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Epilepsy is a prevalent neurological disorder that affects more than 50 million 
individuals worldwide, characterized by seizures, and is often associated with 
complications such as cognitive impairments, and an increased risk of sudden 
unexpected death in epilepsy (SUDEP). Despite advancements in pharmacological 
treatments, one-third of patients develop drug resistance and some experience serious 
side effects related to drug therapy. This highlights the urgent need for alternative 
therapeutic approaches. Non-invasive brain stimulation (NIBS) techniques, such 
as transcranial magnetic stimulation (TMS), transcranial direct current stimulation 
(tDCS), and transcranial ultrasound stimulation (TUS), have emerged as promising 
alternatives. These methods modulate brain activity with fewer side effects and show 
potential for treating drug-resistant epilepsy. However, their clinical application 
is still limited by factors such as variability in stimulation protocols and patient 
responsiveness. This review explores the efficacy, underlying mechanisms, and 
side effects of pharmacological treatments, with a focus on commonly prescribed 
drugs for epilepsy, as well as selected NIBS techniques, emphasizing their roles in 
managing epilepsy. By comparing these approaches, we aim to provide insights 
into optimizing epilepsy treatment strategies and improving patient outcomes. 
This review suggests that NIBS alone or in combination with pharmacological 
therapy is a promising method for patients with epilepsy and future research 
should focus on the effective protocols and related mechanisms.
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1 Introduction

Epilepsy is a neurological disorders affecting more than 50 million individuals worldwide 
(1). Its estimated cost in 2019 was around $119 billion in terms of the global economic and 
healthcare burden (2). It is characterized by seizures and associated neurological dysfunctions 
that may lead to cognitive deficits, psychological and social challenges, and physical disorders, 
all of which can impact patients’ quality of life. An estimation showed that around 50% of people 
with epilepsy experience these comorbidities (3). Furthermore, in some epilepsy cases, a life-
threatening condition known as sudden unexpected death in epilepsy (SUDEP) can occur (4).

A range of medications is used to treat epilepsy. These drugs are designed to reduce the 
onset of seizures and may directly or indirectly impact associated comorbidities resulting from 
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epilepsy. These medications include sodium channel blockers, 
GABAergic drugs, calcium channel modulators, AMPA receptor 
antagonists, neurotransmitter modulators, cannabinoids, other 
medications related to specific disease and valproate sodium. Despite 
their effectiveness, these drugs often come with various side effects 
that can affect patients’ quality of life (5). Previous research also 
mentioned lots of various side effects including drowsiness, dizziness, 
excessive fatigue, and gastrointestinal disturbances as well as serious 
conditions like Stevens-Johnson syndrome (6). Many patients may 
also experience cognitive impairments, concentration difficulties, and 
mood changes, which can eventually lead to depression, irritability, 
and anxiety. Drug interactions, dermatological side effects, as well as 
tolerance and dependence, are other concerns (6). Sodium valproate 
is another common medication for epilepsy treatment and it has 
teratogenic effects when taken during pregnancy (7). Additionally, 
approximately one-third of epilepsy patients suffer from drug-resistant 
epilepsy (DRE), meaning they do not respond effectively to 
antiepileptic drugs (8). To overcome this, second- and third-
generation anti-epileptic drugs have been introduced in recent 
decades, which are more tolerable and less toxic and expected to have 
better efficacy in controlling seizures, especially in patients with DRE, 
but the evidence is not strong enough yet (9). A recent review 
discusses new advancements in anti-seizure medications, such as 
cenobamate and fenfluramine, which may help DRE cases. While 
these treatments show some effectiveness in reducing seizures and 
mortality risk, more research is needed to understand their long-term 
effects on DRE patients (10). Therefore, alternative treatments that are 
both effective and have fewer side effects for all patients are needed.

Non-invasive brain stimulation (NIBS) has become popular 
among researchers and clinicians due to its therapeutic potential with 
fewer side effects. Several common types of NIBS are discussed here, 
including transcranial magnetic stimulation (TMS), transcranial 
direct current stimulation (tDCS), and transcranial ultrasound 
stimulation (TUS). These methods can produce immediate effects on 
brain function in targeted areas with a single use and long-term effects 
when applied over several sessions. NIBS can be used as an alternative 
or with pharmacological therapy and might provide a more effective 
treatment for epilepsy patients specifically in DRE cases, with fewer 
side effects.

The objective of this review is to explore both approaches, 
including commonly used pharmacological treatments and NIBS, and 
to highlight their efficacy, underlying mechanisms, side effects, and 
roles in the management of epilepsy.

2 Pharmacological treatments in 
epilepsy

2.1 Sodium channel blockers

Phenytoin, lamotrigine, lacosamide, eslicarbazepine acetate 
(prodrug for S-licarbazepine), fosphenytoin (prodrug for phenytoin), 
oxcarbazepine (prodrug for licarbazepine), rufinamide, topiramate, 
zonisamide, cenobamate and carbamazepine (11) are sodium channel 
blockers. These medications block voltage-gated sodium channels and 
act as antiepileptic agents (12). Serious adverse effects may occur 
when patients receive these medications, including ataxia, fatigue, 
diplopia, drowsiness, dizziness, nausea, and vomiting. Other 

important and rare complications, include cardiac arrhythmias, 
hepatotoxicity, lupus-like syndrome, blood dyscrasias, and other 
complications are possible with these medications (13).

2.2 GABA modulators drugs

GABA (gamma-aminobutyric acid) is one of the major inhibitory 
neurotransmitters and mediates its effects via two GABAA and GABAB 
receptors (14). GABAergic drugs are used to enhance inhibitory 
signaling in the brain, reducing neuronal hyperexcitability that leads to 
seizures (15). Examples of such drugs include first-generation ones like 
phenobarbital and primidone; second-generation like benzodiazepines; 
and newer-generation like topiramate, felbamate, retigabine (which 
also affects voltage-gated K+ channels (11)), Cenobamate and 
stiripentol, which are prescribed based on the type of epilepsy and 
patient characteristics (11, 16). Also, vigabatrin is a GABA-
transaminase inhibitor, which results in reduced GABA metabolism 
and increased its concentration in the brain. Tiagabine is another 
medication that acts as a reuptake inhibitor of GABA in neurons and 
glia (11). However, in some medications, side effects such as sedation, 
cognitive impairment, tolerance, and dependency limit their long-term 
use (11, 16). Sometimes, during excessive activation of the GABAA 
receptor, outflow of bicarbonate leads to neuronal depolarization and 
may cause seizures. Carbonic anhydrase inhibitors such as 
acetazolamide may reduce seizure activity in some epilepsy cases, but 
tolerance is the main side effect. Topiramate, zonisamide, and possibly 
lacosamide are other proposed alternatives that also utilize this 
mechanism (11). GABA disposition may also be utilized by some 
drugs, such as gabapentin and topiramate (11).

2.3 Sodium valproate

Sodium valproate is a widely used anti-epileptic drug. It works by 
stabilizing electrical activity in the brain, preventing seizures. One of the 
mechanisms involves increasing GABA activity. By increasing GABA 
activity, this medication reduces abnormal electrical activity that leads 
to seizures. It also inhibits sodium channels and T-type calcium 
channels. However, serious but rare side effects include liver toxicity, 
pancreatitis, and teratogenic effects (if taken during pregnancy) (17).

2.4 Calcium channel modulators

Drugs like Ethosuximide and Methsuximide are calcium channel 
modulators (T-type) (16). These medications modulate the entry of 
calcium ions (Ca2+) into neurons through voltage-gated calcium 
channels (18). By reducing neuronal excitability, these medications 
prevent abnormal electrical activity that can lead to seizure attacks.

2.5 AMPA (α-amino-3-hydroxy-5-methyl
-4-isoxazolepropionic acid) receptor 
antagonists

AMPA receptors are a subtype of ionotropic glutamate 
receptors responsible for fast excitatory synaptic transmission in 
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the brain (19). In epilepsy, excessive glutamate signaling through 
these receptors can increase neuronal excitability and cause seizures 
(20, 21). A common drug in this family is perampanel: a 
non-competitive AMPA receptor antagonist used to treat partial-
onset and generalized tonic–clonic seizures (20). Riluzole, 
memantine, and ketamine are examples of NMDA receptor 
antagonists that may also be useful in controlling seizures related 
to glutamate signaling (20).

2.6 Neurotransmitter modulators

Changes in neurotransmitter release at synapses may affect the 
brain activity and also may influence seizures attacks. For instance, 
Lamotrigine is a selective glutamate release inhibitor due to its effect 
on sodium and calcium channels. Levetiracetam and brivaracetam 
have more direct effects on neurotransmitters release and their 
primary targets for binding are synaptic vesicle protein 2A (SV2A). 
This protein is found in presynaptic neurons and plays a role in 
synaptic release (11).

2.7 Cannabinoids

Cannabidiol (CBD) is another drug that has gained attention due 
to its anti-epileptic activity in certain types of epilepsy such as Dravet 
and Lennox–Gastaut syndrome. Although the mechanism of action 
of CBD in reducing seizures is not well understood (11), one of the 
possible mechanisms is that CBD is an antagonist of GPR55 receptors, 
resulting in reduced intracellular Ca2+ leading to reduced neural 
excitability. It also blocks T-type Calcium channels (22). Generally, 
CBD is a well-tolerated drug but some common side effects such as 
decreased appetite, diarrhea and increased liver enzymes may occur 
and also some serious but rare side effects such as pneumonia, liver 
failure and status epilepticus may happen depending on the patient’s 
condition (22).

2.8 Other medications related to specific 
diseases

Sometimes epilepsy results from another abnormality. Cortical 
development malformation is one of the common causes of 
epileptic encephalopathies which may be  related to mTOR 
(mechanistic target of rapamycin) pathway. mTOR inhibitors such 
as everolimus and sirolimus have been effective in some 
investigations. Cerliponase alfa also is another drug that may 
be  effective in seizures resulting from Batten disease (neuronal 
ceroid lipofuscinosis) (11).

2.9 Drug resistance in epilepsy (DRE)

In DRE individuals, morbidity and mortality rates increase, and they 
are more likely to develop psychiatric problems, and therefore quality of 
life decreases (23). The proportion of DRE patients has not changed over 
the past decades. One of the alternatives is surgery, which is invasive and 
may cause permanent complications that reduce quality of life. 

Furthermore, pharmacological therapies are not regional and affect 
other brain areas as well, causing many side effects (24). These limitations 
underscore the need for alternative therapeutic strategies and methods.

3 Non-invasive brain stimulation 
(NIBS) techniques

3.1 Transcranial magnetic stimulation (TMS)

TMS is a form of NIBS (Table 1) that stimulates the brain cortex 
with magnetic pulses with different intensities and frequencies (25). 
The mechanism of TMS involves inducing an electrical field in the 
targeted brain area (26). Low-frequency repetitive TMS (LF-rTMS) is 
a common protocol of TMS that has inhibitory effects on the brain, 
while high-frequency rTMS (HF-rTMS) has the opposite effect (27). 
The idea behind TMS in epilepsy treatment is that it can reduce 
cortical hyperexcitability and result in decreased seizure frequency in 
epilepsy patients. A meta-analysis has shown that LF-rTMS may 
be effective in DRE cases (28).

TABLE 1 This table compares three different non-invasive brain 
stimulation (NIBS) approaches for epilepsy management based on their 
basic mechanisms, applications, and cellular mechanisms.

Transcranial 
magnetic 
stimulation 
(TMS)

Transcranial 
direct 
current 
stimulation 
(tDCS)

Transcranial 
ultrasound 
stimulation 
(TUS)

Mechanism Induces an 

electrical field

Affects neurons in 

the brain

High-frequency 

rTMS: excitatory

Low-frequency 

rTMS: inhibitory

Modulates neuronal 

membrane 

potentials

Anodal tDCS: 

excitatory

Cathodal tDCS: 

inhibitory

Focuses ultrasound 

waves on specific 

brain regions

Modulates neural 

activity

Applications May reduce 

cortical 

hyperexcitability 

and decrease 

seizure frequency

Reduces seizure 

frequency in drug-

resistant focal 

epilepsy

Reduces seizure 

frequency

Improves anxiety, 

depression, and 

social behaviors

Enables targeted 

drug delivery via 

BBB opening

Cellular 

mechanism

GABA-A receptor 

modulation

Improved 

immune function

Reduce neural 

excitability

Ion channel 

modulation

Improved 

Synaptic plasticity

etc…

Modulate 

neuroinflammation

Modulate 

neurotrophin levels

Modifies EEG 

patterns

Decreases 

hyperexcitability

Reduces mossy 

fiber sprouting

Reduces BDNF 

overexpression

Inhibits neuronal 

apoptosis (↑ Bcl-2, 

↓ Bax, caspase-3)

Modulates 

neuroinflammation

Opens BBB
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A recent study suggests that targeting both sides of the 
cerebellum with continuous theta burst stimulation (cTBS), 
consisting of three stimulus pulses (50 Hz repeated at 5 Hz, 
totaling 600 stimuli in 40 s), can be beneficial in DRE individuals. 
The cerebellum was stimulated twice at 5-min intervals, daily for 
two working weeks (29). Another study also showed that a 2-week 
treatment with LF-rTMS reduces the number of seizures in patients 
with benign epilepsy (30). Additionally, another study used 
LF-rTMS for 10 days, targeting the central region of the brain (C5 
or C6) in self-limited epilepsy, and found that it can improve the 
excitation-inhibition (E-I) imbalance with favorable outcomes (31).

Several studies have explored the molecular mechanisms of rTMS 
in epilepsy. In a mouse model of status epilepticus, low-frequency rTMS 
at 0.5 Hz (600 pulses, 20% intensity, for 20 min twice daily over 5 days) 
was found to have beneficial effects by regulating GABAA receptor 
activity (a target of GABAergic drugs), improving immune function, 
and modulating biological processes (32). Additionally, low-frequency 
rTMS (300 pulses daily at 40% intensity for 28 days at frequencies of 
0.3 Hz, 0.5 Hz, or 1 Hz depending on the experimental group) 
significantly reduced spontaneous recurrent seizures in rats with medial 
temporal lobe epilepsy, increasing AMPA receptor expression and 
restoring synaptic plasticity in the hippocampus and also improving 
cognitive function (33). In a picrotoxin-induced epilepsy model in 
mice, low-frequency rTMS (10 sessions, varying frequencies (0.5–1 Hz) 
and intensity) significantly reduced seizure number and severity, likely 
by modulating the E-I balance of neurons (34).

In a review, other cellular mechanisms of TMS in epilepsy have 
been proposed, including changes in neural excitability, ion channel 
modulation, alterations in synaptic function, and ephaptic effects 
(alterations in communication between neurons through electric 
fields, rather than synaptic transmission) (35).

It was also reported in a recent review that NIBS such as TMS and 
tDCS are generally safe and promising in pediatric epilepsy but also 
more research is needed to find a suitable protocol and validate its 
long-term efficacy (36).

3.2 Transcranial direct current stimulation 
(tDCS)

The tDCS is another potential therapeutic option for epilepsy 
management. Like TMS, tDCS is a form of NIBS but operates via a 
different mechanism. Typically, two electrodes (cathode and anode) 
are placed on the scalp, with cathodal stimulation (c-tDCS) showing 
inhibitory effects and anodal stimulation (a-tDCS) having excitatory 
effects (37). A meta-analysis has shown that c-tDCS appears 
particularly promising for drug-resistant focal epilepsy (38). Another 
recent review of RCTs also showed that tDCS is safe for DRE 
individuals and can reduce seizure frequency (39). Another meta-
analysis reported effectiveness in reducing seizure frequency but not 
in decreasing epileptiform discharges (40).

A study on drug-resistant focal epilepsy patients using tDCS 
(2 mA cathodal stimulation on the seizure target zone for 30 min over 
2 weeks [10 days]) reported a positive effect on seizure frequency (41). 
Another study on medication-refractory focal epilepsy patients 
showed that c-tDCS treatment for 2 weeks, on brain areas based on 
the patient’s seizure focus, reduced seizure frequency with worsening 
in one case (42).

In a pentylenetetrazole (PTZ)-induced kindling model of epilepsy 
in rats, c-tDCS, either alone or in combination with diazepam, 
modulated neurotrophin and neuroinflammatory responses. 
Specifically, it decreased interleukin-1 beta (IL-1β) levels in the 
hippocampus while increasing IL-1β levels in the cortex, without 
significant effect on seizure activity. tDCS was applied daily for 20 min 
over 10 days using a 0.5 mA current (current density: 33.4 A/m2), with 
the cathodal electrode placed over the parietal cortex and the anodal 
electrode over the supraorbital area (43). In a kainic acid-induced 
status epilepticus rat model, c-tDCS (1 mA/3.14 mm2, 30 min/day for 
5 days over the dorsal hippocampus) was applied and the severity of 
seizures significantly reduced, altering EEG patterns, suggesting 
reduced brain hyperexcitability. Follow-up showed tDCS reduced 
adverse outcomes such as mossy fiber sprouting and BDNF 
overexpression, highlighting its therapeutic potential for epilepsy (44).

3.3 Transcranial ultrasound stimulation (TUS)

TUS involves focusing ultrasound waves on specific brain areas to 
alter neural activity. In one study, ultrasound neuromodulation (1 kHz 
PRF, 50% duty cycle, 1 s burst duration, 4 s inter-stimulus interval, 
30 min/day for 7 days targeting the left cortex and hippocampus) 
significantly prolonged seizure latency and improved anxiety-like 
behaviors in kainic acid (KA)-induced epileptic mice. The treatment 
also inhibited neuronal apoptosis by upregulating anti-apoptotic 
protein Bcl-2 and downregulating pro-apoptotic proteins Bax and 
caspase-3, as well as reducing inflammation markers such as IL-1β, 
TNF-α, and astrocyte and microglial markers (45). Another study 
found that ultrasound stimulation reduced seizure activity and 
improved social and depressive related behaviors in a mouse model of 
mesial temporal lobe epilepsy induced by kainic acid (46).

In a different approach, ultrasound was used in combination with 
drugs to induce non-invasive brain lesions for epilepsy treatment. In 
a pilocarpine-induced epilepsy model, researchers used magnetic 
resonance-guided low-intensity focused ultrasound to open the 
blood–brain barrier in the hippocampus, allowing a neurotoxin 
(quinolinic acid) to enter and cause targeted neuronal damage. The 
method significantly reduced seizure activity (47). Another study 
developed closed-loop wearable ultrasound deep brain stimulation 
(UDBS) system to suppress seizures by targeting the hippocampus. 
This system showed promise in detecting and controlling seizures in 
a mouse model of epilepsy (48). Lastly, both low-intensity pulsed 
ultrasound (LIPUS) and low-intensity continuous ultrasound 
(LICUS) have been shown to effectively suppress seizure attacks in a 
kainite-induced temporal lobe epilepsy (TLE) model by reducing 
neural oscillations in the hippocampus (49).

A pilot study on transcranial focused ultrasound stimulation for 
temporal lobe epilepsy suggests it is largely safe, with no significant 
histopathologic damage observed in participants. However, a notable 
decline in verbal memory post-treatment raises concerns about 
potential cognitive effects (50). Another study provides initial 
evidence on the safety and feasibility of anterior nucleus of the 
thalamus (ANT) focused ultrasound ablation (FUSA). While seizure 
reduction was observed, in one patient verbal fluency and memory 
impairments emerged as a potential concerns (51). In another pilot 
study, six patients with mesial temporal lobe epilepsy (mTLE) 
received six TUS sessions (two per week) targeting the hippocampus. 
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Patients experienced seizure reduction, with effects lasting from 
weeks to several months. No adverse effects were reported (52).

4 Other methods

4.1 Acupuncture

Acupuncture is a minimally invasive and relatively safe technique 
in traditional Chinese medicine. Traditionally, in this method, needles 
are inserted in certain points of the body that can lead to 
neuromodulation with stimulation of peripheral-central circuit (53). 
Previous studies have shown the anti-epileptic mechanism behind this 
method is mainly related to anti-inflammatory effect, anti-apoptosis 
effect and neuroendocrine and neurotransmitter regulation (54).

The combination of acupuncture with pharmacological treatments 
may have some beneficial effects in patients suffering from epilepsy 
(55). It also reported in a review that both manual and 
electroacupuncture showed this method effective in epilepsy in research 
and mentioned the effectiveness are also similar to other 

neuromodulation techniques used in DRE (53). It was also reported 
patients with temporal lobe epilepsy who underwent acupuncture 
treatment for 10 weeks, reduced the number of seizures and improved 
quality of life (56).

5 Discussion and conclusion

The role of pharmacological treatments in managing epilepsy is 
important and could significantly improve patients’ quality of life. 
However, DRE remains a major challenge, with many patients not 
responding to pharmacological therapies. NIBS techniques offer a 
promising and safe alternative, either as independent treatments or in 
combination with anti-epileptic drugs (Table 2). Traditional medicine 
like acupuncture also sounds promising as another neuromodulation 
method (53). However, despite all the advantages, some limitations also 
exist. For example, TMS mostly affects the cortex, and it is difficult to 
reach deeper brain regions. Even in the targeted area, it cannot 
discriminate which type of neuron (excitatory or inhibitory) is being 
stimulated (57). Also, the high cost of TMS, lack of standardization and 
variability in patient response to this treatment remain limitations (36). 
More research is needed to fully understand the mechanisms, establish 
long-term efficacy, and develop personalized and standardized protocols 
or explore new techniques such as Transcranial Burst Electrical 
Stimulation (tBES) (58) for effective use of NIBS in patients with epilepsy.
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TABLE 2 Comparison of drug treatment and non-invasive brain 
stimulation (NIBS) across different aspects of epilepsy management.

Pharmacological 
treatments

Non-invasive 
brain 
stimulation 
(NIBS)

Mechanism of the 

treatment

Alters neurotransmitter 

activity, ion channels, and 

receptors to reduce seizure 

activity

Modulates cortical 

excitability and brain 

networks to suppress 

hyperactivity

Examples Sodium channel blockers, 

GABAergic drugs, AMPA 

receptor antagonists, calcium 

channel modulators, 

neurotransmitters modulators, 

cannabinoids, other 

medications related to specific 

disease

TMS, tDCS, TUS

Effectiveness Effective for most patients but 

limited in drug-resistant 

epilepsy

Promising results, 

particularly for drug-

resistant cases

Side effects Drowsiness, dizziness, 

cognitive impairment, 

metabolic issues, teratogenicity, 

dependence

Mild headaches, scalp 

discomfort, rare cases 

of seizure induction

Long-term impact Chronic use required; some 

patients develop tolerance and 

dependence

Potential for long-term 

neuroplastic changes 

with sustained effects

Suitability for DRE Limited; one-third of patients 

remain resistant

More effective in drug-

resistant epilepsy

Impact on 

comorbidities

Can address psychological 

issues but may also exacerbate 

them

May improve cognition 

and mood disorders

Invasiveness Systemic effects throughout the 

body

Non-invasive, localized 

to targeted brain 

regions
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