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Objective: Existing visual scoring systems for cerebral small vessel disease (CSVD) 
cannot assess the global lesion load accurately and quantitatively. We aimed to 
develop an automated segmentation method based on deep learning (DL) to 
quantify the typical neuroimaging markers of CSVD on multisequence magnetic 
resonance imaging (MRI).

Materials and methods: MRI scans from internal (July 2018 to July 2022) and 
external (November 2012 to January 2015) datasets were analyzed. A DL-based 
segmentation method was developed to evaluate the quantitative volumes of 
white matter hyperintensity (WMH), cerebral microbleeds (CMBs), lacunes, and 
enlarged perivascular spaces (EPVSs) according to the segmentation results. 
Dice and other quantitative metrics were used to access the DL segmentation 
results. Pearson correlation coefficients were used for correlation analysis, and 
the differences in marker volumes among different visual scores were assessed 
via analysis of variance (ANOVA). Finally, a quantitative Z score was calculated to 
represent CSVD-related brain burden.

Results: A total of 105 internal patients (64.8 ± 7.4 years, 70 males) and 58 
external patients (68.2 ± 6.8 years, 29 males) were evaluated. The Dice values 
for WMH, CMBs, lacunes, and EPVSs in the internal dataset were 0.85, 0.74, 
0.76, and 0.75, respectively. The positive correlation between the DL and the 
manual approach results was excellent (overall Pearson correlation = 0.968, 
0.978, 0.948, and 0.947, respectively). The predicted volumes of the CSVD 
neuroimaging markers showed significant differences among the groups with 
different visual scores (p < 0.001). The quantitative Z scores reflecting CSVD 
global burden also correlated well with the widely recognized total burden 
score (p < 0.001).

Conclusion: An automated DL model was developed for the segmentation of 
four CSVD neuroimaging markers on multisequence MRI, providing a strong 
basis for further CSVD research.
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1 Introduction

Cerebral small vessel disease (CSVD) is a group of pathological 
processes that affect the small arteries, arterioles, capillaries, and 
venules of the brain. CSVD can cause ischemic stroke, cognitive 
decline, neurobehavioral symptoms, and functional impairment, 
posing a significant public health threat to the elderly (1). Since CSVD 
often occurs and develops insidiously (2), magnetic resonance 
imaging (MRI) is widely employed to detect and diagnose 
CSVD. Common neuroimaging markers of CSVD include white 
matter hyperintensity (WMH), lacunes, cerebral microbleeds (CMBs), 
and enlarged perivascular spaces (EPVSs) (3), which are variably 
associated with the clinical performance and progression of 
CSVD. The potential mechanisms underlying CSVD include chronic 
cerebral ischemia, hypoperfusion, endothelial dysfunction, blood–
brain barrier disruption, glymphatic dysfunction, and inflammatory 
responses (4). Although different CSVD markers result from diverse 
pathophysiologic processes, they may manifest simultaneously in the 
brain (5). Notably, recent longitudinal studies have demonstrated that 
the combined quantification of multiple markers provides stronger 
predictive value for clinical outcomes than individual markers (6, 7). 
Thus, emphasizing the overall impact of CSVD on the brain is more 
meaningful than considering individual markers in isolation.

Visual scoring systems that combine multiple neuroimaging 
features, including 4- and 6-point rating scores, have been developed 
to qualitatively represent the total imaging burden of CSVD (4). While 
the qualitative tools may achieve better generalizability, the inevitable 
limitations are as follows: First, scale complexity may have an adverse 
effect on interrater reliability, especially in population-level studies (8). 
Second, the accuracy of neuroimaging diagnosis based on visual 
rating scores cannot be  guaranteed due to variations in clinician 
expertise. Third, when used for the analysis of larger datasets, 
obtaining qualitative scores is a time-consuming and labor-intensive 
process. Further, as the impact of CSVD on the brain is a dynamic 
process that continuously changes over time (9), qualitative scores 
cannot be  used to measure the global lesion load accurately and 
quantitatively. Therefore, a quantitative tool is highly needed for the 
precise and rapid diagnosis of CSVD.

In the last decade, extensive advances have been made using deep 
learning (DL) for medical image processing because of its advantages 
in accuracy, efficiency, and repeatability (10–12). Several DL models 
have recently been developed for segmentation and detection in the 
CSVD field (13, 14). Among the typical CSVD neuroimaging markers, 
WMH has received more attention than others (15–20). For example, 
a network called DeepWML was proposed in Zhang et al. (16) for 
automated detection and segmentation of WMH lesions in MRI 
images. Other lesions like CMBs and lacune have also garnered 
considerable research interest (21, 22). However, there remains a lack 
of consensus on procedures for segmenting and quantifying all CSVD 
neuroimaging markers. The segmentation of EPVSs, in particular, 
remains a significant challenge because of the time-consuming 
manual delineation and the difficulties in identification. In addition, 
the multiple lesions in CSVD have different imaging characteristics, 
which prevents general DL methods from accurate segmentation (23). 
Using separate DL models for each marker would also result in a large 
increase in the data required for each marker, and the similarity of the 
different sequences is not well utilized. Thus, the multi-marker-
adapted DL model of CSVD requires further exploration.

In this study, we  aimed to develop a fully automated, highly 
accurate algorithm for multiple markers segmentation that can be used 
to detect the four typical neuroimaging markers of CSVD over 
multiple sequences of brain MRI. Then, a “share learning” strategy and 
cross-sequence attention mechanisms were proposed to leverage 
anatomical consistency across modalities, overcoming limitations of 
prior single-sequence approaches. Thirdly, a quantitative 
segmentation-based total CSVD burden score was generated from the 
proposed DL method that correlates with established clinical scales 
while enabling millimeter-level volumetric precision. From a clinical 
perspective, the proposed framework transformed the current 
qualitative CSVD assessments to quantitative diagnostics, providing 
clinicians with an objective tool for monitoring CSVD progression and 
enabling personalized risk stratification, thereby establishing a robust 
foundation for more precise and individualized diagnoses in the future.

2 Materials and methods

2.1 Ethics statement

The current study conformed with the World Medical Association 
Declaration of Helsinki and was approved by the Research Ethics 
Committee of Huashan Hospital (Project ID:KY2018–224). All of the 
participants or their relatives provided written informed consent.

2.2 Patient datasets

To develop the DL model, we used an internal dataset of 178 
patients with arteriosclerotic CSVD prospectively enrolled from July 
2018 to July 2022 at North Huashan Hospital (registration number: 
ChiCTR1800017902). The algorithm was then tested on an external 
dataset of 101 patients recruited from stroke clinics or memory clinics 
at Huashan Hospital from November 2012 to January 2015. The full 
inclusion and exclusion criteria for the two datasets have been 
published previously (24, 25) and are listed in Supplementary material. 
Patients with low-quality images were further excluded. The details of 
the inclusion process are shown in Figure  1. Demographic 
characteristics and vascular risk information were also collected.

2.3 Imaging protocol

All of the patients in the internal dataset were scanned via a 3-T 
MRI scanner (GE HDxt 3.0 T, scanner software version: HD16.0_
V02_1131). The imaging protocol included three-dimensional 
magnetization prepared rapid acquisition gradient echo T1-weighted 
imaging (3D-MPRAGE T1WI), T2-weighted imaging (T2WI), fluid-
attenuated inversion recovery (FLAIR) imaging, and susceptibility-
weighted angiography (SWAN). The 3D-MPRAGE parameters were 
as follows: repetition time (TR) = 9.7 ms, echo time (TE) = 3.0 ms, flip 
angle = 15°, slice thickness = 1 mm, field of view (FOV) = 256 mm, 
matrix = 256 × 256, and voxel size = 1 mm × mm × 1 mm. The T2WI 
parameters were TR = 3,620 ms, TE = 120 ms, slice thickness = 6 mm, 
and FOV = 240 mm. The FLAIR parameters were TR = 9,675 ms, TE 
= 150 ms, slice thickness = 2 mm, FOV = 240 mm, and matrix = 480 
× 480. The SWAN parameters were TR = 62.1 ms, TE = 32 ms, flip 
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angle = 15°, slice thickness = 1.6 mm, FOV = 240 mm, and matrix = 
240 × 240. When performing the SWAN sequence scanning, a two-fold 
phase acceleration was obtained using the parallel acquisition technique.

All of the patients in the external validation dataset were scanned 
via a 3 Tesla scanner (Siemens Magneton Verio3T). The MRI sequences 
included 3D-MPRAGE T1WI, T2WI, FLAIR, and SWI. The 
3D-MPRAGE parameters were: TR = 2,300 ms, TE = 2.98 ms, flip angle 
= 9°, slice thickness = 1.0 mm, FOV = 256 mm, matrix = 256 × 256, 
voxel size = 1 mm × 1 mm × 1 mm. The T2WI parameters were: TR = 
3,500 ms, TE = 95 ms, FOV = 200 mm × 230 mm, slice thickness = 6 
mm, matrix = 256 × 256. The FLAIR were: TR = 9,000 ms, TE = 102 ms, 
FOV = 200 mm × 230 mm, slice thickness = 6 mm, matrix = 256 × 190. 
The SWI parameters were: TR = 28 ms, TE = 20 ms, flip angle = 15°, slice 
thickness = 1.2 mm, FOV = 172 mm × 230 mm, and matrix = 221 × 320.

2.4 Manual annotation

WMH, CMBs, lacunes, and EPVSs were determined on the basis 
of the STandards for ReportIng Vascular changes on nEuroimaging 
2 (STRIVE-2) (3). In this study, WMH was graded according to the 
sum of deep and periventricular WMH Fazekas scales (0 to 3): 
1 = total periventricular+ subcortical WMH grade 3–4; 2 = grade 
5–6. The numbers of CMBs and lacunes were  respectively recorded 
>4 lacunes. Basal ganglia, centrum semiovale, and midbrain regions 
are reported as three major sites for EPVSs (26). The existing total 
burden score puts more emphasis on the number of EPVSs in the 
basal ganglia (6). Thus, the categories of EPVSs used in the current 
study considered EPVSs in the basal ganglia as follows: 0 = none, 
1 = 1–10, 2 = 11–20, 3 = 21–40, and 4 = 40 (26). We rated the total 
CSVD burden on an ordinal scale from 0 to 4, as previously reported 
(6). The ground truth segmentations were delineated by three 
experienced clinicians (with 7, 5, and 3 years of neuroimaging 
expertise) blinded to the clinical data and group information for 

each examination. To quantify inter-rater variability, we calculated 
the kappa value, Dice similarity coefficient (Dice), and intraclass 
correlation coefficient (ICC) for randomly selected 50% of the 
dataset. All of the segmentation results were subsequently reviewed 
by a senior radiologist (28 years of experience), with discrepancies 
resolved through consensus discussion.

2.5 Image preprocessing

Image preprocessing included format conversion, size and value 
normalization, and positive sample data augmentation. The MRI data 
for all three sequences were in dcm format. The raw data were 
manually segmented via itk-snap 3.8.0 and the labels were saved as nii 
files. The SimpleITK and Nibabel libraries were subsequently used to 
read and save the dcm and nii data into npy format with the same 
matrix size, respectively. Then, all of the images were resized to 320×
320 and normalized to [0–1] via min-max normalization. To address 
class imbalance in the MRI dataset where positive samples were 
underrepresented, we implemented comprehensive data augmentation 
to prevent model bias toward negative predictions. Our augmentation 
strategy included the following methods: (1) geometric 
transformations (vertical/horizontal flipping, ±30° rotation); (2) 
spatial adjustments (x/y-axis displacement up to 20% of image 
dimensions); and (3) scale variations (0.8–1.2 × resizing). The data 
augmentation techniques expanded the positive sample size by a 
factor of 11, which significantly improved network performance by 
balancing class distribution while preserving lesion characteristics.

2.6 Deep learning model

A DL model was developed to collect images from three different 
sequences (3D-MPRAGE T1WI, FLAIR, and SWAN/SWI) and output 

FIGURE 1

The flowchart of participant inclusion processes in the internal and external datasets. CSVD, cerebral small vessel disease; MR, magnetic resonance; 
DL, deep learning.
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their corresponding segmentation results for each of the four markers. 
Figure 2 shows the proposed DL framework, which consists of two 
parts: (a) an auto-encoder network used to pretrain the encoder layers 
of the subsequent segmentation network and (b) a multi-output 
U-shaped network, named MO-UNET, used to segment 
different markers.

2.6.1 Pretraining with the autoencoder
First, the autoencoder, which consists of an encoder and a 

decoder, was trained using the original MRI data. The encoder 
extracts useful features from high-dimensional input data and maps 
them into a low-dimensional space. The decoder then recovers the 
input data from the low-dimensional vectors via transposed 
convolution. Autoencoder is able to extract local features of images 
and apply these features to further tasks such as target detection, 
image segmentation, and image reconstruction. Here we  used 
EfficientNet (27) as the encoder part, enabling richer feature 
representations. Additionally, the parameters of EfficientNet have 
been pretrained and tuned to be highly generalizable and robust to 
migration learning on various datasets and tasks.

2.6.2 The proposed network
To address the dual challenges of cross-sequence feature sharing 

and marker-specific differentiation in CSVD MRI analysis, we propose 
a Multi-Output UNet (MO-UNet) architecture that synergizes multi-
task learning with sequence-aware adaptation. Built upon the U-Net 
framework (28), MO-UNet employs a shared EfficientNet-based 
encoder pre-trained via contrastive autoencoding to extract 
fundamental vascular patterns common across MRI sequences (T1/
T2-FLAIR/SWI), followed by four dedicated decoders that preserve 
marker-specific characteristics. Specifically, the encoder utilizes 
stacked MBConv blocks, namely Mobile Inverted Residual Bottleneck 

blocks, with each comprising the following components: (1) a 
depthwise separable convolution layer and a 1×1 pointwise 
convolution layer that is used to reduce the number of model 
parameters and computational complexity; (2) an adaptive activation 
function called the “Swish” activation function to better address 
gradient vanishing and gradient explosion; and (3) a residual 
connection that helps information transfer and gradient propagation. 
These designs allow the model to reduce the computational complexity 
and the number of parameters while maintaining a high level of 
accuracy, improving the computational efficiency of the network. The 
encoder is designed to be public so that all slices must pass through 
the shared encoder before entering the selection unit. Thus, the 
network has the ability to preserve the similarity of each sequence in 
the encoding phase. Then, at the encoder-decoder interface, a dynamic 
selection unit routes features to target decoders based on input 
sequence type.

The decoder part of the designed network has four decoder 
modules, representing four clinical markers of CSVD. Each module 
restores the encoder feature maps to the spatial resolution of the 
original image. This design allows the network to preserve the 
specificity of different CSVD markers in the decoding phase. Like 
the conventional U-shaped structure, each decoder module is 
merged with the encoder feature map at different scales through a 
skip connection, and the features are progressively recovered 
through the upsampling and convolution layers. Each decoder 
integrates spatial-channel squeeze & excitation (scSE) blocks (29) as 
the attention mechanism to increase the accuracy and efficiency of 
segmentation. The spatial attention gates suppress irrelevant 
backgrounds, while channel attention amplifies marker-specific 
frequency components. By co-training all decoders on mixed 
sequences, the model learns both shared vascular representations 
through encoder and marker-specific boundaries through decoders. 

FIGURE 2

The overall framework of the proposed network. MRI, magnetic resonance imaging; CSVD, cerebral small vessel disease; WMH, white matter 
hyperintensity; CMBs, cerebral microbleeds; EPVSs, enlarged perivascular spaces.
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At last, each decoder outputs the segmentation results for the 
corresponding CSVD markers.

Overall, to fit both the similarity and specificity characteristics of 
CSVD with multiple sequences and multiple markers, a “shared 
learning” concept is proposed in which all of the images are input into 
the same encoding phase. This strategy greatly avoids overfitting or 
underfitting caused by insufficient data, especially in the medical field. 
In the decoding phase, by using the selection unit and multiple 
decoding modules, the different CSVD marker segmentation results 
corresponding to each sequence are obtained by multiple output 
channels. This step preserves the specific structural features of 
different CSVD markers, which is particularly useful when confronted 
with different MRI sequences that have both similarities and 
specificities. The overall architecture improves the accuracy of the 
segmentation task, enabling researchers to perform more precise 
analysis and diagnosis.

2.6.3 Loss function
The network combines cross-entropy and Dice loss to form the 

loss function. Cross-entropy loss is widely used for binary classification 
of pixel points, which can be expressed as follows:

 
( ) ( ) ( ) = − + − − 
 1 log 1ceL ylog y y y

where y  represents the true label and y  represents the predicted 
label of each pixel. Dice loss is another commonly used loss function 
for segmentation tasks, which can be expressed as follows:

 

∩
= −

+

2
1Dice

X Y
L

X Y

where X  is the set of real labels and Y  is the set of predicted labels. 
The cross-entropy loss calculates all of the pixels of an image with no 
difference between the foreground and background pixels, which may 
incline the model to predict all of the pixels as background pixels, 
leading to training failure. Dice loss excludes the negative influence of 
background pixels during training, which helps solve the problem of 
positive and negative sample imbalance. However, using Dice loss 
alone may not provide enough gradient information to guide model 
learning, especially in the initialization phase. Thus, we  use the 
combination of the cross-entropy and Dice loss as the proposed 
loss function:

 = +ce DiceL L L

2.7 Experimental settings

Multisequence MR images from 105 patients were used as internal 
data for developing DL algorithms. The dataset was partitioned at the 
patient level to ensure independence between training and validation 
sets. To rigorously optimize hyperparameters and evaluate model 
generalizability, we performed five-fold nested cross-validation on the 
internal cohort. Specifically, the full dataset was divided into five 
patient-stratified folds (21 patients/fold), with each fold iteratively 

held out as the test set. For the remaining 84 patients in each iteration, 
an 80:20 train-validation split was applied to tune hyperparameters. 
This process was repeated across all five folds. Then, the best 
parameters were selected based on maximum validation accuracy for 
the subsequent independent test set of 58 patients. During training, 
an Adam optimizer (30) with L2 weight decay (λ = 0.0001) was used 
because of its fast convergence and high computational efficiency. The 
learning rate varies during training according to the following formula:

 = ∗

global

decay

step
step

decayed initiallr lr rate

where = 0.001initiallr  is the initial learning rate, and = 0.95decayedlr  
indicates the decay rate. globalstep  is a global variable representing the 
current number of iteration rounds of training, and = 500decaystep  is 
the set decay period. Training continued for 100 epochs and 
terminated until no further improvement was achieved in five 
consecutive rounds. The batch size was set to 6 and the 
hyperparameters were set to epsilon = 0.001 and momentum = 0.99. 
Three DL models: UNET (29), Res-Net (31), and DeepLabV3 (32) 
were chosen as the comparison methods. All methods utilized the 
same datasets and experimental settings to ensure fairness. The 
algorithms were developed in-house via Python version 3.6.5,1 
implemented using PyTorch version 1.8.1,2 and trained with two 
NVIDIA GeForce RTX 3090 GPUs. The code is available at https://
github.com/HYZimLic/MO-UNET.

2.8 Statistical analysis

Statistical analyses were performed via SPSS 26.0 software. 
Inter- and intra-rater agreement measurements for the total 
burden score and ground truth were evaluated with kappa values. 
To assess intra-rater reliability, each clinician assessed the images 
of all patients twice, with a 6-month interval between assessments. 
Categorical variables are presented as counts and percentages. 
Continuous variables are presented as the means [standard 
deviations (SDs)].

The precision (Pre), specificity (Sp), and Dice coefficient of the 
proposed DL framework are calculated based on the segmentation 
masks of all four CSVD markers in comparison with the labels of 
physicians. All of the results are obtained from the confusion 
matrices corresponding to true positive (TP), true negative (TN), 
false positive (FP), and false negative (FN) results. The formulas are 
as follows:

 
=

+
TPPre

TP FP

 
=

+
TNSp

FP TN

1 https://www.python.org

2 https://pytorch.org
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=

+ +
2
2
TPDice

FP TP FN

The Hausdorff distance (HD95) was also being tested between 
different methods and the gold standard. HD95 is used to compute 
the 95th percentile of the distance between two point sets and is 
applied to the distance metric between two 3D image voxels. Given 
two masks X  and Y , the HD 95 is calculated as follows:

 ( ) ( ) ( ) = × 95 , max , , , 95%HD X Y d X Y d Y X

where ⋅( )d  represents the minimum Euclidean distance. For 
lesion-level analysis, we considered an area covering at least 50% of 
the lesion as a true positive and used this to calculate the per-lesion 
sensitivity (Sen):

 
=

+
lesion

lesion lesion

TPSen
TP FN

In addition, the correlation between the quantitative volume of 
the CSVD markers obtained via DL and that labeled by clinicians was 
also evaluated via the Pearson correlation coefficient and Bland–
Altman analysis. The formula for calculating the Pearson coefficient 
is as follows:

 

( )( )
( ) ( )

∑ − −
=

∑ − −2 2
i i

i i

x x y y
r

x x y y

where ix  and iy  represent the values of the x- and y-variables in a 
sample, respectively, while x  and y  represent the mean of the values 
of the x- and y-variables. The differences in CSVD marker volumes 
among different visual scores were assessed via analysis of variance 
(ANOVA). Since the volume of each CSVD marker varies, we then 
calculated the Z score of each CSVD marker and summed the four 
scores to obtain a quantitative result of the CSVD-related brain 
burden. The least significant difference (LSD) test was used for 
multiple comparisons, assuming equal variances.

3 Results

3.1 Characteristics of patient datasets

The current study included a total of 105 patients in the internal 
dataset (64.8 ± 7.4 years, 70 males and 35 females) and 58 subjects in 
the external dataset external dataset (68.2 ± 6.8 years, 29 males and 26 
females). Table 1 summarizes the demographics and characteristics of 
the participants.

3.2 Inter- and intra-rater agreements

The inter-rater agreement for ground truth masks was 
excellent, with κ = 0.89 and Dice = 0.83. The intra-rater agreement 
was excellent in the follow-up assessment, with κ = 0.91 and 
ICC = 0.91.

3.3 Quantitative segmentation evaluation

The average automatic segmentation computation time per slice 
was 105.3 msec. The results of multiple methods on the four CSVD 
segmentations on the internal and external datasets are shown in 
Tables 2, 3. Overall, the proposed model was in agreement with both 
datasets. All of the CSVD markers had high accuracy and specificity 
because of the small proportion between the focal area of small vessel 
disease and overall slices. For the internal dataset, the specificity 
results of WMH, CMBs, lacune, and EPVSs were 82.14%, 75.20%, 
82.52%, and 74.40%, respectively; the precision results were 87.86%, 
73.28%, 69.88%, and 75.99%, respectively, and the HD95 results were 

TABLE 1 The demographics and characteristics of the participants in the 
internal and external datasets.

Characteristics Internal dataset 
(n = 105)

External dataset 
(n = 58)

Sex (male/female) 70/35 29/26

Age, year, mean (SD) 64.78±7.41 68.16±6.84

Education, year, mean (SD) 8.67±4.51 11.51±3.85

Hypertension, n (%) 94 (89.52) 46 (79.31)

Diabetes mellitus, n (%) 25 (23.81) 12 (20.69)

Hyperlipidemia, n (%) 32 (30.47) 25 (43.10)

History of smoking, n (%) 19 (18.10) 14 (24.14)

History of drinking, n (%) 11 (10.48) 11 (18.97)

WMH score, n (%)

  0 1 (0.95) 9 (15.52)

  1 33 (31.43) 15 (25.86)

  2 71 (67.62) 34 (65.38)

Number of CMBs, n (%)

  0 20 (19.05) 27 (46.55)

  1–10 28 (26.67) 17 (29.31)

  >10 57 (54.29) 14 (24.14)

Number of lacunes, n (%)

  0 29 (27.62) 36 (62.07)

  1–4 43 (40.95) 18 (31.03)

  >4 33 (31.43) 4 (6.90)

EPVSs score in basal ganglia, n (%)

  1 20 (19.05) 18 (31.03)

  2 37 (35.24) 19 (32.76)

  3 28 (26.67) 17 (29.31)

  4 20 (19.05) 4 (6.90)

Total CSVD score(0–4), n (%)

  1 14 (13.33) 15 (25.86)

  2 15 (14.29) 19 (32.76)

  3 41 (39.05) 15 (25.86)

  4 35 (33.33) 9 (15.52)

SD, standard deviation; WMH, white matter hyperintensity; CMBs, cerebral microbleeds; 
EPVSs, enlarged perivascular spaces; CSVD, cerebral small vessel disease. *The total CSVD 
score ranges from 0 to 4: one point is, respectively, allocated for the presence of lacunes, 
microbleeds, moderate to severe (>10) PVS in basal ganglia, periventricular WMH Fazekas 3 
or deep WMH Fazekas 2–3.
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TABLE 2 Quantitative evaluation of segmentation results by the proposed method with other comparison methods on the internal dataset.

CSVD markers Method Pre (95% CI) Sp (95% CI) Dice (95% CI) Per-lesion Sen (95% CI) HD95 (mm, 95% CI) p-value

WMH UNET 77.8% (74.2–81.3) 78.8% (75.1–82.3) 0.78 (0.75–0.81) / 3.5 (3.1–3.9) /

Res-NET 83.3% (80.1–86.4) 78.1% (74.5–81.6) 0.81 (0.78–0.84) / 2.9 (2.5–3.3) **

DeepLabV3 83.5% (80.3–86.6) 77.2% (73.6–80.7) 0.80 (0.77–0.83) / 3.0 (2.6–3.4) **

Proposed 87.9% (85.2–90.5) 82.1% (78.8–85.4) 0.85 (0.83–0.87) / 2.4 (2.0–2.8) ***

CMBs UNET 64.2% (59.7–68.6) 67.8% (63.3–72.2) 0.66 (0.62–0.70) 54.3% (49.8–58.7) 5.8 (5.2–6.4) /

Res-NET 67.7% (63.3–72.0) 69.4% (65.0–73.7) 0.69 (0.65–0.73) 58.9% (54.5–63.2) 5.2 (4.7–5.7) *

DeepLabV3 70.8% (66.5–75.0) 69.5% (65.1–73.8) 0.70 (0.66–0.74) 61.2% (56.8–65.5) 5.0 (4.5–5.5) *

Proposed 73.3% (69.1–77.4) 75.2% (71.0–79.3) 0.74 (0.70–0.78) 69.8% (65.6–73.9) 4.2 (3.7–4.7) **

Lacune UNET 62.4% (58.0–66.7) 76.4% (72.3–80.4) 0.69 (0.65–0.73) 62.1% (57.7–66.4) 4.5 (4.0–5.0) /

Res-NET 65.7% (61.3–70.0) 78.9% (74.9–82.8) 0.72 (0.68–0.76) 65.7% (61.4–69.9) 4.1 (3.6–4.6) **

DeepLabV3 67.2% (62.9–71.4) 80.1% (75.1–83.0) 0.73 (0.69–0.77) 67.2% (63.0–71.3) 4.0 (3.5–4.5) **

Proposed 69.9% (65.7–74.0) 82.5% (78.8–86.1) 0.76 (0.72–0.80) 72.5% (68.4–76.5) 3.5 (3.0–4.0) ***

EPVSs UNET 58.6% (53.9–63.2) 59.4% (54.7–64.0) 0.59 (0.54–0.64) 51.8% (47.2–56.3) 6.2 (5.6–6.8) /

Res-NET 61.2% (56.6–65.7) 63.1% (58.5–67.6) 0.62 (0.57–0.67) 55.3% (50.7–59.8) 5.7 (5.1–6.3) **

DeepLabV3 65.9% (61.4–70.3) 64.4% (59.9–68.8) 0.65 (0.60–0.70) 59.1% (54.6–63.5) 5.3 (4.8–5.8) ***

Proposed 76.0% (71.9–80.0) 74.4% (69.8–78.1) 0.75 (0.71–0.79) 70.2% (66.0–74.3) 4.1 (3.6–4.6) ***

WMH, white matter hyperintensity; CMBs, cerebral microbleeds; EPVSs, enlarged perivascular spaces; Pre, precision; Sp, specificity; Sen, sensitivity; HD95, Hausdorff distance; *p < 0.05; **p < 0.01; ***p < 0.001.
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TABLE 3 Quantitative evaluation of segmentation results by the proposed method with other comparison methods on the external dataset.

CSVD markers Method Pre (95% CI) Sp (95% CI) Dice (95% CI) Per-lesion Sen (95% CI) HD95 (mm, 95% CI) p-value

WMH UNET 71.6% (66.5–76.6) 58.5% (53.2–63.7) 0.64 (0.59–0.69) / 4.8 (4.2–5.4) /

Res-NET 75.3% (70.4–80.1) 65.6% (60.4–70.7) 0.70 (0.65–0.75) / 4.1 (3.6–4.6) **

DeepLabV3 75.2% (70.3–80.1) 67.7% (62.6–72.7) 0.71 (0.66–0.76) / 3.9 (3.4–4.4) ***

Proposed 86.0% (82.2–89.8) 70.9% (66.0–75.8) 0.78 (0.74–0.82) / 3.1 (2.6–3.6) ***

CMBs UNET 50.8% (45.1–56.5) 55.7% (50.0–61.4) 0.53 (0.47–0.59) 48.3% (42.8–53.8) 7.2 (6.5–7.9) /

Res-NET 55.8% (50.1–61.5) 60.2% (54.6–65.7) 0.58 (0.52–0.64) 53.7% (48.1–59.3) 6.5 (5.9–7.1) *

DeepLabV3 56.3% (50.6–62.0) 60.4% (54.8–66.0) 0.58 (0.52–0.64) 54.2% (48.6–59.8) 6.3 (5.7–6.9) *

Proposed 62.5% (56.9–68.1) 65.1% (59.6–70.6) 0.64 (0.58–0.70) 61.9% (56.5–67.3) 5.4 (4.8–6.0) **

Lacune UNET 58.9% (53.2–64.6) 60.2% (54.5–65.9) 0.60 (0.54–0.66) 57.4% (51.8–63.0) 5.5 (4.9–6.1) /

Res-NET 68.2% (62.7–73.7) 66.1% (60.6–71.6) 0.67 (0.61–0.73) 65.2% (59.7–70.7) 4.7 (4.1–5.3) **

DeepLabV3 67.3% (61.8–72.8) 67.8% (62.3–73.3) 0.66 (0.60–0.72) 63.8% (58.2–69.4) 4.9 (4.3–5.5) **

Proposed 80.4% (75.6–85.2) 74.1% (68.9–79.3) 0.77 (0.72–0.82) 76.5% (71.5–81.5) 3.8 (3.3–4.3) ***

EPVSs UNET 55.3% (49.5–61.1) 41.5% (36.0–47.4) 0.47 (0.41–0.53) 43.1% (37.5–48.7) 8.1 (7.3–8.9) /

Res-NET 61.9% (56.2–67.6) 49.2% (43.4–55.0) 0.55 (0.49–0.61) 51.6% (45.9–57.3) 7.3 (6.6–8.0) **

DeepLabV3 62.7% (57.0–68.4) 50.3% (44.6–56.0) 0.56 (0.50–0.62) 52.8% (47.1–58.5) 7.1 (6.4–7.8) ***

Proposed 84.8% (80.4–89.2) 64.0% (58.4–69.6) 0.73 (0.68–0.78) 68.9% (63.6–74.2) 5.2 (4.6–5.8) ***

WMH, white matter hyperintensity; CMBs, cerebral microbleeds; EPVSs, enlarged perivascular spaces; Pre, precision; Sp, specificity; Sen, sensitivity; HD95, Hausdorff distance; *p < 0.05; **p < 0.01; ***p < 0.001.
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2.4, 4.2, 3.5, and 4.1, respectively. More importantly, the Dice 
coefficients of the four markers in the internal data were 0.85, 0.74, 
0.76, and 0.75, respectively. We  have also tested the per-lesion 
sensitivity, with the results were 69.8%, 72.5%, and 70.2% for CMBs, 
lacune, and EPVSs, respectively. Compared with the other methods, 
especially for the most challenging segmentations of EPVSs, the 
proposed method showed more than a 10% improvement in the Dice 
coefficients. Overall, the proposed method had higher accuracy in all 
of the evaluation metrics.

Additionally, the robustness of each method was tested via external 
datasets. Owing to the data bias from different equipment, most of the 
results on the external dataset were degraded to some extent. 

Nevertheless, the proposed method also had the lowest decrease when 
compared with the other methods. Specifically, the Dice values of 
UNET, Res-NET, DeepLabV3, and the proposed method decreased by 
0.12, 0.085, 0.093, and 0.045 between the internal and external data. 
The smaller degradation reflected a stronger generalization ability of 
the proposed method, especially on the lacune and EPVS, which were 
more difficult to discriminate in clinical practice in some instances.

Representative visual examples of the four CSVD markers and the 
corresponding Dice values for both the internal and the external 
datasets are shown in Figures 3, 4. Although some controversies remain 
regarding some fuzzy lesions, good consistency can be  achieved 
between the ground truth and automated segmentation for most lesions.

FIGURE 3

The representative ground truth (in green) and automated segmentation (in red) images of CSVD imaging markers in the internal data set. The 
differences between manual labeling and DL-based segmentation are highlighted in yellow. (A) WMH segmentation results from a 50-year-old female 
with CSVD. The dice value is 0.87. (B) CMBs segmentation results from a 62-year-old male with a dice value of 0.80. (C) Lacune segmentation results 
from a 56-year-old male with a dice value of 0.89. (D) EPVSs segmentation results from a 75-year-old male with a dice value of 0.72. CSVD, cerebral 
small vessel disease; WMH, white matter hyperintensity; CMBs, cerebral microbleeds; EPVSs, enlarged perivascular spaces; DL, deep learning.

https://doi.org/10.3389/fneur.2025.1540923
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Zhao et al. 10.3389/fneur.2025.1540923

Frontiers in Neurology 10 frontiersin.org

3.4 Agreement in calculated values 
between DL and manual approaches

The volume of each CSVD marker can be obtained by multiplying 
the mask of each of the four markers and the 3D voxel spacing of the 
different MRI sequences. Then, the correlation between the results 
obtained via clinical annotation and DL can be analyzed. The results 
of the Pearson correlation analyses are shown in Figures 5a–d and the 
detailed correlation coefficients are listed in Table 4. With all Pearson 
correlation coefficients greater than 0.90, the results reflected a 
positive correlation and a high degree of reproducibility. Specifically, 

the overall Pearson correlations of WMH, CMBs, lacune, and EPVSs 
were 0.968, 0.978, 0.948, and 0.947, respectively. The Bland–Altman 
plot in Figures 5e–h also shows good accordance as well.

3.5 Differences in volumes among the 
respective visual scores of different 
neuroimaging markers

As shown in Figure 6, there were substantial differences in the 
WMH volumes according to DL segmentations among different visual 

FIGURE 4

The representative ground truth (in green) and automated segmentation (in red) images of CSVD imaging markers in the external data set. The 
differences between manual labeling and DL-based segmentation are highlighted in yellow. (A) WMH segmentation results from a 74-year-old male 
with a dice value of 0.81. (B) CMBs segmentation results from a 65-year-old male with a dice value of 0.72. (C) Lacune segmentation results from a 
76-year-old male with a dice value of 0.80. (D) EPVSs segmentation results from a 66-year-old female with a dice value of 0.68. CSVD, cerebral small 
vessel disease; WMH, white matter hyperintensity; CMBs, cerebral microbleeds; EPVSs, enlarged perivascular spaces; DL, deep learning.
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scores of WMH (p < 0.001), and WMH volumes were significantly 
different between all pairs of scores. In addition, the quantitative 
volumes of lacunes and CMBs increased accordingly as the qualitative 
visual score increased from low to high (p < 0.001). As for EPVSs, 
there was an increasing trend in the EPVSs volume as the visual score 
increased (p < 0.001); however, significance only existed in the 
comparisons between scores of 4 and other scores. ANOVA revealed 
significant differences in Z scores among patients with different total 
burden scores (p < 0.001). Additionally, post-hoc analysis revealed 
significant differences in almost all pairs of scores, as shown in 
Supplementary Table S1.

4 Discussion

In this work, a DL model was built for accurate segmentation of four 
neuroimaging markers of CSVD that could help clinicians obtain a 
precise diagnosis of the disease. To the best of our knowledge, this is the 
first DL architecture designed for the simultaneous segmentation of four 

markers of CSVD in multisequence MRI. Over the 105 subjects in the 
internal datasets, the Dice values of WMH, CMBs, lacune, and EPVSs 
achieved 0.85, 0.74, 0.76, and 0.75. The proposed model also obtained 
high accuracy and consistency compared with the gold standard lesion 
volume obtained by clinicians. Furthermore, the quantitative Z scores 
generated by the model reflects the CSVD global burden that correlated 
well with the widely recognized total burden score.

In current clinical practice, the diagnosis of CSVD relies primarily 
on neuroimaging features. To date, quantitative and accurate diagnosis 
remains challenging (3). Various visual rating scores have been 
developed to simply stratify the severity of CSVD and have assisted in 
the statistical analysis of data (6, 33). Nonetheless, these scores have 
not achieved full generalizability, and significant heterogeneity may 
exist in total CSVD scores determined by different doctors for the 
same patient. Moreover, visual composite scores are less sensitive in 
accurately detecting global brain changes. Owing to the rapid 
progression of DL technology, efficient and accurate segmentation has 
been accomplished in numerous medical imaging scenarios. For the 
segmentation of CSVD, most previous works focused on WMH (15–
20, 34). In addition, other works have focused on CMBs (21, 35) and 
lacunes (22). However, CSVD is composed of multiple lesions and 
requires different MRI sequences for diagnosis. Further, the lesions 
associated with CSVD are more insidious, numerous, and varying 
than those associated with other diseases. Thus, the results of 
commonly used models or large-scale medical segmentation models 
(36, 37) are unsatisfactory. A recent study investigated the link 
between cognitive outcomes and automated MRI segmentation 
features of multiple types of CSVD-related brain changes (14); 
nevertheless, CMBs were not included in the analyses, despite being 
typical CSVD neuroimaging features (38).

In this work, we developed a deep learning model for simultaneous 
segmentation of four CSVD neuroimaging markers across 

FIGURE 5

The Pearson correlation (A–D) and Bland–Altman analysis (E–H) of WMH, CMBs, lacune, and EPVSs between the volumes quantified using the DL 
model and the corresponding volumes of the ground truth. Green dots represent the results of the internal dataset and red dots represent the results 
of the external dataset. WMH, white matter hyperintensity; CMBs, cerebral microbleeds; EPVSs, enlarged perivascular spaces.

TABLE 4 Correlation performance between the DL model and manual 
approach.

CSVD 
markers

Pearson correlation coefficients

Internal External Overall

WMH 0.981*** 0.945*** 0.968***

CMBs 0.984*** 0.917*** 0.978***

Lacune 0.953*** 0.906*** 0.948***

EPVSs 0.952*** 0.945*** 0.947***

WMH, white matter hyperintensity; CMBs, cerebral microbleeds; EPVSs, enlarged 
perivascular spaces. **p < 0.001.
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multi-sequence MRI, advancing beyond prior single-marker 
approaches. Owing to the specificity of medical imaging, direct 
migration pretrained parameters such as ImageNet (39) are 
unsatisfactory. Furthermore, the relative scarcity of medical imaging 
data leads to overfitting when each CSVD marker is trained. 
We  adopted two approaches to solve the above problem. First, 
we pre-trained the raw data of the four CSVD markers by an auto-
encoder network and migrated the parameters of the encoder part to 
the segmentation network. Pretraining the model using contrastive 

learning on unannotated multi-sequence MRI data enabled robust 
feature extraction by learning anatomical consistency across 
modalities and vascular pattern representations. This approach 
mitigated data scarcity constraints, enhanced cross-sequence 
alignment, and improved small lesion detection sensitivity. Second, 
owing to the structural similarity and specificity of brain images from 
different sequences, we designed a network with a shared encoder 
block and four separate decoder blocks. Unlike conventional multi-
model pipelines, our design employs a shared encoder with 

FIGURE 6

Box plots of differences in volumes among respective visual scores of WMH, CMBs, lacune, EPVSs, and total burden. (A) WMH; (B) CMBs; (C) lacune; 
(D) EPVSs; (E) total CSVD burden. Multiple comparison correction was performed using the Least Significant Difference (LSD). *p < 0.05; **p < 0.01; 
***p < 0.001.
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cross-sequence attention mechanisms that explicitly model anatomical 
coherence. For example, the MRI characteristic of the perivascular 
space in T1 is aligned with that of lacune, which has a central 
hypointensity with a surrounding rim of hyperintensity in 
FLAIR. Meanwhile, each lesion corresponding to its respective 
decoder had the ability to capture different lesion features, such as 
CMBs with specific hypointensity in SWI but with iso-intense signal 
in other sequences. In this study, we also conducted experiments with 
five-fold cross-validation and tested the generalizability of the model 
on a dataset of different equipment. The obtained results strongly 
support the validity and generalizability of the designed model, as it 
outperforms the comparison methods on both datasets.

The model in our study is one of the few comprehensive quantitative 
evaluations of the total CSVD imaging burden. Our results suggested that 
automated segmentation based on the current DL model could achieve 
good concordance with manual delineation. The quantitative volumes of 
CSVD markers and Z scores correlated well with the corresponding visual 
scores, except for EPVSs. We  propose that this DL algorithm has 
advantages in enabling a more rapid, accurate, and homogeneous 
diagnosis of CSVD burden and facilitating promising improvement in the 
diagnosis of CSVD from the existing qualitative evaluation to a more 
refined quantitative diagnosis. However, the association with clinical 
performance still needs further study. Notably, the differences in the 
segmented EPVS volumes among the groups with different visual scores 
were not as significant as those among the other groups. The potential 
reasons may be as follows: First, the sensitivity of EPVS segmentation 
based on the 3D-T1 sequence is relatively lower than that of the qualitative 
score based on the T2 sequence (40). Second, neurologists and radiologists 
can identify vague EPVSs on 3D-T1 images, which the DL model may 
inevitably neglect. Moreover, the evaluation of EPVSs severity in the 
existing total burden score is commonly based on the number of EPVSs 
in the basal ganglia (6), whereas our delineation of EPVSs focused mainly 
on the whole brain. Further studies are needed to assess the correlation 
between the EPVS volume in different regions predicted by DL and the 
development of CSVD.

While our model demonstrates promising performance, several 
limitations merit careful consideration. First, the single ethnic cohort 
and hospital-based data may limit generalizability to populations with 
diverse demographics or other 1.5 T/7 T imaging configurations and 
introduce bias toward severe phenotypes, thereby compromising the 
early disease detection performance of the method. Then, while 
transfer learning was partially addressed via pretraining, domain 
adaptation techniques like adversarial feature alignment were not 
explored to mitigate scanner-specific intensity variations, which 
contributed to external validation performance. Moreover, owing to 
the low incidence of recent subcortical infarcts and cortical 
microinfarcts in the two datasets, we could not include these two 
markers in our analyses. Finally, the current quantitative results focus 
only on the volume of the CSVD markers. More in-depth details, such 
as the number, location, and size of lesions, as well as a more 
comprehensive method that includes cerebral atrophy need to 
be considered to achieve a more precise diagnosis.

5 Conclusion

In conclusion, a DL model for the segmentation of four CSVD 
neuroimaging markers was developed, which has high spatial 

accuracy and volumetric consistency with manual annotation. This 
quantitative evaluation tool enables the clinical judgment of CSVD 
from qualitative analysis to quantitative diagnosis. Future research 
will focus on the clinical impact of morphology and location of 
different lesions, leading to a more refined and personalized diagnosis 
of CSVD.
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