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Background: Electroencephalography (EEG) has become an indispensable tool 
in stroke research for real-time monitoring of neural activity, prognosis prediction, 
and rehabilitation support. In recent decades, EEG applications in stroke research 
have expanded, particularly in areas like brain-computer interfaces (BCI) and 
neurofeedback for motor recovery. However, a comprehensive analysis of 
research trends in this domain is currently unavailable.

Methods: The study collected data from the Web of Science Core Collection 
database, selecting publications related to stroke and EEG from 2005 to 2024. 
Visual analysis tools such as VOSviewer and CiteSpace were utilized to build 
knowledge maps of the research field, analyzing the distribution of publications, 
authors, institutions, journals, and collaboration networks. Additionally, co-
occurrence, clustering, and burst detection of keywords were analyzed in detail.

Results: A total of 2,931 publications were identified, indicating a consistent 
increase in EEG research in stroke, with significant growth post-2017. The 
United States, China, and Germany emerged as the leading contributors, with 
high collaboration networks among Western institutions. Key research areas 
included signal processing advancements, EEG applications in seizure risk and 
consciousness disorder assessment, and EEG-driven rehabilitation techniques. 
Notably, recent studies have focused on integrating EEG with machine learning 
and multimodal data for more precise functional evaluations.

Conclusion: The findings reveal that EEG has evolved from a diagnostic tool 
to a therapeutic support platform in the context of stroke care. The advent of 
deep learning and multimodal integration has positioned EEG for expanded 
applications in personalized rehabilitation. It is recommended that future studies 
prioritize interdisciplinary collaboration and standardized EEG methodologies in 
order to facilitate clinical adoption and enhance translational potential in stroke 
management.
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1 Introduction

Stroke is a leading cause of disability and mortality worldwide, 
classified mainly into ischemic stroke and hemorrhagic stroke (1). 
Stroke results in localized or widespread neurological impairment, 
frequently accompanied by motor, cognitive (e.g., aphasia, executive 
dysfunction, and memory deficits), and swallowing dysfunctions (2, 
3). Specifically, cognitive impairments vary depending on the lesion 
location and severity, with common manifestations including 
visuospatial neglect (4) and attention disorder (5). These deficits not 
only undermine patients’ functional independence but also impose 
long-term challenges for rehabilitation and quality of life. With the 
ongoing trend of population aging, the incidence of stroke is expected 
to continue rising, placing an even heavier burden on healthcare 
systems globally (6, 7). Traditional stroke diagnosis and evaluation 
rely heavily on imaging techniques such as magnetic resonance 
imaging (MRI) and computed tomography (CT), which are highly 
sensitive and specific in displaying structural brain abnormalities, 
particularly in the acute phase (8, 9). Furthermore, functional scales 
such as the NIH Stroke Scale and the Fugl-Meyer Assessment are 
employed to quantify functional deficits (10, 11). However, these 
methods are primarily oriented toward the detection of structural 
changes and may prove inadequate for the real-time monitoring of 
functional dynamics in stroke patients. Functional MRI (fMRI) and 
positron emission tomography (PET) can be used to assess changes in 
brain function but are often limited by high costs, restricting broader 
application (12, 13). In contrast, EEG is a non-invasive tool for 
monitoring brain function. It provides high temporal resolution data 
on neural activity by recording the electrophysiological activity of the 
brain (14). Furthermore, EEG is a straightforward and cost-effective 
method of data collection. EEG is particularly advantageous in the 
diagnosis and evaluation of stroke, offering the dual benefit of real-
time monitoring of neurological changes in stroke patients and the 
identification of specific patterns of brain electrical activity through 
quantitative EEG (qEEG). This allows for the assessment of potential 
functional recovery and seizure risk (15). Post-stroke patients 
undergoing resting-state EEG often exhibit increased delta/theta 
power and decreased alpha/beta power, which correlate with motor 
and cognitive deficits. Functional connectivity analysis further reveals 
disrupted network topology in the affected hemisphere, reflecting 
impaired inter-regional communication (4, 16, 17). Post-stroke sleep 
architecture often shows reduced rapid-eye-movement sleep and 
increased sleep fragmentation, which correlates with poor recovery. 
Sleep spindles and slow-wave activity may serve as biomarkers for 
neuroplasticity (18, 19). In recent years, the application of EEG in 
stroke research has extended into advanced fields such as brain-
computer interfaces (BCI) and neurofeedback (20, 21). BCI 
technology is capable of decoding EEG signals, thereby enabling 
stroke patients to control external devices through brain activity (20, 
22). Neurofeedback training employs real-time EEG feedback to assist 
patients in self-regulating brain states, thereby promoting 
neuroplasticity and functional restoration (23). The combination of 
BCI and neurofeedback has demonstrated potential as a means of 
providing personalized training solutions for stroke rehabilitation. In 

light of these substantial applications, EEG research in the context of 
stroke has become of considerable value. This study employs 
bibliometric methods to conduct a systematic analysis of EEG research 
in stroke over the past 20 years. The analysis utilizes VOSviewer and 
CiteSpace to create a comprehensive knowledge map of the field, 
thereby uncovering the current state, key hotspots, and future trends. 
This knowledge map serves to inform and guide subsequent research.

2 Materials and methods

2.1 Data source and collection

The primary data for the bibliometric analysis were obtained from 
the Science Citation Index Expanded (SCI-Expanded) and Social 
Sciences Citation Index databases (SSCI) within the Web of 
Science Core Collection database (WoSCC). The data retrieval strategy 
was summarized as follows: # 1: TS = stroke; #2: TS =  
(Electroencephalography OR EEG OR Electroencephalogram∗); the 
ultimate dataset: #1 AND #2. The utilization of a truncation symbol, “∗,” 
proved an effective means of preventing missed detections and 
enhancing retrieval efficacy. The study included only English-language 
studies. The time of search period was between January 1, 2005 and 
December 31, 2024. The search strategy is depicted in Figure 1. To 
minimize the potential bias from routine database updates, the literature 
search was conducted on a fixed date. A total of 2,931 productions were 
retrieved, including both reviews and research articles. To ensure the 
clarity and accuracy of the results and conclusions, we  manually 
screened the 2,931 publications and categorized them into two groups: 
(A) “EEG in acute stroke and its early complications” and (B) “EEG in 
neurological rehabilitation.” Category A contained 1,207 articles, while 
category B included 1724 articles. The data will be  stored in three 
separate folders: “Dataset 1” (which contains all literature), “Dataset 2” 
(containing only category A literature), and “Dataset 3” (containing 
only category B literature). Upon completion of the retrieval process, 
the data were saved as complete records and cited references. The 
articles were then extracted and exported in “Plain text file” formats.

2.2 Bibliometric analysis

The articles meeting the inclusion criteria were exported as a plain 
text file named “download_xxx.txt,” containing complete records and 
cited references. These files were imported into VOSviewer 1.6.19 and 
CiteSpace 6.2.R2 to construct visual knowledge maps. Additionally, 
Excel was used for chart creation and descriptive statistical analyses. 
The VOSviewer parameters were configured as follows: the 
normalization method was set to “association strength,” with 
minimum thresholds for countries/regions, institutions, authors and 
journals set at 5, 10, 7 and 10 publications, respectively. Keyword 
occurrence frequency was also considered, with a minimum threshold 
of 20. In CiteSpace, the analysis covered the period from January 2005 
to December 2024, with a one-year time slice. Node types included 
keywords, and the g-index selection criteria were set to k = 25 per 
slice. The pruning options used were pathfinder, sliced networks, and 
merged networks, with all other settings left at their default values. In 
this study, we first analyzed the number of papers from countries, 
institutions, authors and journals based on Dataset 1 to summarize 

Abbreviations: ACPP, average citation per publication; TC, total citations; TLS, 

total link strength.
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the current status of EEG research in stroke. We then used Dataset 2 
and Dataset 3 to analyze keyword co-occurrence, keyword clustering, 
and emergent keywords, in order to identify current research hotspots 
and explore the frontiers and emerging trends in this field.

2.3 Annual publications and citations

The annual publication volume is a principal indicator for gauging 
research interest and predicting future dynamics in a field (24). The 
study encompassed 2,931 publications, comprising 2,610 original 
research articles (89%) and 321 review articles (11%). The total 
citations (TC) were 75,437. The average citation per publication 
(ACPP) was 25.73, and the h-index was 109. Figure 2A depicts the 
trajectory of annual publication volume (depicted on the left vertical 
axis in terms of the number of articles) and citation frequency (depicted 
on the right vertical axis) in the field of EEG research in stroke from 
2005 to 2024. The figure illustrates an overall upward trend. The 
research trajectory can be delineated into two distinct phases. From 
2005 to 2016, both the publication volume and the citation frequency 

exhibited a gradual increase. This early phase reflects the foundational 
work being done in the field. The moderate rise indicates a steady 
expansion in research and a corresponding increase in academic 
attention. During this period, EEG research in stroke likely laid the 
groundwork for more targeted clinical and experimental investigations. 
From 2017 onward, the field entered a phase of rapid growth, with both 
publication volume and citation frequency rising sharply, reaching a 
peak in 2024. The substantial increase in publications indicates that 
EEG research in stroke has gained significant traction, attracting an 
increasing number of researchers and funding. The rise in citations 
signifies a more extensive and profound integration of these studies 
within the broader stroke research and neurorehabilitation communities.

2.4 Distribution of countries/regions and 
institutions

A total of 2,931 publications were published by 92 countries and 
3,539 institutions. A total of 57 countries and 139 institutions 
published at least five and ten articles, respectively, in this field. In 

FIGURE 1

Flow chart of literature screening.
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terms of publication volume, the top five countries were the 
United States (778 publications), China (545 publications), Italy (316 
publications), Germany (273 publications), and England (184 
publications), as illustrated in Table 1. As illustrated in Figure 2B, 
the geographical distribution of cooperative endeavors among 
nations is depicted. The nodes, which represent countries, are sized 
according to the number of publications they have received. The 
upper right corner of the figure demonstrates the node sizes for 
publication counts of 300 and 900. The presence of lines connecting 
the nodes signifies cooperative interactions between countries, with 
the thickness of the lines denoting the frequency of collaboration. 

The map is color-coded into clusters and includes both the number 
of publications from each country as well as the strength of their 
collaborations. The map divides countries into four different clusters 
based on their collaborative relationships. Cluster 1: This cluster 
primarily includes countries/regions from Europe, such as Germany, 
England, Spain, Switzerland, Italy, and Netherlands. Cluster 2: This 
cluster includes countries/regions such as the United States, China, 
Canada, Japan, Australia, Brazil, and Taiwan. Cluster 3: This cluster 
includes countries/regions like France, Denmark, and Russia. 
Cluster 4: This cluster includes countries/regions like South Korea 
and India.

FIGURE 2

(A) Annual publications and citations trend chart for Dataset 1. (B) Geographical distribution and cooperation of publications Dataset 1.
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Figure 3A depicts the institutional collaboration map. Table 2 
provides a detailed overview of the top institutions involved in EEG 
research in stroke, showing their total number of publications, TC, 
TLS, ACPP, and country of origin. The top  10 institutions by 
publication volume in EEG research in stroke show a mix of global 
leaders from the United  States, China, and Europe, reflecting the 
international prominence of these universities in advancing research 
in this field. As illustrated in Table 2, the University of Tübingen in 
Germany occupies the preeminent position with 64 publications, 
closely followed by institutions from China, including Capital Medical 
University (52 publications), Fudan University (42 publications), and 
Shanghai Jiao Tong University (41 publications). This observation 
highlights the substantial contributions of Chinese institutions to the 
scholarly landscape. Other prominent players include Northwestern 
University, University of Pittsburgh, and Harvard Medical School, all 
from the United States, with 42, 40, and 35 publications, respectively. 
These institutions from the United States are widely recognized for 
their impactful research and often lead the field in terms of citation 
frequency. Notably, Aalborg University demonstrates a particularly 
high citation impact, with 1,205 citations, indicating that their 
research has gained significant academic recognition.

2.5 Analysis of authors

A total of 13,234 authors contributed to this field between 2005 
and 2024. Of these, 112 authors published at least seven articles with 
over 100 citations. The three most prolific authors in terms of 
publication volume were Birbaumer, N (29 publications), Jia, J (27 
publications), and Ming, D (25 publications), as illustrated in Table 3. 
Professor Birbaumer, N from Germany is the most prolific researcher 
in the field, with the highest number of publications, TC, ACPP, and 
H-index. His research output is concentrated in the early period of his 
career, making him the founder and most influential scholar in the 
field. Among the top 10 high-impact authors, three are from China. 
Their publications are concentrated in recent years, and their 
collaborations are limited, with close collaboration within their teams 
but relatively few collaborations with teams outside their institutions, 
particularly across borders, as shown in Figure  3B. Notably, Van 
Putten, MJAM, a researcher from the Netherlands, has attained a 
commendable ACPP score of 49.85, underscoring the substantial 

academic recognition of his contributions to the field of EEG research 
in stroke.

2.6 Analysis of journals

A total of 2,931 publications were retrieved and published across 
641 journals. Among the retrieved publications, 60 journals had at 
least 10 publications and over 100 citations, as illustrated in Figure 4. 
Table 4 presents the 10 journals with the highest TC. The top five 
journals in terms of citation frequency are Clinical Neurophysiology 
(3,191 citations), Journal of Neural Engineering (3,033 citations), 
Neuroimage (2,676 citations), Frontiers in Neuroscience (2,325 
citations), and Sensors (2,251 citations). These journals are all ranked 
in the first and second quartiles by the Journal Citation Reports (JCR), 
which indicates that they are of high research quality and influence. 
Among the top 10 journals, Brain has the highest impact factor (IF), 
and despite a relatively lower publication count, it has the highest 
ACPP, which serves to underscore its academic prestige and 
broad influence in neuroscience.

2.7 Analysis of keywords

2.7.1 Analysis of keyword co-occurrence
Keywords are a high-level summary of the topic and content of 

the article. An analysis of keyword co-occurrence can reflect the 
hotspot and trend of research in the field (25). This study analyzes the 
keyword co-occurrence patterns across two distinct categories of EEG 
research in stroke. Table 5 shows the top 20 keywords from both 
Dataset 2 and Dataset 3 ranked by TLS. In Dataset 2 which includes 
1,207 articles focused on “EEG in acute stroke and its early 
complications,” the keyword co-occurrence network (Figure  5A) 
highlights terms like “stroke,” “EEG,” and “epilepsy” as central nodes 
emphasizing the focus on EEG applications for managing acute stroke 
complications such as seizures and non-convulsive status epilepticus. 
Figure  1 showcases a total of 83 keywords with a minimum 
co-occurrence frequency of seven. Other significant terms such as 
“ischemic stroke,” “MRI,” and “intracerebral hemorrhage” reflect the 
intersection of EEG studies with imaging and other neurological 
complications. This network illustrates how EEG is used to monitor 

TABLE 1 Top 10 countries/regions ranked by number of publications.

Rank Countries/
regions

Publications TC ACPP TLS Population  
(million)

Publications per 
million people

1 United States 778 24,966 32.02 526 333 2.33

2 China 545 5,401 10.61 211 1,426 0.38

3 Italy 316 10,861 33.20 343 60.4 5.23

4 Germany 273 13,641 47.17 426 84 3.25

5 England 184 5,530 28.94 326 56 3.29

6 Canada 162 3,398 22.90 167 39 4.15

7 Japan 144 4,094 26.70 103 123 1.15

8 Netherlands 131 3,730 27.75 132 17 7.71

9 Switzerland 130 5,720 42.11 180 9 14.44

10 Spain 125 6,509 49.10 185 47 2.66
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and manage the early consequences of stroke indicating the 
importance of EEG in understanding and addressing stroke-induced 
brain changes during the acute phase. Dataset 3 which includes 1,724 
articles focusing on “EEG in neurological rehabilitation,” shows a 

different pattern in its keyword co-occurrence network (Figure 5B). 
This figure displays a network of 137 keywords all of which appear 
with a minimum frequency of seven. These central terms like “brain-
computer interface (BCI),” “motor imagery (MI),” and 

FIGURE 3

(A) Collaborative network knowledge map of institution Dataset 1. (B) Collaborative network knowledge map of author Dataset 1.
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“neurorehabilitation” are prominent reflecting the shift in focus 
toward using EEG in stroke recovery particularly in enhancing 
rehabilitation strategies through BCI systems. Keywords such as 
“functional connectivity,” “training,” and “rehabilitation” are tightly 
linked indicating the growing interest in leveraging EEG to promote 
motor recovery and brain plasticity in the chronic phase of stroke. 
Moreover terms like “virtual reality (VR)” suggest an expanding 
interest in integrating advanced technologies with EEG-based 
rehabilitation. Comparing the keyword co-occurrence networks of the 
two categories reveals clear differences: acute stroke research is 
primarily concerned with monitoring and managing immediate 
stroke-related complications while the rehabilitation category 
emphasizes long-term recovery and functional improvement through 
EEG-based interventions.

2.7.2 Analysis of keyword clustering
Analysis of keywords clustering is to categorize closely related 

keywords, which can reveal the hotspot of research in the field (26). The 
collected data were imported into CiteSpace for keyword clustering 
analysis, the smaller the cluster number, the more keywords the cluster 
contains. Modularity Q is a measure of the efficacy of clustering, with a 
range from 0 to 1. A value approaching 1 indicates a high degree of 
connectivity within clusters (14). For Dataset 2, which focuses on acute 
stroke and its early complications, the analysis revealed a Modularity Q 
of 0.7094, indicating substantial network modularity and high clustering 
quality, as shown in Figure 6A. The LLR clustering method identified 

19 distinct clusters, each representing a distinct area of research, which 
were subsequently labeled with descriptive terms, including #0 carotid 
endarterectomy, #1 animal models, #2 cardiac surgery, #3 antiepileptic 
drug, #4 cerebrovascular disease, #5 stroke, #6 functional connectivity, 
#7 status epilepticus, #8 delayed cerebral ischemia, #9 spreading 
depression, #10 cognition, #11 biomedical signal processing, #12 stroke-
related seizures, #13 temporal lobe epilepsy, #14 cerebral blood flow, #15 
cortical excitability, #16 medulla-oblongata, #17 stroke-like episodes, 
#18 cortical infarction. Figure 6B presents the clustering results for 
Dataset 3, which is centered around EEG research in neurorehabilitation 
of stroke, also exhibited strong clustering results with a Modularity Q 
of 0.7791. The LLR clustering method was employed to identify distinct 
19 clusters, including #0 quantitative electroencephalography, #1 stroke, 
#2 transcranial magnetic stimulation, #3 brain-computer interface, #4 
functional connectivity, #5 ischemic stroke, #6 motor imagery, #7 
carotid endarterectomy, #8 upper extremity, #9 feature extraction, #10 
traumatic brain injury, #11 case report, #12 sensorimotor integration, 
#13 brain activity, #14 transcranial direct current stimulation, #15 
cerebrovascular accident, #16 corticomuscular coherence, #17 brain 
plasticity, #18 seizures.

2.7.3 Analysis of keyword burst
Keyword burst analysis has been demonstrated to reveal the areas 

that have received the most attention within a specific timeframe thereby 
identifying the emerging research frontiers (26). Figure 7 illustrates the 
top 25 burst keywords. The “Begin” and “End” columns indicate the 

TABLE 2 Top 10 institutions ranked by number of publications.

Rank Institutions Publications TC ACPP TLS Location

1 University of Tübingen 64 4,977 77.87 51 Germany

2 Capital Medical University 52 600 11.54 37 China

3 Northwestern University 42 611 14.54 36 USA

4 Fudan University 42 656 15.62 24 China

5 Aalborg University 41 1,205 29.39 69 Denmark

6 Shanghai Jiao Tong University 41 706 19.69 31 China

7 University of Pittsburgh 40 677 16.93 27 USA

8 Tianjin University 39 510 13.08 12 China

9 Harvard Medical School 35 539 15.37 63 USA

10 University of Twente 34 1,489 36.97 49 Netherlands

TABLE 3 Top 10 authors ranked by number of publications.

Rank Author Publications TC ACPP H-index TLS Location

1 Birbaumer, N 29 3,268 112.34 117 27 Germany

2 Jia, J 27 480 17.78 39 52 China

3 Ming, D 25 374 14.96 20 57 China

4 Jochumsen, MR 22 555 25.23 21 38 Denmark

5 Ushiba, J 22 802 36.46 30 13 Japan

6 Jiang, N 22 1,002 21.50 37 66 China

7 Niazi, IK 21 839 39.95 29 44 New Zeeland

8 Van Putten, MJAM 20 997 49.85 47 2 Netherlands

9 Thirumala, PD 19 245 12.89 21 26 USA

10 Ziemann, U 19 631 33.21 102 22 Germany

https://doi.org/10.3389/fneur.2025.1539736
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Liao et al. 10.3389/fneur.2025.1539736

Frontiers in Neurology 08 frontiersin.org

timeframe of the keyword burst while “strength” denotes the intensity of 
the burst. For Dataset 2 (analyzed with a 1-year duration parameter) 
Figure 7 displays the top 25 burst keywords. The earliest detected burst 
corresponds to “blood-flow,” which also exhibits the longest sustained 
burst period. Notably “therapeutic hypothermia” demonstrates the 
highest burst strength. The keywords “functional connectivity,” 
“guidelines,” “acute symptomatic seizures,” “patterns,” “score,” 
“connectivity,” “acute ischemic stroke,” and “outcm” are still experiencing 
bursts. For Dataset 3 Figure  8 reveals distinct patterns: “activation” 
emerges as the earliest burst keyword while “cortex” maintains the most 
prolonged burst duration and the keyword “task analysis” registers the 

strongest burst intensity. The following keywords are still experiencing 
bursts: “upper limb,” “feature extraction,” “stroke,” “task analysis,” 
“machine learning,” “deep learning,” “network,” and “stimulation.”

3 Discussion

3.1 Analysis of current research status

This study is the first to conduct a comprehensive bibliometric and 
visual analysis of EEG research in the field of stroke from 2005 to 

FIGURE 4

Journal co-citation network knowledge map Dataset 1.

TABLE 4 Top 10 journals ranked by citation frequency.

Rank Journal TC Publications ACPP TLS IF (2023) JCR

1 Clinical Neurophysiology 3,191 85 35.81 963 3.7 Q1

2 Journal of Neural Engineering 3,033 74 40.75 522 3.7 Q2

3 Neuroimage 2,676 47 55.42 382 4.7 Q1

4 Frontiers in Neuroscience 2,325 78 119.94 565 3.2 Q2

5 Sensors 2,251 50 25.91 291 3.4 Q2

6

IEEE Transactions on Neural 

Systems and rehabilitation 

engineering

2,119 114 18.59 661 4.8 Q1

7
Journal of Neuroengineering and 

Rehabilitation
2,118 57 37.16 581 5.2 Q1

8 Brain 1945 15 129.67 261 10.6 Q1

9 Frontiers in Human Neuroscience 1828 81 22.57 563 2.4 Q2

10 Neurology 1,479 21 70.43 82 7.7 Q1
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2024, revealing key trends and developments. Over the past two 
decades, the number of publications and the frequency of citations in 
this area have exhibited a gradual increase. It is noteworthy that from 
2000 to 2024, the annual publication volume remained above 200 
publications, indicating a sustained growth trajectory in the field. This 
surge is indicative of the growing recognition of EEG as an essential 
tool in both the acute management of stroke and neurorehabilitation. 
The rising number of publications and the increased citation impact 
serve as evidence of this growing recognition.

At the national level, the analysis of publication volume and 
collaboration strength highlights the leading role of the 
United  States in EEG research in stroke. Its high number of 
publications, citations, and collaborations with a range of countries 
position it as a central hub in this field. This global leadership 
reflects the United States’ substantial investment in neuroscience 
and neurotechnology, fostering an environment that supports 
innovation and widespread dissemination of research findings. The 
robust international collaboration network, particularly with 
countries like Germany, Italy, and England, strengthens the global 
impact of the United States research, accelerating scientific progress 
in EEG applications for stroke. China’s large volume of publications 
indicates a growing presence in the filed, but its relatively lower 
citation count and international collaboration strength suggest that 
its research may be more domestically focused. Countries such as 
Germany, Italy, and England also play pivotal roles in advancing 
EEG research. Germany’s high ACPP indicates that its research is 
impactful, shaping key innovations in the field. Meanwhile, 
Switzerland and Canada, though publishing fewer papers, have 
demonstrated strong citation impacts, reinforcing the idea that 

quality research can have a disproportionate effect on the global 
scientific community. Switzerland’s high publication count per 
million people further emphasizes the significant contributions of 
smaller nations in advancing specialized fields. As the field of EEG 
research in stroke continues to evolve, fostering deeper 
international collaboration, especially between countries with 
differing research capacities, will be  essential for 
accelerating advancements.

At the institutional level, the majority of research institutions are 
situated in developed Western countries, with universities representing 
the primary contributors. This reflects the field’s reliance on economic 
support and experimental facilities. The University of Tübingen in 
Germany is the leading institution in terms of publication volume and 
citation frequency, exerting considerable influence, particularly in the 
field of BCI research. One of their most highly cited studies provides 
a comprehensive overview of the clinical applications of invasive and 
non-invasive EEG-based BCI technologies in direct brain 
communication and post-stroke motor recovery for paralyzed 
patients, demonstrating significant potential in both animal and 
human models (27, 28). The University of Twente in the Netherlands, 
despite publishing fewer papers, has a high citation frequency, 
indicating that their research is widely recognized for its quality. Their 
research has focused on qEEG technology, which has advanced the 
monitoring of prognosis and therapeutic responses in patients who 
have suffered a stroke or anoxic coma. This has established a robust 
foundation for the application of EEG in neuroscience (29–31). While 
the international collaboration network is robust (as shown in 
Figure  2B), our analysis shows that many research institutions 
collaborate predominantly with national partners (as shown in 

TABLE 5 Top 20 keywords ranked by TLS.

Rank Keyword was analyzed 
by Dataset 2

Frequency TLS Keyword was analyzed 
by Dataset 3

Frequency TLS

1 Stroke 226 352 Stroke 443 1,108

2 EEG 146 227 EEG 333 772

3 Epilepsy 112 202 Electroencephalography 261 760

4 Electroencephalography 100 187 Brain-computer interface 164 444

5 Seizures 67 152 Motor imagery 133 394

6 Status epilepticus 53 94 Rehabilitation 123 375

7 Seizure 49 84 Stroke (medical condition) 45 288

8 Electroencephalogram 38 65 Neurorehabilitation 75 247

9 Outcome 25 49 Task analysis 33 202

10 Ischemic stroke 38 47 Training 30 180

11 Traumatic brain injury 21 46 Functional connectivity 59 150

12 MRI 22 41 Neurofeedback 46 136

13 Intracerebral hemorrhage 15 40 Electroencephalogram 67 135

14 Stroke (medical condition) 11 39 Stroke rehabilitation 57 127

15 Carotid endarterectomy 40 38 Virtual reality 37 127

16 Neurocritical care 17 36 BCI 46 120

17 Magnetic resonance imaging 19 34 brain-computer interface (BCI) 57 118

18 Neuroimaging 13 33 Neuroplasticity 32 108

19 Subarachnoid hemorrhage 14 33 Transcranial magnetic stimulation 36 105

20 Prognosis 17 32 Event-related desynchronization 42 100
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Figure  3A), with fewer instances of extensive cross-border 
collaboration. This suggests that geographical proximity remains an 
important factor influencing patterns of collaboration EEG research 
in stroke.

At the level of the author, Professor Birbaumer, N from Germany is 
one of the most prominent scholars in the field of BCI. His team has 
developed techniques for direct communication between the brain and 
external devices via EEG and other neural signals, with the objective of 

FIGURE 5

(A) Keyword co-occurrence network knowledge map for Dataset 2. (B) Keyword co-occurrence network knowledge map for Dataset 3.
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assisting individuals with severe paralysis and atresia syndrome to 
communicate with the outside world. Patients are able to control 
computer cursors, letter boards, or robotic arms through brain signals, 
thereby significantly advancing the field of BCI technology (32–34). In 
recent years, Professor Jia, J has been at the forefront of research utilizing 

BCI technology to enhance stroke rehabilitation. By integrating 
connectivity network patterns with spatiotemporal analysis, she has 
optimized EEG feature selection, thereby enhancing the efficacy of BCI 
applications in rehabilitation training (35, 36). Moreover, she has 
utilized a combination of BCI and functional electrical stimulation to 

FIGURE 6

(A) Cluster map of keywords for Dataset 2. (B) Cluster map of keywords for Dataset 3.
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markedly enhance motor function in individuals who have experienced 
a chronic stroke (37). Her research also encompasses traditional 
Chinese medicine techniques, such as electroacupuncture, and their 
regulatory effects on resting-state networks in stroke patients, as well as 
the potential clinical benefits of such techniques in rehabilitation (38). 
Professor Jiang N, another Chinese scholar, has also made significant 
contributions to the development of a single-trial detection system 
based on movement-related cortical potentials for BCI applications in 
gait initiation through extensive international collaboration (39). By 
interpreting patients’ motor intentions in real time through EEG signals, 
his work provides a basis for rehabilitative interventions for gait-
impaired patients.

In terms of journal distribution, most of the journals with high 
publication volume and citation frequency are high-quality journals, such 
as Clinical Neurophysiology, Neurology and Brain. These journals not only 
provide theoretical and experimental support for EEG research in the 
field of stroke, but also demonstrate the academic maturity of research 
results in this field. As research continues to progress, future publications 

may increasingly be concentrated in these high-impact journals, thus 
creating a virtuous cycle. The platform role of these journals not only 
facilitates the dissemination of research findings, but also encourages 
further innovation within the field.

3.2 Analysis of research hotspots and 
trends

This study provides a comprehensive analysis of the keyword 
trends in EEG research in stroke, revealing critical insights into 
the evolving landscape of this field. Through the analysis of 
keyword co-occurrence, clustering, and burst patterns, we have 
identified key research hotspots, emerging trends, and shifts in 
the focus of EEG applications for acute stroke management and 
neurological rehabilitation. These findings not only highlight the 
current state of research but also offer directions for 
future investigation.

FIGURE 7

The top 25 keywords with the highest burst strength for Dataset 2.
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3.2.1 EEG research in acute stroke and early 
complications

EEG research in acute stroke primarily focuses on the early 
identification and management of complications such as epilepsy 
and disorders of consciousness. The keyword co-occurrence 
analysis for Dataset 2 reveals a dominant emphasis on using EEG 
for monitoring post-stroke complications, especially seizures and 
non-convulsive status epilepticus, which are crucial for early 
intervention. Terms such as “stroke,” “EEG,” and “epilepsy” 
prominently feature in the research landscape, reflecting the 
clinical focus on utilizing EEG to understand and manage stroke-
induced brain changes.

The analysis of keywords highlights epilepsy and seizures as 
central themes in acute stroke research. Post-stroke epilepsy is 
significantly associated with adverse outcomes and elevated 

mortality rates (40). QEEG can assist in identifying the typical 
EEG patterns associated with stroke (41). Non-convulsive seizures 
are frequently unrecognized clinically, as standard observations 
may prove inadequate for detecting these anomalies. Nevertheless, 
EEG monitoring is capable of capturing essential 
electrophysiological changes. Non-convulsive seizures are 
frequently unrecognized clinically, as standard observations may 
prove inadequate for detecting these anomalies (42). However, 
EEG monitoring can effectively capture essential 
electrophysiological changes. Post-stroke epilepsy in EEG 
typically manifests as focal or generalized slowing, with some 
cases also showing lateralized periodic discharges. Bentes et al. 
(43) conducted a study of long-term follow-up of patients who 
had experienced an anterior ischemic circulation stroke, finding 
that 25.2% experienced seizures within the first year, with 22.7% 

FIGURE 8

The top 25 keywords with the highest burst strength for Dataset 3.
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of these acute symptomatic seizures detected only by EEG. For 
instance, Bentes et al. (43) demonstrated that 64-channel EEG 
with synchronized video-polysomnography during the first post-
stroke week captured electrographic seizures in over 20% of 
anterior ischemic stroke patients, with 62% of these events 
occurring during sleep. These findings emphasize the necessity of 
prolonged monitoring, as 22.7% of acute symptomatic seizures are 
identifiable only through EEG. Beyond seizure detection, EEG’s 
predictive capacity extends to acute neurological deficits. 
Vanderschelden et al. (44) conducted a prospective study of 50 
acute stroke patients evaluated by recording of EEG at rest state. 
The delta-theta/alpha-beta ratio (DTABR) was calculated. 
Multivariable modeling revealed that while age, diabetes status, 
and infarct volume explained 47% of NIHSS score variance, 
adding contralesional DTABR enhanced prediction, achieving 
60% explanatory power. These seizures can contribute to worsened 
neurological outcomes, increased risk of mortality, and prolonged 
recovery time, highlighting the importance of EEG in reducing 
these adverse effects by enabling timely treatment (45).

Expanding beyond epilepsy, EEG provides objective 
biomarkers for post-stroke consciousness disorders. Reduced 
prefrontal-to-motor cortical information flow, measurable via 
transcranial magnetic stimulation coupled with high-density 
EEG (TMS-EEG), correlates with impaired arousal states. Bai 
et al. (46) reported that patients with unresponsive wakefulness 
syndrome exhibit ≥40% reductions in gamma band connectivity 
between prefrontal and motor regions, while minimally 
conscious patients show disrupted prefrontal-parietal alpha 
coherence predictive of 6-month recovery. Such 
electrophysiological signatures align with spectral shifts 
observed in consciousness research: elevated low-frequency 
oscillations (delta/theta) and attenuated cross-frequency 
coupling reflect diminished cortical integration, whereas 
preserved theta-gamma phase-amplitude interactions may 
signify recovery potential (47, 48). While EEG excels in detecting 
electrophysiological anomalies, its integration with advanced 
neuroimaging techniques enables deeper insights into structure–
function relationships In a targeted investigation of thalamic 
stroke, researchers employed DTI-derived fractional anisotropy 
(FA) maps alongside qEEG to probe microstructural and 
functional connectivity disruptions. Correlational analyses 
linked theta-band EEG power reductions to FA decreases in the 
cingulum bundle and corpus callosum-key components of the 
default mode network known to modulate resting-state theta 
activity. Alpha-band power further correlated with FA in cortico-
thalamic circuits, supporting the “thalamocortical dysrhythmia” 
model of stroke-induced network dysfunction. This multimodal 
approach also bridged behavioral deficits with neural markers: 
FA reductions in the right cingulum predicted impaired spatial 
memory, while splenium of the corpus callosum correlated with 
facial recognition deficits (49). Thus, EEG in acute stroke 
research is not only focused on identifying early stroke-related 
complications but also on understanding the underlying 
neurological processes that influence stroke recovery, especially 
in critical conditions like seizures and consciousness disorders. 
While the current study primarily focuses on EEG applications 
in neural monitoring and rehabilitation, we  acknowledge the 
importance of exploring broader physiological mechanisms, 

including inflammation and oxidative stress (ROS), in stroke 
pathology (50–53). Although EEG itself does not directly 
measure inflammatory markers or ROS levels, emerging research 
highlights indirect correlations between EEG patterns and these 
mechanisms. For example, post-stroke neuroinflammation can 
disrupt cortical excitability and functional connectivity, which 
may manifest as altered EEG spectral power or coherence (54–
57). Additionally, oxidative stress has been linked to impaired 
neurovascular coupling (58–60), potentially affecting 
EEG-derived metrics. Future studies could integrate EEG with 
biomarkers (e.g., serum cytokines, ROS assays) to investigate 
these relationships. The increasing emphasis on real-time 
monitoring and the integration of EEG with other diagnostic 
tools, such as MRI or PET scans, has great potential in enhancing 
the clinical management of acute stroke patients, reducing 
mortality and improving recovery rates.

3.2.2 Neurological rehabilitation in stroke
EEG research in neurological rehabilitation (Dataset 3) shifts 

its focus from immediate stroke complications to the long-term 
recovery process. The analysis of keywords for this dataset 
highlights the growing prominence of BCI technology, MI, and 
neurorehabilitation, reflecting the increased integration of EEG 
into rehabilitation efforts aimed at improving motor function and 
cognitive recovery. Terms such as functional connectivity, 
training, and rehabilitation emphasize the growing recognition 
of EEG’s potential in promoting neural plasticity during stroke 
recovery, particularly in enhancing motor recovery through 
non-invasive brain-computer technologies. One of the most 
profound advancements in neurological rehabilitation is the use 
of BCI systems. MI enables patients to engage motor-related 
brain regions by imagining limb movements without actual 
physical execution, thereby promoting neural plasticity, 
particularly in the recovery of upper limb and hand function. BCI 
technology further enhances the effectiveness of MI by decoding 
patients’ motor intentions and translating them into commands 
for external devices, thereby enabling hemiplegic patients to 
achieve indirect motor control (61). This not only improves 
motor function but also helps patients maintain active 
engagement during rehabilitation training. Benzy et  al. (62) 
analyzed cortical activity during MI and successfully decoded the 
imagined hand movement direction (left/right) in stroke patients. 
The patients used the phase-locking value of EEG signals to 
decode the direction of imagined hand movement, which then 
controlled a motorized arm assistive device, allowing patients to 
move their impaired arms in the intended direction. The 
combination of EEG with EMG (electromyography) has also 
gained attention in recent years, particularly in enhancing the 
precision of motor control during rehabilitation. Li et al. (63) 
introduced EEG–EMG hybrid systems, which combine the 
advantages of both EEG for motor intention detection and EMG 
for muscle activity detection. This dual approach improves the 
accuracy of rehabilitation training, providing more personalized 
feedback to patients and potentially accelerating recovery. The 
hybrid system allows for more accurate decoding of patients’ 
movements and enhances their ability to perform motor tasks 
during rehabilitation. Another notable advancement in 
EEG-based rehabilitation is the application of VR in conjunction 
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with EEG, offering patients immersive and interactive 
environments that stimulate motor recovery. As research 
progresses, the integration of EEG with VR systems is showing 
promise in fostering neuroplasticity by creating engaging and 
tailored rehabilitation experiences (64, 65). The development of 
signal processing technologies has greatly optimized EEG 
preprocessing, feature extraction, and classification methods. 
Traditional feature extraction frequently employs time-domain, 
frequency-domain, and time-frequency analyses, such as the 
utilization of power spectral density to examine patterns of brain 
activity across diverse frequency bands in patients (16, 66). The 
damaged regions of the brain in patients with stoke frequently 
exhibit augmented low-frequency bands and diminished high-
frequency bands. The advent of deep learning, encompassing 
convolutional neural networks and generative adversarial 
networks, has facilitated the automated extraction of features. 
These neural network models allow for complex pattern 
recognition directly from raw EEG signals, facilitating a deeper 
understanding of post-stroke brain functions (67, 68). Tong et al. 
(69) constructed a deep learning model based on EEG signals for 
rapid detection of ischemic stroke. They gathered EEG data from 
20 acute ischemic stroke patients and 19 healthy controls and 
introduced a fusion feature combining correlation-weighted 
phase lag index and sample entropy to explore inter-channel 
synchronization and functional connectivity. Recent studies have 
demonstrated that complex network analysis of EEG data can 
provide insights into the reorganization of brain networks after 
stroke. For example, one study (70) analyzing resting-state and 
task-state functional connectivity identified a “cognitive network” 
comprising nodes in the subcortical, frontoparietal, visual, and 
cerebellar networks. This network shows differential effective 
connectivity patterns that are sensitive to post-stroke cognitive 
impairment and improvement. Moreover, another study (71) 
focused on mild stroke patients compared EEG-based functional 
connectivity during cognitive tasks across groups with cortical 
infarctions, subcortical infarctions, and healthy controls. Their 
graph theory analysis revealed significantly reduced global and 
local efficiencies in patient groups, along with distinct nodal 
strength distributions that differed by lesion location. A 
systematic review (72) compared EEG-derived complex network 
parameters between stroke patients and healthy subjects. 
Although the effect sizes for parameters such as path length, 
clustering coefficient, and cohesion were modest, the review 
highlighted both structural differences and certain overlapping 
features between the groups. Additionally, multimodal data 
fusion techniques are increasingly applied to stroke EEG studies. 
By combining EEG with fMRI or near-infrared spectroscopy, 
researchers can obtain more comprehensive brain activity data, 
valuable for early prognosis prediction and evaluating the 
effectiveness of different rehabilitation interventions (73, 74). 
Stroke may not only damage local neural structures but also 
disrupt large-scale brain networks, affecting both structural and 
functional connectivity. Stroke-induced lesions may impair the 
integrity of the default mode network and the cortico-thalamic 
circuits, leading to reduced global efficiency and altered modular 
organization. Such disruptions may contribute to deficits in 
cognitive and motor function by impairing inter-hemispheric 

communication and reducing the integration of distributed 
neural systems (71, 75–77).

4 Limitation

Firstly, this bibliometric analysis is was confined to data drawn 
exclusively from the WoSCC, with the exclusion of data from other 
databases. This limited scope might result in the omission of some critical 
studies, potentially affecting the comprehensiveness of the analysis. 
Furthermore, the study was restricted to English-language publications, 
which excludes relevant research in other languages, particularly domestic 
studies from non-English speaking regions. This limitation could affect 
the representation of global research progress in the field of stroke-related 
EEG research. Secondly, the visual mapping generated using VOSviewer 
and CiteSpace required specific parameter settings, including node 
selection, threshold settings, and clustering methods based on data 
availability and study requirements. These settings may introduce some 
level of statistical bias, which could influence the results.

5 Conclusion

This study is among the first to employ bibliometric and visual 
analysis techniques to examine the evolution of EEG research in the 
field of stroke over the past two decades. The analysis was conducted 
using the VOSviewer and CiteSpace software tools. The results provide 
a systematic illustration of the current research landscape, identifying 
key areas of interest and future trends in this domain. The findings 
demonstrate that EEG is a widely utilized tool in the monitoring of 
neural functions associated with stroke, the assessment of epilepsy 
risk, and the facilitation of rehabilitation. These observations reflect a 
substantial academic interest and clinical relevance. The integration 
of deep learning and multimodal data fusion has enabled researchers 
to perform more complex analyses of post-stroke electrophysiological 
activity, laying a solid foundation for personalized rehabilitation plans. 
Furthermore, the use of EEG in the assessment of epilepsy and 
consciousness disorders improves the accuracy of post-stroke 
complication detection, particularly in the early identification of 
non-convulsive seizures and the assessment of consciousness recovery 
potential. In the future, as EEG technology continues to be integrated 
with other imaging modalities and high-efficiency algorithms, its 
application in stroke rehabilitation appears to be highly promising. In 
this context, EEG -driven BCI technologies have evolved from basic 
monitoring to more advanced intervention strategies. It is 
recommended that future research concentrate on the promotion of 
interdisciplinary applications of EEG and the establishment of 
standardized signal processing procedures. This will ensure the 
consistency of study outcomes and facilitate the adoption of EEG in a 
broader clinical context, as well as its use in translational applications.
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