future study (39, 40).

Mitochondrial dysfunction is increasingly recognized as a critical 
factor in the pathophysiology of MS (41, 42). The depletion of myelin 
results in heightened energy requirements for neurons, due to the 
extensive participation of the axonal membrane in depolarization, 
resulting in elevated ATP usage (43). The heightened need may surpass 
the mitochondria’s capability to generate ATP, leading to compromised 
neuronal function. Mitochondria play a key role in producing ATP 
through oxidative phosphorylation (44). In MS, their impairment 
results in lower ATP production and increased oxidative stress (45). 
Research has shown that there is a higher amount of mitochondria and 
enzyme activity, specifically complex IV, in MS lesions than in normal-
appearing white matter (46). Additionally, there is increased expression 
of mitochondrial stress proteins such as mtHSP70 in these regions. The 
neuroinflammatory environment characteristic of MS is also associated 
with increased production of reactive oxygen species (ROS), which are 
partly generated by dysfunctional mitochondria (47). This oxidative 
stress exacerbates inflammation and contributes to axonal damage and 
degeneration (48). These observations suggest that mitochondrial 
stress and oxidative damage are significant contributors to tissue 
damage and disease progression in MS (46). These pathological 
processes seem to yield a destructive potentiation cascade wherein 
further tissue damage also further impairs mitochondrial activity 
which has been directly associated with clinical disease progression 
(49). Moreover, mitochondrial inhibitors like rotenone have been 
shown to impair oligodendrocyte differentiation, further linking 
mitochondrial dysfunction to demyelination in MS (50).

These studies provide evidence that individuals with genetic 
disorders predisposing them to mitochondrial dysfunction may face 
an increased risk of developing MS or experiencing more severe disease 
manifestations. As inflammation has a detrimental impact on 
mitochondrial function, those with preexisting mitochondrial 
impairments could be more susceptible to the cellular damage seen in 
inflammatory processes such as MS and therefore have more severe 

disease presentation and rate of progression. While MS is not 
inherently a mitochondrial disorder, its neuroinflammatory processes 
can lead to mitochondrial dysfunction, a situation that may differ in 
LHON-MS, in which mitochondrial dysfunction is likely occurring in 
a bidirectional manner. These findings point to the critical role of 
mitochondrial health in MS severity and progression and highlight the 
potential of therapeutic targets aimed at mitigating mitochondrial 
dysfunction and oxidative damage (51, 52). Further studies are 
required to better characterize the impact of underlying mitochondrial 
dysfunction on clinical presentation and outcomes in patients with MS.

5 Therapeutic advancement in LHON

Recent treatment advancements for LHON have been targeted at 
treating mitochondrial dysfunction, which is fundamental to the 
disease’s pathology due to the impaired mitochondrial function in 
RGCs (53–55). Antioxidants such as Idebenone, a synthetic analog of 
coenzyme Q10, aim to enhance mitochondrial bioenergetics and 
mitigate oxidative stress (54). While initial studies suggested potential 
benefits in visual acuity (56), larger clinical trials such as the RHODOS 
study have produced mixed results (57). These findings highlight the 
complexity of mitochondrial involvement in LHON and elucidate the 
need for a deeper understanding of how mitochondrial dysfunction 
contributes to visual impairment.

Gene therapy has emerged as a promising approach, utilizing 
strategies such as allotopic expression to relocate mitochondrial genes to 
the nucleus which facilitates proper protein synthesis within mitochondria 
(58, 59). Early clinical trials targeting the ND4 mutation have shown 
some improvements in vision, suggesting that restoring mitochondrial 
function can yield positive outcomes, although with variable responses 
among patients (60). Additionally, emerging nutritional interventions 
such as the ketogenic diet aim to strengthen mitochondrial bioenergetics. 
Mitochondrial replacement therapy (MRT) also holds promise for 
preventing the transmission of LHON mutations by combining healthy 
mitochondrial DNA with nuclear DNA from affected individuals, 
although ethical considerations and technical challenges remain 
significant (61, 62). Given the potential curative role of these treatments 
and the ability to affect multiple areas of the body simultaneously, 
significant research efforts are likely in this area in the next few years (63, 
64). Recent studies have also hypothesized that mitochondrial 
transplantation, which involves transferring healthy mitochondria into 
damaged cells, may be an effective treatment for MS (64).

6 Treatment overlap in LHON-MS

Disease-modifying agents for MS have never been tested for 
effectiveness in long-term disability reduction in LHON, as the 
established pathology of MS is likely distinct from LHON. Idebenone 
and Mitoxantrone have shown some benefit in LHON. Idebenone is 
considered safe and has led to visual improvements in some LHON 
cases (19, 57). Mitoxantrone has also shown some benefit but carries 
significant risks, making it less favorable compared to safer alternatives 
(65). On the other hand, LHON-MS may overlap significantly from 
both a clinical and radiographic standpoint with MS alone. Given the 
high likelihood of severe visual disability in LHON-MS patients, early 
intervention with disease-modifying therapies is recommended. 

FIGURE 2

ATP content in 142B.TK- cybrid cells, harboring the three most common 
primary LHON mutations, and in the parental cell line were determined 
in triplicate after various incubation periods in galactose-medium (27).
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TABLE 2 Mitochondrial DNA variants identified in individuals with LHON (13).

Genes Nucleotide position AA change Phenotype

MT-ND1 m.3316G > A A4T LHON/NIDDM

m.3376G > A E24K LHON/MELAS

m.3394 T > C Y30H LHON/NIDDM

m.3460G > A A52T LHON

m.3496G > T A64S LHON

m.3497C > T A64V LHON

m.3635G > A S110N LHON

m.3700G > A A112T LHON

m.3733G > A E143K LHON

m.4025C > T T240M LHON

m.4136A > G Y277C LHON

m.4160 T > C L286P LHON

m.4171C > A L289M LHON

m.4216 T > C Y304H LHON/Insulin resistance

MT-CO1 m.6261G > A A120T LHON/Prostrate Cancer

m.7444 G > A Ter-K LHON/SNH/DEAF

m.7623\u00B0C > T T13I LHON

MT-CO2 m.7868C > T L95F LHON

MT-ND2 m.4640C > A I57M LHON

m.4917A > G N150D LHON/AMD/Insulin resistance/NRTI-PN

m.5244G > A G259S LHON

MT-ND3 m.10237 T > C I60T LHON

MT-ND4 m.11253 T > C I165T LHON

m.11696G > A V312I LHON + Spastic Dystonia

m.11778G > A R340H LHON and LHON/MS

m.11874C > A T372N LHON

MT-ND4L m.10543A > G H25R LHON

m.10591 T > G F41C LHON

m.10663 T > C V65A LHON

MT-ND5 m.12782 T > G I149S LHON

m.12811 T > C Y159H LHON

m.12848C > T A171V LHON

m.13045A > C M237L LHON/MELAS/LS

m.13051G > A G239S LHON

m.13379A > C H348P LHON

m.13528A > G T398A LHON-Like

m.13637A > G Q434R LHON

m.13708G > A A458T LHON/MS risk

m.13730G > A G465E LHON

MT-ND6 m.14568C > T G36S LHON

m.14279G > A S132L LHON

m.14459G > A A72V LHON + Spastic Dystonia

m.14482C > G M64I LHON

m.14484 T > C M64V LHON

m.14495A > G L60S LHON

m.14498C > T Y59C LHON

(Continued)
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Additionally, recent studies suggest that 4-aminopyridine may improve 
visual evoked potentials in certain MS patients, making it a potential 
candidate for further research in the LHON-MS population (66).

7 Future directions and research gaps

Despite emerging evidence linking mitochondrial dysfunction to 
both MS and LHON, significant gaps remain in understanding the 
specific roles of mitochondria in these conditions. Key areas where 
research is lacking include the precise molecular mechanisms by which 
mitochondrial dysfunction contributes to neuronal damage in MS and 
the interplay of genetic and environmental factors that may influence 
these processes. Furthermore, the extent to which mitochondrial 
mutations in LHON could predispose individuals to MS-like symptoms 
needs more investigation, particularly in diverse populations beyond 
those previously studied. Future studies should prioritize longitudinal 
investigations into mitochondrial dysfunction, assessing how these 
abnormalities evolve over time in MS and LHON patients.

8 Conclusion

The overlap of MS and LHON shines light on a complex 
relationship in which mitochondrial dysfunction plays a central 
role. The co-occurrence of these two conditions suggests that 
LHON mutations may predispose individuals to MS and possibly 
contribute to more severe clinical manifestations in patients. Both 
diseases exhibit neuroinflammation, visual impairment, and white 
matter lesions, highlighting the need for further research into how 
mitochondrial dysfunction influences disease progression. 
Understanding the mechanisms by which LHON mutations 
impact MS development remains an important area for future 
research, as it could lead to mitochondrial targeted interventions. 
As our understanding of mitochondrial involvement in these 

diseases grows, we will become closer to developing more effective, 
tailored therapies for patients suffering from both MS and LHON.
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TABLE 2 (Continued)

Genes Nucleotide position AA change Phenotype

m.14596A > T I26M LHON

m.14325 T > C N117D LHON

m.14729G > A S132L LHON

MT-CYB m.14831G > A A29T LHON

m.14841A > G N32S LHON

m.15257G > A D171N LHON

m.15674 T > C S310P LHON

m.15773G > A V343M LHON

m.15812G > A V356M LHON

MT-CO3 m.9438G > A G78S LHON

m.9738G > T A178S LHON

m.9804G > A A200T LHON

MT-ATP6 m.8836A > G M104V LHON

m.9016A > G I164V LHON

m.9101 T > C I192T LHON

m.9139G > A A205T LHON
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