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Simin Wu1, Di Li1, Huajian Lin1* and Yue Jin1*
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Liandu District, Lishui, Zhejiang, China, 2Department of Geriatrics and Neurology, A�liated Hospital

and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China

Background: The visceral adiposity index (VAI) reliably measures body fat

distribution and related dysfunctions. However, its association with sleep

disorders among US adults remains unclear.

Methods: This study analyzed cross-sectional data from the 2005 to 2018

National Health and Nutrition Examination Survey (NHANES) for adults aged 18

and older. We used multivariable logistic regression to evaluate the association

between VAI and sleep disorders and applied restricted cubic splines to assess

potential non-linear relationships. Additionally, subgroup analyses by gender,

age, and race were conducted to explore the VAI-sleep disorder association

across di�erent populations.

Results: This study included 14,021 adults aged 18 +. In Model 1, adjusted

for gender and age, each unit increase in VAI was associated with a 5% higher

risk of sleep disorders (OR = 1.05; 95% CI = 1.02–1.07). In Model 2, which

adjusted for all potential confounders, each unit increase in VAI was linked to a 3%

higher risk (OR = 1.03; 95% CI = 1.00–1.05). When treating VAI as a categorical

variable, those in the highest quartile (Q4) had a 21% higher risk of sleep disorders

compared to those in the lowest quartile (Q1) (OR = 1.21; 95% CI 1.03–1.41).

Restricted cubic spline analysis revealed a positive linear relationship between VAI

and sleep disorder prevalence. Subgroup analysis found stronger associations in

males and non-Hispanic white individuals.

Conclusion: While causality cannot be confirmed, this cross-sectional study

shows a significant positive linear association between higher VAI and the risk

of sleep disorders among U.S. adults.

KEYWORDS

sleep disorders, visceral adiposity index, cross-sectional study, NHANES, sleep

1 Introduction

Sleep is a universal function that occupies one-third of human life. An analysis by the

Centers for Disease Control and Prevention (CDC) indicates that the significant decrease

in adult sleep duration from 1985 to 2012 has become a public health issue (1). A recent

study shows that 27.1% of American adults suffer from sleep disorders (2). Insufficient

or poor-quality sleep is associated with a range of bodily dysfunctions. Disorders such as

insomnia, sleep apnea, and restless legs syndrome disrupt normal sleep patterns and can

have a substantial impact on both mental and physical wellbeing (3). These disorders are
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associated with negative health outcomes, including obesity,

hypertension, cardiovascular diseases, and increased mortality (4–

6). Due to the high prevalence of sleep disorders and their

connection to these adverse health outcomes, identifying the risk

factors for sleep disorders is essential.

Obesity is a major risk factor for the development and

progression of certain sleep disorders, such as obstructive sleep

apnea (OSA), although it is not a risk factor for all sleep disorders.

For every 6-unit increase in body mass index (BMI), the risk of

OSA increases four-fold (7). OSA is characterized by recurrent

airway obstructions that lower blood oxygen levels. Excess weight

may hinder normal breathing, contributing to OSA and symptoms

such as frequent nighttime awakenings and reduced sleep duration

(8, 9). Visceral adipose tissue secretes pro-inflammatory cytokines,

including IL-1, IL-6, and TNF-α, which are known to contribute

to chronic inflammation and affect sleep regulation (10). TNF-

α and IL-1β peak at night and play an important role in slow-

wave sleep (11, 12). In overweight and obese individuals, these

cytokines are elevated in the morning and have been associated

with sleep disorders and increased BMI (13). Thus, obesity may

influence sleep by altering inflammatory factors. Furthermore,

waist circumference (WC) is a strong predictor of sleep disorders as

it reflects visceral fat accumulation, suggesting that visceral fat may

further contribute to sleep problems. However, BMI and similar

measures cannot differentiate between fat, muscle, and bone, which

may lead to the misclassification of excess fat (14, 15).

Emerging research shows that fat distribution is a critical

factor in chronic diseases (16, 17). The visceral adiposity

index (VAI) combines HDL, triglycerides (TG), BMI, and waist

circumference to serve as a robust indicator of visceral fat and its

related dysfunction (18, 19). Although accurate, methods such as

Computed Tomography (CT) and Magnetic Resonance Imaging

(MRI) for detecting visceral obesity are costly and time-consuming,

and CT involves radiation, making these techniques impractical

for large-scale screening (20). VAI, which incorporates both body

measurements and metabolic parameters, is a practical and reliable

measure for assessing fat distribution and function. Research has

shown that VAI is strongly linked to cardiovascular events and

atherosclerosis, and it is an independent risk factor for coronary

artery disease, hypertension, and diabetes (21–23). It offers a

superior alternative to traditional obesity measures like BMI and

WC in distinguishing between subcutaneous and visceral fat.

This study investigates the relationship between the VAI and

the prevalence of sleep disorders in American adults using data

from the National Health and Nutrition Examination Survey

(NHANES) collected between 2005 and 2018. Our objective

is to provide scientific evidence that supports the prevention,

diagnosis, and treatment of sleep disorders while validating earlier

research findings.

Abbreviations:NHANES, National Health andNutritional Examination Survey;

VAI, Visceral adiposity index; CDC, Centers for Disease Control and

Prevention; OR, odds ratios; CI, confidence intervals; PIR, poverty-to-income

ratio; BMI, body mass index; TC, total cholesterol; TG, triglycerides; WC,

Waist circumference; NCHS, National Center for Health Statistics; IQR,

interquartile ranges; AIC, Akaike Information Criterion; SWS, slow-wave

sleep; CT, Computed Tomography; MRI, Magnetic Resonance Imaging.

2 Materials and methods

2.1 Study design and population

The NHANES is a large cross-sectional survey assessing the

health and nutritional status of American adults and children.

Data for our study were obtained from the NHANES website

(https://www.cdc.gov/nchs/nhanes/index.htm) with informed

consent from participants and approval from the National Center

for Health Statistics (NCHS) Ethics Review Board. We focused on

data from the seven most recent NHANES cycles (2005–2018).

Out of 70,190 participants, 14,021 were included in our analysis.

The rest were excluded due to being under 18 (19,104 individuals),

missing sleep questionnaire data (3,346 individuals), lacking VAI

data (33,576 individuals), or incomplete covariate information

(5,143 individuals) (Figure 1).

2.2 Definition of VAI

The collection and measurement of blood samples in NHANES

follow standardized protocols set by the CDC. A dedicated team

manages data organization, specimen testing, and analysis. The

VAI evaluates visceral fat using anthropometric measures (BMI and

WC) and biochemical markers (TG and HDL-C). VAI is calculated

based on gender-specific formulas established by Amato et al. (24),

where TG and HDL are measured in mmol/L, WC in cm, and BMI

in kg/m>. The formula is as follows:

Males :VAI = (
WC

39.68 + 1.88∗BMI
)∗(

TG

1.03
)∗(

1.31

HDL
)

Females :VAI = (
WC

36.58 + 1.89∗BMI
)∗(

TG

0.81
)∗(

1.52

HDL
)

2.3 Definition of sleep disorders

To assess sleep disorders, we employed a comprehensive

three-dimensional sleep questionnaire based on the rigorous

NHANES protocol, as used in previous research (5, 25). In-home

interviews regarding sleep disorders were conducted using the

Computer Assisted Personal Interviewing (CAPI) system, which

includes online help screens and consistency checks to enhance

data accuracy. During these interviews, trained interviewers

asked participants whether a doctor or health professional

had ever diagnosed them with a sleep disorder. Participants

who answered “yes” were classified as having a sleep disorder.

Although this general inquiry does not distinguish between specific

types of sleep disorders, it reflects the standardized NHANES

protocol and provides a reliable measure based on professional

medical diagnoses.

2.4 Covariate definitions

In our study, we included several covariates: age, race/ethnicity,

gender, educational level, and poverty-to-income ratio (PIR).
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FIGURE 1

Process for screening participants.

Additionally, we considered smoking status, alcohol consumption,

hypertension, diabetes, stroke, cardiovascular disease, and dietary

caffeine intake.

In this study, race was classified into five groups: Mexican

American, non-Hispanic Black, non-Hispanic White, other

Hispanic, and other races. The poverty income ratio (PIR) was

divided into three groups: <1.30, 1.30her Hispanic, and other

races. The poverty income ratio (PIR) was divs. “above high

school.” BMI was grouped as underweight (BMI < 18.5 kg/mratio

(PIR) was divided 8.5 to < 25 kg/m²), overweight (BMI 25 to

< 30 kg/m²), and obese (BMI ≥ 30 kg/m²). Smoking status was

defined as current smokers (those who have smoked at least

100 cigarettes and still smoke), former smokers (those who have

smoked at least 100 cigarettes but no longer smoke), and never

smokers (those who have never smoked or smoked fewer than 100

cigarettes). Alcohol consumption was assessed via a questionnaire,

classifying participants as non-drinkers, 1–5 drinks/month, 5–10

drinks/month, or 10+ drinks/month. Diabetes mellitus was

diagnosed based on a glycated hemoglobin level above 6.5%

or a fasting blood glucose level of 7 mmol/L or higher. Stroke,

hypertension, and cardiovascular disease were self-reported

by participants. Cardiovascular disease in this study included

conditions such as coronary artery disease, heart failure, angina

pectoris, and heart attack.

2.5 Statistical analysis

We obtained NHANES data from the 2005 to 2006, 2007 to

2008, 2009 to 2010, 2011 to 2012, 2013 to 2014, 2015 to 2016, and

2017 to 2018 cycles for our analysis. We assessed the normality

of continuous variables during data processing and found that

they were all non-normally distributed. Consequently, we reported

these non-normally distributed continuous variables as medians

with interquartile ranges (IQR), while categorical variables were

presented as unweighted frequencies and weighted percentages.

We used a weighted logistic regression model to investigate

the link between VAI and sleep disorders, presenting findings

as adjusted odds ratios (ORs) with 95% confidence intervals

(CIs). Model 1 adjusted for gender and age, while Model

2 additionally accounted for race, education level, poverty-to-

income ratio (PIR), alcohol use, smoking status, hypertension,

diabetes, stroke, cardiovascular disease, and dietary caffeine

intake. Multicollinearity among covariates was evaluated using

the variance inflation factor. We treated VAI quartile medians

as continuous variables to assess linear trends and applied a

restricted cubic spline (RCS) term with the “rcssci” R package (26),

optimizing the number of knots based on the Akaike Information

Criterion (AIC). Subgroup analyses were performed by age, sex,

and ethnicity to explore the impact of VAI on sleep disorders

in different populations. Missing covariate data were addressed

through multiple imputation using the R package “mitml” (26),

with statistical significance set at P < 0.05.

3 Results

3.1 Baseline characteristics

The key characteristics of the study population are detailed in

Table 1. This study included 14,021 participants, with a weighted

average age of around 47 years. Among these, 35% reported

experiencing sleep disorders, with 42% being male and 58% female.

The findings suggest that those at higher risk of sleep disorders

tend to be female, aged 40 or older, non-Hispanic white people,

more educated, with higher BMI and WC, increased caffeine

consumption, and falling into the third and fourth quartiles (Q3

and Q4) of the VAI. Moreover, individuals with sleep disorders

were more likely to have hypertension. Comparing participants

with and without sleep disorders, significant differences were
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TABLE 1 Characteristics of the study population according to sleep disorders.

Characteristic Na Overall, N =

14,021
(100%)

Group P-valuec

No sleep
disorder, N =

9,556 (65%)b

Sleep
disorder, N =

4,465 (35%)b

Age (years), Median (Mean, SD) 14,021 47 (47, 17) 44 (45, 17) 51 (51, 16) <0.001

Age group, n (%) 14,021 <0.001

18–39 years 5,158 (37%) 4,045 (42%) 1,113 (24%)

40–59 years 4,482 (32%) 2,806 (30%) 1,676 (38%)

≥60 years 4,381 (31%) 2,705 (28%) 1,676 (38%)

Gender, n (%) 14,021 <0.001

Female 7,262 (52%) 4,656 (49%) 2,606 (58%)

Male 6,759 (48%) 4,900 (51%) 1,859 (42%)

Race, n (%) 14,021 <0.001

Mexican American 2,279 (16%) 1,782 (19%) 497 (11%)

Other Hispanic 1,345 (10%) 942 (10%) 403 (10%)

Non-Hispanic White 6,194 (44%) 3,910 (41%) 2,284 (51%)

Non-Hispanic Black 2,891 (21%) 1,982 (21%) 909 (20%)

Other Races 1,312 (9%) 940 (9%) 372 (8%)

Education level, n (%) 14,021 <0.001

≤High school 3,405 (24%) 2,386 (25%) 1,019 (23%)

>High school 9,796 (70%) 6,477 (68%) 3,319 (74%)

Missing data 806 (6%) 693 (7%) 113 (3%)

The ratio of family income to poverty, Median (Mean, SD) 14,021 2.95 (2.97, 1.64) 2.98 (2.98, 1.63) 2.91 (2.97, 1.66) 0.8

The ratio of family income to poverty, n (%) 14,021 0.59

<1.30 4,237 (31%) 2,820 (30%) 1,417 (32%)

1.30–3.5 4,829 (34%) 3,350 (35%) 1,479 (33%)

>3.5 3,834 (27%) 2,612 (27%) 1,222 (27%)

Missing data 1,121 (8%) 774 (8%) 347 (8%)

Body Mass Index (kg/mb), Median (Mean, SD) 14,021 28 (29, 7) 27 (28, 6) 29 (30, 7) <0.001

Body Mass Index group (kg/mb), n (%) 14,021 <0.001

Underweight (<18.5) 256 (2%) 187 (2%) 69 (2%)

Normal (18.5 to <25) 4,060 (29%) 3,034 (32%) 1,026 (22%)

Overweight (25 to <30) 4,586 (33%) 3,263 (34%) 1,323 (30%)

Obese (30 or greater) 5,119 (36%) 3,072 (32%) 2,047 (46%)

Waist Circumference (cm), Median (Mean, SD) 14,021 97 (99, 17) 96 (97, 16) 101 (102, 18) <0.001

Total Cholesterol (mg/dL), Median (Mean, SD) 14,021 190 (194, 42) 190 (193, 41) 191 (194, 43) 0.4

Triglyceride (mg/dL), Median (Mean, SD) 14,021 105 (129, 108) 102 (126, 106) 110 (136, 111) <0.001

HDL-Cholesterol (mg/dL), Median (Mean, SD) 14,021 52 (54, 16) 52 (54, 16) 52 (54, 17) 0.69

LDL-cholesterol (mg/dL), Median (Mean, SD) 14,021 111 (114, 35) 111 (114, 35) 110 (113, 36) 0.2

Dietary caffeine intake, Median (Mean, SD) 14,021 120 (168, 181) 111 (158, 173) 140 (187, 194) <0.001

Smoking status, n (%) 14,021 <0.001

Current 2,808 (21%) 1,697 (18%) 1,111 (25%)

Former 3,312 (25%) 2,068 (22%) 1,244 (29%)

Non-smoker 7,901 (55%) 5,791 (59%) 2,110 (45%)

(Continued)
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TABLE 1 (Continued)

Characteristic Na Overall, N =

14,021
(100%)

Group P-valuec

No sleep
disorder, N =

9,556 (65%)b

Sleep
disorder, N =

4,465 (35%)b

Alcohol consumption status, n (%) 14,021 0.13

Non-drinker 3,396 (24%) 2,445 (26%) 951 (21%)

1–5 drinks/month 5,916 (42%) 4,094 (43%) 1,822 (41%)

5–10 drinks/month 922 (7%) 674 (6%) 248 (6%)

10+ drinks/month 1,710 (12%) 1,216 (13%) 494 (11%)

Missing data 2,075 (15%) 1,127 (12%) 948 (21%)

Diabetes, n (%) 14,021 <0.001

Yes 2,414 (17%) 1,345 (14%) 1,069 (24%)

No 11,607 (83%) 8,211 (86%) 3,396 (76%)

Hypertension group, n (%) 14,021 <0.001

Yes 4,943 (35%) 2,750 (29%) 2,193 (49%)

No 9,060 (65%) 6,791 (71%) 2,269 (51%)

Missing data 18 (<0.1%) 15 (<0.1%) 3 (<0.1%)

Cardiovascular disease, n (%) 14,021 <0.001

Yes 580 (4%) 272 (3%) 308 (7%)

No 12,617 (90%) 8,595 (90%) 4,022 (90%)

Missing data 824 (6%) 689 (7%) 135 (3%)

Stroke group, n (%) 14,021 <0.001

Yes 498 (4%) 233 (2%) 265 (6%)

No 12,702 (90%) 8,639 (90%) 4,063 (91%)

Missing data 821 (6%) 684 (8%) 135 (3%)

Visceral adiposity index, Median (Mean, SD) 14,021 1.45 (2.07, 2.69) 1.38 (1.95, 2.45) 1.60 (2.28, 3.07) <0.001

Visceral adiposity index, quartile, n (%) 14,021 <0.001

Q1 (≤0.877) 3,506 (25%) 2,549 (26%) 957 (23%)

Q2 (0.877–1.441) 3,505 (25%) 2,474 (27%) 1,031 (22%)

Q3 (1.441–2.445) 3,505 (25%) 2,325 (24%) 1,180 (26%)

Q4 (≥2.445) 3,505 (25%) 2,208 (23%) 1,297 (29%)

a N not Missing (unweighted).
b Median (IQR) for continuous; n (%) for categorical.
c Wilcoxon rank-sum test for complex survey samples; chi-squared test with Rao and Scott’s second-order correction.

found between the groups in terms of age, race, education level,

smoking habits, alcohol consumption, BMI, WC, and TG levels

(P < 0.05).

3.2 Multifactorial logistic regression
analysis

Figure 2 highlights the difference in VAI between participants

with and without sleep disorders. The results indicate that VAI is

significantly higher in those with sleep disorders compared to those

without (p < 0.001).

Table 2 presents the association between VAI and sleep disorder

incidence. Two models were developed using VAI as a continuous

variable. In Model 1, which adjusts for age and gender, each

unit increase in VAI is linked to a 5% higher likelihood of sleep

disorders, with an OR of 1.05 (95% CI: 1.02, 1.07). Model 2, which

includes additional adjustments for factors such as race, education,

PIR, smoking, alcohol use, caffeine intake, hypertension, diabetes,

stroke, and cardiovascular disease, shows an OR of 1.03 (95% CI:

1.00, 1.05). When VAI was categorized into quartiles, participants

in the highest quartile (Q4) had a progressively higher prevalence

of sleep disorders across all models compared to those in the lowest

quartile (Q1) (P < 0.021). Overall, these results indicate a positive

relationship betweenVAI and the risk of developing sleep disorders.
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FIGURE 2

Comparison of VAI between patients with sleep disorders and

non-ond rison of Vs. VAI, visceral adiposity index.

TABLE 2 The weighted logistic regression analysis of the association

between VAI and sleep disorders.

Variables Minimally
adjusted
model

(Model 1)
OR (95%CI)

P-
value

Fully
adjusted
model

(Model 2)
OR

(95%CI)

P-
value

Visceral

adiposity

index

1.05 (1.02–1.07) <0.001 1.03

(1.00–1.05)

0.026

Visceral adiposity index (Quartile)

Q1

Q2 0.91 (0.79–1.04) 0.2 0.95

(0.81–1.13)

0.6

Q3 1.14 (0.99–1.31) 0.075 1.09

(0.93–1.28)

0.3

Q4 1.33 (1.15–1.53) <0.001 1.21(1.03–

1.41)

0.021

P for trend <0.001 <0.001

Model 1 adjusted for gender and age.

Model 2 adjusted for gender, age, race, education level, the ratio of family income to poverty,

smoking status, alcohol consumption status, hypertension, diabetes, stroke, cardiovascular

disease, and dietary caffeine intake. VAI: visceral adiposity index.

3.3 Dose-response analysis of VAI on the
prevalence of sleep disorders

We then applied restricted cubic splines and smooth curve

fitting to further examine the relationship between VAI and

the prevalence of sleep disorders. As shown in Figure 3, after

adjusting for all covariates, we observed a significant positive linear

association between higher VAI and increased prevalence of sleep

disorders (p for linear trend= 0.005).

3.4 Subgroup analysis

To further investigate the connection between VAI and sleep

disorders in various populations, we performed a stratified analysis

by age, gender, and ethnicity. As presented in Table 3, the

age-stratified analysis indicated a significant positive association

between VAI and sleep disorders in males (OR = 1.01; 95% CI

[1.00, 1.02]; P = 0.015) and non-Hispanic white participants (OR

= 1.01; 95% CI [1.00, 1.01]; P = 0.002). Furthermore, males in the

highest VAI quartile showed a 6% greater likelihood of having sleep

disorders compared to those in the lowest quartile (OR= 1.06; 95%

CI [1.02, 1.11]; P = 0.01). In the ethnicity-stratified analysis, non-

Hispanic white individuals in the highest VAI quartile had a 5%

increased chance of experiencing sleep disorders compared to those

in the lowest quartile (OR= 1.05; 95% CI [1.01, 1.10]; P = 0.028).

4 Discussion

In this large cross-sectional study, we analyzed 14,021U.S.

participants aged 18 and older to investigate the association

between the VAI and sleep disorders. After adjusting for potential

confounders, we observed a positive association between VAI and

the prevalence of sleep disorders, suggesting that VAI may be

a risk factor. As VAI levels increased, so did the risk of sleep

disorders. Smoothed curve analysis revealed a linear relationship

(P for linearity = 0.0052), with the trend becoming steeper as

VAI values rose. Subgroup analysis confirmed a strong positive

correlation between VAI and sleep disorders in males and non-

Hispanic white individuals.

Obesity is increasingly recognized as a major global health

issue, with prevalence continually rising. Projections suggest that

by 2030, around 2.1 billion people worldwide could be affected

by obesity (27, 28). This condition is strongly linked to metabolic

disorders such as type 2 diabetes, hypertension, cardiovascular

disease, and non-alcoholic fatty liver disease. Although sleep

disorders have been extensively studied, their precise mechanisms

remain unclear. Obesity is considered a significant risk factor

for sleep disturbances, potentially through two primary pathways.

First, excess body weight can disrupt normal breathing, leading to

obstructive sleep apneaisms remain unclear. Obesity is considered a

t nocturnal awakenings and diminished sleep quality. Additionally,

fat accumulation around the neck and upper airway may narrow or

block the airway during sleep, causing partial or complete breathing

interruptions (apnea or hypopnea) (29, 30). Second, abdominal

obesity increases intra-abdominal pressure, reduces lung capacity,

and is strongly associated with higher visceral fat levels (31).

Visceral fat secretes inflammatory and adipose-derived factors,

which contribute to systemic inflammation and oxidative stress.

Visceral adipose tissue is a major source of pro-inflammatory

cytokines like IL-1, IL-6, and TNF-a, which are involved in

chronic low-grade inflammation (10). Research suggests that these

cytokines play a role in sleep regulation, earning them the label

of “sleep regulatory substances (12).” TNF-a and IL-1b secretion

follows a circadian rhythm, peaking at night (between 01:00 and

02:00), and is crucial for regulating sleep, particularly slow-wave

sleep (SWS) (32, 33). This view is further supported by a study on

elderly women in a Spanish community, which found a significant
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FIGURE 3

Restricted cubic spline analysis of the relationships between VAI and sleep disorders. Model 1 adjusted for gender and age; Model 2 adjusted for

gender, age, race, education level, the ratio of family income to poverty, smoking status, alcohol consumption status, hypertension, diabetes, stroke,

cardiovascular disease, and dietary ca�eine intake. VAI, visceral adiposity index.

positive correlation between sleep disorders and WC. Since WC

is an indicator of visceral fat, this finding supports the hypothesis

that visceral fat plays a significant role in the development of sleep

disorders (34).

In contrast, sleep disorders may contribute to weight gain

and complicate weight loss efforts. Disrupted sleep patterns

and frequent awakenings disturb hormone regulation, increasing

appetite and cravings for high-calorie foods (35, 36). Several meta-

analyses have linked poor sleep quality with obesity, particularly

central obesity (37, 38). For instance, a four-year study of 14,000

young people found that shorter sleep duration raised the risk

of obesity and increased waist circumference by 1.45 times (39).

Additionally, sleep deprivation in children and adolescents is

associated with poorer food choices, leading to a higher intake of

unhealthy, sugary foods (40). Overall, lack of sleep alters hunger

and satiety hormones, affecting food consumption and emotional

responses, thus promoting weight gain and obesity-related diseases.

The bidirectional link between sleep disorders and obesity creates a

vicious cycle, where each condition worsens the other. Shared risk

factors, such as unhealthy lifestyle habits, poor diet, and genetic

predisposition, further complicate their relationship. In addition,

our study’s baseline data show that patients without sleep disorders

are notably younger, with lower bodyweight, triglyceride levels, and

diabetes prevalence compared to those with sleep disorders. These

differences likely arise from several interrelated factors. Aging

is often accompanied by metabolic dysregulation, characterized

by increased fat accumulation, lipid abnormalities, and insulin

resistance, which can heighten the risk of sleep disorders (41,

42). Moreover, elevated body weight and triglyceride levels may

contribute to sleep-disordered breathing, such as obstructive sleep

apnea, through increasedmechanical strain and inflammation (43).

The higher diabetes rate in older populations may further reflect

a reciprocal relationship between metabolic imbalances and poor

sleep quality, with lifestyle factors and the long-term accumulation

of metabolic risks also playing important roles (44).

Traditional measures like BMI, while simple and widely

used, only capture the weight-to-height ratio and do not reflect

fat distribution, especially the distinction between visceral and

subcutaneous fat (45). Although waist circumference can indicate

abdominal obesity, it does not fully assess visceral fat or its

metabolic risks (46). In contrast, the VAI integrates BMI, waist

circumference, and lipid parameters (such as triglycerides and

HDL cholesterol) to provide a more accurate evaluation of visceral

fat accumulation and its associated risks. Studies show that

VAI correlates more strongly with cardiovascular and metabolic

abnormalities than BMI or waist circumference alone, suggesting

it is a more sensitive marker (47, 48). Moreover, while devices

like InBody offer detailed body composition analysis, their high

cost and strict standardization make them less suitable for large-

scale studies. As a computed index, VAI is cost-effective, easy to

implement, and serves as a non-invasive alternative to CT or MRI

(49). Since its introduction in 2010, VAI has been validated for

predicting diabetes, cardiovascular disease, and other health risks

(23, 50).

In this study, we compared our results with existing literature

and found that VAI outperforms individual lipid components

in predicting cardiovascular diseases, with a clear link to sleep

disorders. Our analysis demonstrated a positive linear relationship

between VAI and sleep disorders. Prior research has identified VAI

as a useful marker for predicting insulin resistance in obstructive

sleep apnea patients (51, 52). Our subgroup analysis revealed that

elevated VAI levels are linked to a higher risk of sleep disorders in

men, but not in women. This gender-specific difference might stem

from variations in metabolism, endocrine function, and hormone

levels (53, 54). These factors likely contribute to the observed

differences in the diagnosis and presentation of sleep disorders

between men and women.

This study has several important strengths. First, it is the first to

explore the association between VAI and the risk of sleep disorders,

making a valuable contribution to the field. Second, the NHANES

data, which follows strict quality control protocols, ensures reliable

results. Third, VAI allows for a detailed assessment of visceral

fat distribution without the high costs, radiation exposure, and

complexity linked to CT and MRI scans, making it more practical
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TABLE 3 Subgroup analysis of the association between VAI and sleep disorders.

Exposure Model 1 [OR (95% CI)] p-value Model 2 [OR (95% CI)] p-value

Age subgroup 18–39 years 1.01 (1.00–1.01) 0.027 1.01 (1.00–1.01) 0.13

18–39 years

Q1

Q2 0.97 (0.94–1.01) 0.15 0.99 (0.95–1.04) 0.8

Q3 1.03 (0.98–1.08) 0.2 1.02 (0.98–1.07) 0.3

Q4 1.04 (0.99–1.10) 0.083 1.04 (0.99–1.09) 0.15

40–59 years 1.01 (1.00–1.02) 0.005 1.00 (1.00–1.01) 0.094

40–59 years

Q1

Q2 0.98 (0.93–1.03) 0.4 1.0 (0.93–1.06) 0.9

Q3 1.03 (0.98–1.08) 0.3 1.02 (0.97–1.08) 0.4

Q4 1.09 (1.03–1.14) 0.002 1.05 (0.99–1.11) 0.14

≥60 years 1.01 (1.00–1.02) 0.13 1.01 (1.0–1.02) 0.3

≥60 years

Q1

Q2 1.00 (0.93–1.06) 0.9 0.98 (0.91–1.06) 0.6

Q3 1.04 (0.97–1.11) 0.3 1.01 (0.94–1.09) 0.8

Q4 1.05 (0.98–1.13) 0.14 1.02 (0.94–1.10) 0.6

Gender subgroup Female 1.01 (1.00–1.01) 0.008 1.00 (1.00–1.01) 0.2

Female

Q1

Q2 0.97 (0.93–1.01) 0.14 0.96 (0.92–1.00) 0.068

Q3 1.01 (0.97–1.06) 0.6 0.98 (0.94–1.03) 0.5

Q4 1.05 (1.01–1.10) 0.022 1.01 (0.96–1.06) 0.8

Male 1.01 (1.00–1.02) 0.002 1.01 (1.00–1.02) 0.015

Male

Q1

Q2 0.99 (0.95–1.03) 0.5 1.02 (0.97–1.06) 0.5

Q3 1.04 (1.00–1.10) 0.07 1.05 (0.99–1.10) 0.09

Q4 1.08 (1.03–1.13) 0.003 1.06 (1.02–1.11) 0.01

Race subgroup Mexican American 1.00 (0.99–1.00) 0.2 1.00 (0.99–1.00) 0.14

Mexican American

Q1

Q2 1.00 (0.94–1.06) >0.9 1.05 (0.98–1.13) 0.2

Q3 1.00 (0.95–1.05) >0.9 1.02 (0.95–1.09) 0.6

Q4 1.00 (0.95–1.06) >0.9 1.02 (0.96–1.09) 0.5

Other Hispanic 1.00 (0.99–1.01) 0.6 1.00 (0.99–1.00) 0.2

Other Hispanic

Q1

Q2 0.99 (0.91–1.08) 0.8 0.97 (0.89–1.06) 0.5

Q3 0.97 (0.89–1.05) 0.4 0.95 (0.87–1.03) 0.2

Q4 1.05 (0.97–1.14) 0.2 0.99 (0.91–1.07) 0.7

(Continued)
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TABLE 3 (Continued)

Exposure Model 1 [OR (95% CI)] p-value Model 2 [OR (95% CI)] p-value

Non-Hispanic

White

1.01 (1.01–1.02) <0.001 1.01 (1.00–1.01) 0.002

Non-Hispanic

White

Q1

Q2 0.97 (0.93–1.01) 0.2 0.98 (0.94–1.03) 0.4

Q3 1.04 (1.00–1.08) 0.072 1.03 (0.99–1.07) 0.2

Q4 1.08 (1.04–1.13) <0.001 1.05 (1.01–1.10) 0.028

Non-Hispanic

Black

1.01 (1.00–1.03) 0.013 1.01 (0.99–1.02) 0.4

Non-Hispanic

Black

Q1

Q2 1.03 (0.98–1.08) 0.2 1.02 (0.97–1.08) 0.5

Q3 1.03 (0.99–1.08) 0.2 0.98 (0.94–1.03) 0.4

Q4 1.10 (1.04–1.16) 0.001 1.07 (1.00–1.14) 0.066

Other Races 1.00 (0.99–1.02) 0.6 1.00 (0.98–1.02) >0.9

Other Races

Q1

Q2 0.94 (0.86–1.03) 0.2 0.96 (0.88–1.04) 0.3

Q3 1.02 (0.91–1.14) 0.8 0.99 (0.89–1.10) 0.8

Q4 0.98 (0.88–1.10) 0.8 0.97 (0.87–1.09) 0.6

Model 1 adjusted for gender and age.

Model 2 adjusted for gender, age, race, education level, the ratio of family income to poverty, smoking status, alcohol consumption status, hypertension, diabetes, stroke, cardiovascular disease,

and dietary caffeine intake. VAI, visceral adiposity index.

for clinical and screening purposes. Fourth, the large sample size

offers sufficient statistical power for subgroup analysis.

Despite the strengths of this study, several limitations must

be acknowledged. First, self-reported data on cardiovascular

disease, stroke, and sleep disorders may be subject to recall or

reporting bias since these conditions were not independently

verified. Second, our analysis relies on the NHANES database,

where sleep disorders were determined by a general inquiry per

the NHANES protocol, rather than using validated, disorder-

specific questionnaires (e.g., MCTQ or MEQ). Consequently,

we could only ascertain whether a participant had ever been

diagnosed with a sleep disorder, without distinguishing among its

subtypes, which limits the clinical interpretation of our results.

Lastly, the cross-sectional design, with exposure and outcome

measured simultaneously, impedes the establishment of temporal

relationships and limits causal inferences. Future research should

include large-scale prospective cohort studies and randomized

controlled trials employing validated, disorder-specific assessment

tools to further confirm these findings.

5 Conclusion

In summary, this study using NHANES data reveals a strong

link between higher VAI levels and increased risk of sleep disorders,

indicating that VAI could be a useful predictor. Managing VAI

levels may help slow the progression of sleep disorders and

serve as a preventive measure. For those with elevated VAI,

adjustments in diet and exercise are recommended to lower

the risk of sleep disorders. These results highlight the need to

integrate VAI assessment into clinical practice to guide personalized

interventions and enhance outcomes for individuals at high risk.
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