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Objectives: Cerebral small vessel disease (CSVD) is a heterogeneous 
cerebrovascular syndrome with a variety of pathological mechanisms and 
clinical manifestations. A majority of research have shown that CSVD is 
associated with reduced expression of structural covariance networks (SCNs), 
but most of these SCN studies based on the group-level, which limits their ability 
to reflect individual variations in heterogeneous diseases. The purpose of this 
study is to analyze the structural covariance aberrations in patients with cerebral 
small vessels by utilizing individualized differential structural covariance network 
(IDSCN) analysis to explore the differences in SCNs and depressive states at the 
individual-level.

Methods: A total of 22 CSVD patients with depression (CSVD+D) and 34 healthy 
controls (HCs) were included in this study. IDSCNs were constructed for each 
subject based on regional gray matter volumes derived from their T1-weighted 
MRI images. The unpaired-sample t-test was used to compare the IDSCNs 
between the two groups to obtain the differential structural covariance edge 
and its distribution. Finally, correlation analyses were performed between the 
differential edge, the total CSVD imaging burden and Hamilton Rating Scale for 
Depression (HAMD) score.

Results: (1) Compared with HCs, the CSVD+D patients exhibited heterogeneous 
distributions of differential structural covariance edge, with the differential 
edge located between the caudate nucleus and the cerebellum. (2) There was 
a significant positive correlation between the total CSVD imaging burden and 
HAMD scores in CSVD patients with depression (r = 0.692, p < 0.001).

Conclusion: This study analyzed the IDSCNs between CSVD+D patients and 
HCs, which may indicate that the individual structural covariance aberrations 
between the caudate nucleus and cerebellum may contribute to depression 
in CSVD patients. Additionally, the higher total CSVD imaging burden of CSVD 
patients may indicate more severe depression. This finding suggests that early 
magnetic resonance imaging (MRI) assessment in CSVD patients may facilitate 
the early identification of depressive states and their severity in the near future.

KEYWORDS

individualized differential structural covariance network, cerebral small vessel disease, 
depression, structural covariance network (SCN), heterogeneity

OPEN ACCESS

EDITED BY

Hongwei Wen,  
North Sichuan Medical College, China

REVIEWED BY

Zhiliang Long,  
Southwest University, China
Haotian Xin,  
Capital Medical University, China

*CORRESPONDENCE

Hua Zhou  
 zhhua1978@sohu.com 

Zhong Zhao  
 zhaozhong1963@sina.com

RECEIVED 19 December 2024
ACCEPTED 17 March 2025
PUBLISHED 08 April 2025

CITATION

Zhang S, Chen Y, Zhou H and Zhao Z (2025) 
Using individualized structural covariance 
networks to analyze the heterogeneity of 
cerebral small vessel disease with depressive 
states.
Front. Neurol. 16:1541709.
doi: 10.3389/fneur.2025.1541709

COPYRIGHT

© 2025 Zhang, Chen, Zhou and Zhao. This is 
an open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 08 April 2025
DOI 10.3389/fneur.2025.1541709

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2025.1541709&domain=pdf&date_stamp=2025-04-08
https://www.frontiersin.org/articles/10.3389/fneur.2025.1541709/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1541709/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1541709/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1541709/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1541709/full
mailto:zhhua1978@sohu.com
mailto:zhaozhong1963@sina.com
https://doi.org/10.3389/fneur.2025.1541709
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2025.1541709


Zhang et al. 10.3389/fneur.2025.1541709

Frontiers in Neurology 02 frontiersin.org

1 Introduction

Cerebral small vessel disease (CSVD) is a highly 
heterogeneous cerebrovascular syndrome, which is a cluster of 
vascular diseases with distinct pathological backgrounds (1), 
including small arteries and their distal branches, microarterioles, 
capillaries, and small veins. The clinical manifestations of CSVD 
are complex and diverse, encompassing ischemic or hemorrhagic 
strokes, cognitive dysfunction, affective disorders, and gait 
abnormalities. Affective disorders are primarily characterized by 
depression, apathy, emotional instability, anxiety, and irritability, 
with depression being the most prominent feature (2). However, 
the clinical diagnosis and treatment of CSVD often lack 
specificity, and most of the current diagnosis relies on imaging 
examinations. With the advancement of multimodal 
neuroimaging, several well-recognized imaging markers of CSVD 
on MRI have been identified, including white matter 
hyperintensities (WMHs), cerebral microbleeds (CMBs), lacunes, 
enlarged perivascular spaces (EPVS), and brain atrophy. The 
correlation between these neuroimaging features and depressive 
symptoms has also been demonstrated. For example, some 
studies have shown that white matter microstructural damage 
and cerebral microbleeds are associated with depressive 
symptoms in elderly patients (3, 4).

Structural Covariance Network (SCN) is a network that 
reflects the synergistic changes between the morphological 
characteristics of different brain regions. It is based on the 
morphological characteristics of different brain regions extracted 
from magnetic resonance imaging (MRI) and reflects the 
coordinated development and synchronized maturation between 
brain regions (5). Compared with the effective connectivity 
network or functional connectivity network, SCNs reflect long-
term changes and stability in brain structure, providing more 
stable and reliable measurements of brain network properties over 
extended periods. This not only enhances our understanding of 
the dynamic processes of brain structural changes but also offers 
unique insights into disease progression and the chronic effects 
on brain structure. However, most traditional studies of structural 
covariance networks are population-based, limiting their ability 
to identify individual differences in heterogeneous diseases 
like CSVD.

In 2021, Liu et al. (6) proposed a new method of network 
template perturbation to construct the individualized structural 
covariance network based only on T1-weighted images. This 
approach allows for the exploration of structural morphological 
aberrations between brain regions at the individual level and can 
potentially identify subtypes with unique neuroanatomical 
patterns in heterogeneous disorders, thereby better elucidating 
individual-level heterogeneity.

In our study, we first obtained the IDSCN of each subject using 
individualized difference structured covariance network (IDSCN) 
analysis and identified differential edges by comparing healthy controls 
with the CSVD+D group. Subsequently, we correlated the differential 
edges and the total CSVD imaging burden with HAMD scores.

This study aims to assess the presence and severity of depressive 
states in CSVD patients through early individual-level MRI 
assessment, thereby providing patients with timely psychological 
counseling and pharmacological interventions.

2 Materials and methods

2.1 General information

2.1.1 Research target
A total of 56 subjects attending the Department of Neurology at 

the Affiliated Suzhou Hospital, Nanjing Medical University were 
enrolled in this study, including 22 CSVD patients with depressive 
symptoms (CSVD+D) and 34 healthy controls (HCs). All subjects 
were Han Chinese and right-handed. The study was approved by the 
Ethics Committee of the Affiliated Suzhou Hospital, Nanjing Medical 
University (K2017034). Written informed consent was obtained from 
all subjects prior to enrollment.

2.1.2 Inclusion and exclusion criteria

2.1.2.1 Inclusion criteria
The inclusion criteria for HC were as follows: (1) individuals aging 

50–80 years; (2) education ≥6 years; (3) the ability to cooperate with 
neuropsychological scale assessment and meet the following scores: 
HAMD ≤7, HAMA <7, MMSE ≥27, and MoCA ≥25.

The inclusion criteria for CSVD+D were as follows: (1) individuals 
aging 50–80 years; (2) education ≥6 years; (3) presence of typical 
CSVD imaging features (e.g., white matter hyperintensities, lacunae, 
microhemorrhages, or enlarged perivascular spaces, etc.); (4) the 
ability to cooperate with neuropsychological scale assessment and 
meet the following score: HAMD >7.

2.1.2.2 Exclusion criteria
Exclusion criteria for all subjects were as follows: (1) presence of 

subcortical nonlacunar infarcts or cortical infarcts >1.5 cm on MRI; 
(2) intracranial and extracranial vascular stenosis ≥50%; (3) 
cardiogenic embolism; (4) traumatic, space-occupying, or 
inflammatory disorders of the central nervous system (CNS); (5) 
hepatic encephalopathy, renal encephalopathy, or hypoxic–ischemic 
encephalopathies; (6) severe anxiety, depressive disorders, or other 
severe mental disorders; (7) cognitive impairment due to other 
diseases (e.g., Alzheimer’s disease); (8) MRI contraindications.

2.1.3 Diagnostic criteria and scale assessment
The diagnostic criteria for Cerebral Small Vessel Disease 

(CSVD) are primarily based on radiological features and clinical 
manifestations (7). Radiological features include white matter 
hyperintensities, lacunes, cerebral microbleeds, and enlarged 
perivascular spaces. Typical clinical manifestations include 
cognitive decline, gait disturbances, emotional disorders, and 
urinary or fecal incontinence.

The diagnosis of depressive disorders in this study was mainly 
based on the WHO International Classification of Diseases, Eleventh 
Edition (ICD-11) (8) definition of a depressive episode, with the main 
symptoms including depressed mood, reduced interest and pleasure 
in activities. Associated symptoms may also be  present, such as 
difficulty concentrating, feelings of worthlessness, excessive guilt, 
hopelessness, recurrent thoughts of death or suicide, changes in sleep 
or appetite, psychomotor retardation or agitation, and decreased 
energy or fatigue. These symptoms were present most of the day and 
persisted for at least 2 weeks. In major depressive episodes, the 
majority or nearly all symptoms, including core and associated 
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symptoms, are prominently manifested. Patients experience significant 
functional impairment and are typically unable to function normally 
in important areas such as personal, family, social, and occupational 
domains. A HAMD-17 score of ≥24 is classified as severe 
depression (9).

All subjects were assessed with a series of neuropsychological 
scales including the 17-item Hamilton Rating Scale for Depression 
(HAMD-17) (9), the Mini-Mental State Examination (MMSE) (10), 
the Montreal Cognitive Assessment (MoCA) (11). The severity of 
depression in CSVD patients was assessed based on HAMD scale 
scores, with all patients in the CSVD+D group having HAMD scores 
>7 (9). All patients enrolled in the CSVD+D group did not have 
significant cognitive dysfunction.

2.2 Data acquisition and imaging marker 
evaluation

In this study, all patients underwent 3.0 T MRI scanning (Shanghai 
United Imaging), with the whole-brain sequences including 
T1-weighted 3D imaging, T2-weighted imaging, fluid-attenuated 
inversion recovery (T2-FLAIR) imaging, and susceptibility-weighted 
imaging (SWI). The acquisition parameters for T1-weighted 3D 
imaging were as follows: echo repetition time (TR) = 2,773 ms, echo 
time (TE) = 69 ms, slice thickness = 2.0 mm, slice spacing = 10.0 mm, 
flip angle = 120°, scanning field size = 120 mm x 120 mm, The 
acquisition parameters of susceptibility-weighted imaging were as 
follows: TR = 30.2 ms, TE = 20 ms, flip angle = 15°, slice 
thickness = 2.0 mm, slice spacing = 2.0 mm, scanning field 
size = 224 × 190 mm.

The lesion prediction algorithm (LPA) (11) from Lesion 
Segmentation Toolbox version 3.0.0 (LST)1 in SPM was used for 
segmentation calculation of white matter hyperintensities on 
T2-FLAIR images. Additionally, two trained evaluators counted 
CMBs, EPVS, WMHs, and lacunae according to the diagnostic 
criteria of the Neuroimaging Vascular Alteration Criteria (12) 
based on T1-weighted imaging, T2-weighted imaging, fluid-
attenuated inversion recovery imaging, and susceptibility-
weighted imaging. CMBs are defined as an area of signal cavity 
with a diameter of 2–5 mm (rarely up to 10 mm) and a circular 
or elliptical shape on SWI. EPVS are defined as fluid-filled 
cavities surrounding arteries, arterioles, veins, and venules as 
they course from the subarachnoid space through the brain 
parenchyma. WMHs are characterized as high signal on 
T2-weighted imaging and fluid-attenuated inversion recovery 
imaging sequences. Lacunae are defined as round or ovoid fluid-
filled cavities with cerebrospinal fluid-like signals between 3 and 
15  mm in diameter, which located in the white matter, basal 
ganglia, or thalamus (12). The total MRI burden of CSVD (13) 
was derived by calculating neuroimaging markers including 
lacunae, cerebral microbleeds (CMBs), white matter 
hyperintensities (WMHs), and enlarged perivascular spaces 
(EPVS), with one point for each marker present, yielding a 
maximum score of 4.

1 www.statistical-modeling.de/LST.html

2.3 Experimental procedures

2.3.1 Voxel-based morphometry analysis
Voxel-based morphometry (14) was performed on the 3D-T1-

weighted images of all subjects using the CAT12 toolbox in SPM12.2 
The main components include: (1) Spatial normalization: The MRI 
images of all subjects were aligned to a spatial standard template to 
correct for differences in overall brain morphology and anatomical 
location. (2) Bias field correction: Reduced the brightness differences 
of the same tissue to facilitate subsequent tissue segmentation. (3) 
Segmentation of brain tissue: The 3D-T1 weighted images were 
segmented into gray matter, white matter, and non-cerebral voxels 
(cerebrospinal fluid). (4) Modulation: The deformation field formed 
by spatial normalization was applied to the segmentation result to 
preserve the volume of the original individual tissue volume (voxel 
size = 1.5 × 1.5 × 1.5 mm). (5) Smoothing: Noise generated by the 
above process was removed to avoid false-positive statistical results. 
(A Gaussian kernel with a maximum radius of 6 mm was used for 
smoothing). Finally, the total intracranial volume (TIV) of each 
subject was also calculated to control for covariates in the 
statistical analysis.

The AAL116 template was used to divide the whole brain into 116 
brain regions (90 cerebral and 26 cerebellar regions) for the subsequent 
construction of individualized structural covariance networks.

2.3.2 Constructing individualized differential 
structure covariance networks

(1) Construction of a reference structural covariance network 
(rSCN): n healthy controls in the HC group were used to construct a 
reference structural covariance network, which was achieved by 
calculating the correlation between gray matter volumes of brain 
regions, and each edge in the network was obtained by calculating the 
Pearson’s correlation coefficients (PCC) between gray matter volumes 
of pairs of brain regions. Age, sex, education, and total intracranial 
volume were included as covariates (Figure 1).

(2) Construction of a perturbed structural covariance network 
(pSCN): A random patient K was added to the HC group to form a 
new population of n + 1 individuals, and a new structural covariance 
network was constructed in the same manner. Since the addition of 
patient K perturbed the original population, the newly constructed 
network was termed a perturbed structural covariance network.

(3) Construction of the individualized structural covariance 
network (IDSCN): The difference between the perturbed structural 
covariance network and the reference structural covariance network 
was defined as ΔSCN (ΔSCN = pSCN − rSCN), which represents the 
IDSCN of patient K. ΔSCN = pSCN − rSCN can be interpreted as the 
difference in Pearson correlation coefficients (PCC) between 
corresponding edges of pSCN and rSCN. Further details are provided 
in the study by Liu et al. (15). The IDSCN was constructed for each 
patient sequentially. The same methodology, replacing patient K with 
a randomized subject from a healthy control, was used to obtain an 
individualized structural covariance network for each healthy subject.

(4) Calculation of edge weights in the IDSCN: The edges of 
the IDSCN represent the change in the covariance of the paired 

2 http://dbm.neuro.uni-jena.de/cat12/
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brain regions in the gray matter volume between the perturbed 
group and the reference group after adding patient K. Based on 
the AAL116 template, we obtained 6,670 edges across 116 brain 
regions. According to Liu et  al. (15), the difference between 
pSCN and rSCN (ΔSCN) follows a symmetric “volcano 
distribution” with tails similar to those of a normal distribution. 
The Z-score of ΔSCN can be calculated using the Z-test, and the 
weight of each edge can be expressed as the Z-score calculated by 
the following formula:

 ( ) ( )2
Z

1 rSCN / n 1
SCN∆

=
− −

Positive Z-values indicate that the structural covariance edges are 
stronger in patient K than in the healthy population. Negative Z-values 
indicate that the structural covariance edges are weaker in patient K 
than in the healthy population. The p-values of the network edges 
were obtained from the Z-scores. In this study, we finally obtain the 
differential structural covariance edge for each patient that were 
significantly different from the reference network. (Bonferroni 
correction, p < 0.05).

2.4 Statistical analysis

In this study, two-sample unpaired T-test was used for difference 
analysis of measurement data (including age, MMSE score, MoCA 
score, HAMD score and TIV) in demographic data between the two 
groups. Chi-square test was used for difference analysis of categorical 

data (including gender, hypertension, diabetes and hyperlipidemia) in 
demographic data between the two groups. All the above statistical 
analyses were performed using SPSS, version 26.0.3

Differences in network edges between the two groups were 
compared using a two-sample unpaired T-test in a graph theory-based 
toolbox for brain network analysis, Gretna (NITRC: GRETNA: Tool/
Resource Info). Bonferroni correction was applied (p < 0.05 
considered statistically significant).

Finally, Spearman’s correlation was used to perform correlation 
analysis of differential edges, total MRI burden of Cerebral Small 
Vessel Disease, and HAMD scale scores, respectively. Two Spearman 
correlation analyses were performed. Bonferroni correction was 
applied (p < 0.005 considered statistically significant).

3 Results

3.1 Demographic information

Table 1, display the demographic characteristics, vascular risk 
factors, scale scores, and imaging markers of two groups. As indicated 
in Table 1, there were no significant differences in demographic 
characteristics, vascular risk factors, and cognitive scale scores (MMSE 
and MoCA) between the two groups (p > 0.05). HAMD scale scores 
were significantly higher in CSVD patients with depressive disorders 
than in healthy controls (p < 0.05).

3 http://www.spss.com/

FIGURE 1

Flowchart of individualized differential structural covariance network construction. This figure illustrates the workflow for constructing an IDSCN of 
PA K. Initially, a reference structural covariance network (rSCN) at the group level was established using healthy controls (HCs). On this basis, a 
perturbed structural covariance network (pSCN) was constructed by adding patient K (n HCs and 1 PA K). The IDSCN of patient K was calculated as the 
difference between rSCN and pSCN.
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3.2 Distribution of differential structural 
covariance edges between groups

In this study, the individualized structural covariance networks of 
all subjects in HC and CSVD+D groups were obtained. Subsequently, 
differences in network edges between the two groups were assessed 
using a two-sample unpaired t-test with Bonferroni correction. One 
significantly differential structural covariance edge was finally 
identified (p < 0.05). This differential edge was distributed between the 
caudate nucleus and the cerebellum (Figure 2).

3.3 Correlation analysis of differential edge 
and total MRI burden of CSVD with degree 
of depression

In the subsequent correlation analysis, a significant positive 
correlation was observed between the total MRI burden of CSVD and 
HAMD scale scores (r = 0.692, p < 0.001, Figure  3). However, no 
significant correlation was found between the differential edge and 
HAMD scale scores (P > 0.05).

4 Discussion

In this study, we obtained individualized structural covariance 
networks for each subjects in both group of HC and 
CSVD+D. Compared with healthy controls, CSVD patients with 
depressive states exhibited the aberrations of covariance in network 
edge, with the differential edge distributing between the striatum and 
the cerebellum.

Previous studies have indicated that there were aberrations of 
structural covariance in CSVD patients’ brain network (16, 17). 
However, these studies mostly constructed structural covariance 
networks at the group level, and such aberrations were not 
representative of individual differences. Subsequently, Han et al. (18) 
found that patients with depression had reduced correlated edges in 
the subcortical cerebellar network while exploring their individualized 
structural covariance networks. Similarly, our study found that CSVD 
patients with depressive states had a differential edge distributed 
between the caudate nucleus and the cerebellum, based on individual-
level analysis. The caudate nucleus, located in the ventral striatum, is 
the largest component of the basal ganglia and, together with the 
cerebellum, forms an important part of the subcortical 
cerebellar network.

In terms of network connectivity, the basal ganglia and cerebellum 
play crucial roles in brain network connectivity and have significant 
emotional impacts. Previous studies have found that the basal ganglia, 
cerebellum, and cerebral cortex are interconnected and form an 
integrated network (19). The basal ganglia and cerebellum 
communicated not only with cerebral cortex through discrete trans-
thalamic loops and indirectly via cortical projections, but also directly 
through subcortical pathways. Moreover, altered connectivity between 
nodes in such brain networks can affect emotion. For example, Baek 
et al. (20) found that cerebellar neurons projecting from the dentate 
nucleus to the basal ganglia mediate depressive-like behavior in mice. 
Jackson and Bernard (21) demonstrated that cerebellar and basal 
ganglia motor networks predict motivation and symptom 
of depression.

With respect to the molecular level, previous transcriptome 
researches on the striatum have indicated that dysfunction of 
dopaminergic synapses, GABAergic synapses and neurotransmitter 
synthesis are associated with the pathogenesis of depression (22, 23). 
Studies on rat model of post-stroke depression have also 
demonstrated that (24, 25) the expression of brain-derived 
neurotrophic factor (BDNF) and tyrosine kinase receptor B (TrkB) 
in cerebellum and amygdala is significantly reduced. However, 
previous studies have focused on single brain regions, thereby 
ignoring the systemic metabolic alterations that occur in multiple 
brain regions in depressive behaviors. Xu et  al. (26) found that 
chronic stress may induce depressive behavior by disrupting the 
glutamine-glutamate-GABA (Gln-Glu-GABA) cycle in the striatum, 
hippocampus, and cerebellum based on the metabolomics study of 
multiple brain regions. A common significantly down-regulated 
differential metabolite, L-glutamine, was present between striatum 
and cerebellum. Furthermore, the disturbed shared pathways, 
enriched metabolite sets, and metabolic pathways between the 
striatum and cerebellum all indicate significant alterations in 
glutamate and glutamine metabolism in these two brain regions. It 
is hypothesized that the combined effects of dysregulation in the 
glutamatergic system between the striatum and the cerebellum may 
be critical in the pathogenesis of depression.

Further genetic analyses revealed the presence of differential genes 
associated with depressive-like behavior in the striatum, hippocampus, 
and cerebellum (26). Differential genes in the striatum (GS) were 
significantly correlated with cerebellar differential genes (GS, GDH, 
and ABAT). This suggests that the striatum and the cerebellum may 
be highly cooperative in the physiological mechanisms underlying the 
development of depressive-like behavior.

TABLE 1 Demographic characteristics, scale scores, and imaging markers 
of the study participants.

HC (n = 34) CSVD+D 
(n = 22)

P

Gender, (M/F) 16/18 12/10 0.584b

Age, (mean ± SD) 64.9 ± 6.4 67.9 ± 8.8 0.182a

MMSE score, (mean ± SD) 29.0 ± 1.1 28.6 ± 1.3 0.119a

MoCA score, (mean ± SD) 27.7 ± 1.9 26.8 ± 1.6 0.084a

HAMD score, (mean ± SD) 0.3 ± 0.6 11.3 ± 4.7 <0.001a

WMH, (mean ± SD) – 12.2 ± 13.2 –

LI, (mean ± SD) – 3.8 ± 3.2 –

CMB, (mean ± SD) – 1.6 ± 3.7 –

EPVS, n(%) – 11 (50) –

TIV, (mean ± SD) 1434.6 ± 132.6 1466.4 ± 139.9 0.394a

Hypertension, n(%) 17 (50) 12 (54) 0.740b

Diabetes, n(%) 6 (18) 7 (32) 0.220b

Hyperlipidemia, n(%) 10 (29) 7 (32) 0.848b

ap-values computed implementing the two-sample unpaired t-test.
bp-values computed implementing the χ2-test.
HC, healthy control group; CSVD+D, CSVD (cerebral small vessel disease) patients with 
depressive states; MMSE: Mini-mental Status Examination Scale; MoCA, Montreal Cognitive 
Assessment Scale; HAMD, Hamilton Depression Scale; WMH. white matter hyperintensities; 
LI, lacunae; CMB, cerebral microbleeds; EPVS, enlarged perivascular spaces; TIV, total 
intracranial volume. Outcomes indicate the mean ± SD or number of candidates (%).
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In a subsequent correlation analysis, we  found a significant 
correlation between the total MRI burden of CSVD and HAMD scale 
scores. Patients with CSVD often present with multiple imaging 

markers simultaneously, making the assessment of total MRI burden 
of CSVD more clinically relevant (13). Zhou et al. (27) revealed that the 
total MRI burden of CSVD can predict post-stroke depression more 

FIGURE 3

Scatter plot of correlation between total MRI burden of CSVD and HAMD scale scores.

FIGURE 2

Distribution of differential structural covariance edges between groups. CRBL6.R, Cerebelum_6_R; CAU.L, Caudate_L.
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accurately, which supports our findings. This may be due to the damage 
of white matter fiber tracts in CSVD patients with depressive states, 
which disrupts the connectivity of the brain’s structural network and 
leads to poorer emotional outcomes (28). No significant correlation 
was found between the resulting network differential structural 
covariance edge and HAMD scale scores. This may be attributed to the 
fact that cerebral small vessel disease and depressive states are complex 
and heterogeneous disorders with a wide variety of etiologies and 
manifestations, and it is possible that only the differential edges for a 
specific type or etiology of CSVD are significantly associated with 
depressive states. There is also the influence of confounding factors, 
such as small sample sizes, medication use (e.g., Chinese patent 
medicines for improving cerebrovascular diseases and antidepressants), 
and other comorbidities.

This study has some limitations, the sample size of the 
experimental group was small due to time constraints, and the results 
were not validated with another dataset. Second, this study was cross-
sectional, and a causal relationship between depressive state and 
aberrations in the structural covariance between brain regions could 
not be established.

In summary, previous studies have already examined population-
level structural covariance networks in CSVD patients and individual-
level structural covariance networks in depressed patients. This study 
represents the first individualized structural covariance network 
analysis of CSVD patients with depressive states. The results suggest 
that individual-level structural covariance aberrations between the 
cerebellum and the caudate nucleus may predict a higher propensity 
for depression in CSVD patients.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by the Ethics 
Committee of the Affiliated Suzhou Hospital, Nanjing Medical 
University (K2017034). The studies were conducted in accordance 
with the local legislation and institutional requirements. The 

participants provided their written informed consent to participate in 
this study.

Author contributions

SZ: Data curation, Methodology, Writing  – original draft, 
Writing – review & editing. YC: Writing – original draft. HZ: Funding 
acquisition, Supervision, Writing – review & editing. ZZ: Funding 
acquisition, Supervision, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This study was supported 
by the Suzhou Clinical Key Disease Diagnosis and Treatment 
Technology Special Project (LCZX201812) and Science and 
Technology Program of Suzhou (SKYD2022133).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

References
 1. Litak J, Mazurek M, Kulesza B. Cerebral small vessel disease. Int J Mol Sci. (2020) 

21:9729. doi: 10.3390/ijms21249729

 2. Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical 
implications. Lancet Neurol. (2019) 18:684–96. doi: 10.1016/S1474-4422(19)30079-1

 3. Pasi M, Poggesi A, Salvadori E, Diciotti S, Ciolli L, Del Bene A, et al. White matter 
microstructural damage and depressive symptoms in patients with mild cognitive 
impairment and cerebral small vessel disease: the Vmci-Tuscany study. Int J Geriatr 
Psychiatry. (2016) 31:611–8. doi: 10.1002/gps.4368

 4. Wang R, Liu K, Ye X, Yan S. Association between cerebral microbleeds and 
depression in the general elderly population: a meta-analysis. Front Psych. (2018) 9:994. 
doi: 10.3389/fpsyt.2018.00094

 5. Alexander-Bloch A, Giedd JN, Bullmore E. Imaging structural co-variance between 
human brain regions. Nat Rev Neurosci. (2013) 14:322–36. doi: 10.1038/nrn3465

 6. Liu Z, Palaniyappan L, Wu X, Zhang K, du J, Zhao Q, et al. Resolving heterogeneity 
in schizophrenia through a novel systems approach to brain structure: individualized 

structural covariance network analysis. Mol Psychiatry. (2021) 26:7719–31. doi: 
10.1038/s41380-021-01229-4

 7. Sharrief A. Diagnosis and management of cerebral small vessel disease. Continuum. 
(2023) 29:501–18. doi: 10.1212/CON.0000000000001232

 8. World Health Organization (WHO). ICD-11: international classification of diseases 
(11th revision). (2022).

 9. Zimmerman M, Martinez JH, Young D, Chelminski I, Dalrymple K. Severity 
classification on the Hamilton depression rating scale. J Affect Disord. (2013) 150:384–8. 
doi: 10.1016/j.jad.2013.04.028

 10. Li H, Jia J, Yang Z. Mini-mental state examination in elderly Chinese: a population-
based normative study. J Alzheimers Dis. (2016) 53:487–96. doi: 10.3233/JAD-160119

 11. Islam N, Hashem R, Gad M, Brown A, Levis B, Renoux C, et al. Accuracy of the 
Montreal cognitive assessment tool for detecting mild cognitive impairment: a 
systematic review and meta-analysis. Alzheimers Dement. (2023) 19:3235–43. doi: 
10.1002/alz.13040

https://doi.org/10.3389/fneur.2025.1541709
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://doi.org/10.3390/ijms21249729
https://doi.org/10.1016/S1474-4422(19)30079-1
https://doi.org/10.1002/gps.4368
https://doi.org/10.3389/fpsyt.2018.00094
https://doi.org/10.1038/nrn3465
https://doi.org/10.1038/s41380-021-01229-4
https://doi.org/10.1212/CON.0000000000001232
https://doi.org/10.1016/j.jad.2013.04.028
https://doi.org/10.3233/JAD-160119
https://doi.org/10.1002/alz.13040


Zhang et al. 10.3389/fneur.2025.1541709

Frontiers in Neurology 08 frontiersin.org

 12. Chen X, Wang J, Shan Y, Cai W, Liu S, Hu M, et al. Cerebral small vessel disease: 
neuroimaging markers and clinical implication. J Neurol. (2019) 266:2347–62. doi: 
10.1007/s00415-018-9077-3

 13. Staals J, Makin SDJ, Doubal FN, Dennis MS, Wardlaw JM. Stroke subtype, vascular 
risk factors, and total MRI brain small-vessel disease burden. Neurology. (2014) 
83:1228–34. doi: 10.1212/WNL.0000000000000837

 14. Nemoto K. Understanding voxel-based morphometry. Brain Nerve. (2017) 
69:505–11. doi: 10.11477/mf.1416200776

 15. Liu X, Wang Y, Ji H, Aihara K, Chen L. Personalized characterization of diseases 
using sample-specific networks. Nucleic Acids Res. (2016) 44:e164. doi: 10.1093/nar/ 
gkw772

 16. Yan W, Tang S, Chen L, Lei T, Li H, Jiang Y, et al. The thalamic covariance network 
is associated with cognitive deficits in patients with cerebral small vascular disease. Ann 
Clin Transl Neurol. (2024) 11:1148–59. doi: 10.1002/acn3.52030

 17. Son SJ, Hong CH, Kim NR, Choi JW, Roh HW, Lee H, et al. Structural covariance 
changes in major cortico-basal ganglia and thalamic networks in amyloid-positive 
patients with white matter hyperintensities. Neurobiol Aging. (2022) 117:117–27. doi: 
10.1016/j.neurobiolaging.2022.05.010

 18. Han S, Xue K, Chen Y, Xu Y, Li S, Song X, et al. Identification of shared and distinct 
patterns of brain network abnormality across mental disorders through individualized 
structural covariance network analysis. Psychol Med. (2023) 53:6780–91. doi: 
10.1017/S0033291723000302

 19. Bostan AC, Strick PL. The basal ganglia and the cerebellum: nodes in an integrated 
network. Nat Rev Neurosci. (2018) 19:338–50. doi: 10.1038/s41583-018-0002-7

 20. Baek SJ, Park JS, Kim J, Yamamoto Y, Tanaka-Yamamoto K. Vta-projecting 
cerebellar neurons mediate stress-dependent depression-like behaviors. eLife. (2022) 
11:11. doi: 10.7554/eLife.72981

 21. Jackson TB, Bernard JA. Cerebellar and basal ganglia motor network predicts trait 
depression and hyperactivity. Front Behav Neurosci. (2022) 16:953303. doi: 
10.3389/fnbeh.2022.953303

 22. Murrough JW, Henry S, Hu J, Gallezot JD, Planeta-Wilson B, Neumaier JF, et al. 
Reduced ventral striatal/ventral pallidal serotonin1B receptor binding potential in major 
depressive disorder (2011) 213:547–53. doi: 10.1007/s00213-010-1881-0

 23. Pizzagalli DA, Berretta S, Wooten D, Goer F, Pilobello KT, Kumar P, et al. 
Assessment of striatal dopamine transporter binding in individuals with major 
depressive disorder: in vivo positron emission tomography and postmortem evidence. 
JAMA Psychiatry. (2019) 76:854–61. doi: 10.1001/jamapsychiatry.2019.0801

 24. Li Y, Peng C, Guo X, You JJ, Yadav HP. Expression of brain-derived neurotrophic 
factor and tyrosine kinase B in cerebellum of Poststroke depression rat model. Chin Med 
J. (2015) 128:2926–31. doi: 10.4103/0366-6999.168058

 25. Zhu HX, Cheng LJ, Ou Yang RW, Li YY, Liu J, Dai D, et al. Reduced amygdala 
microglial expression of brain-derived neurotrophic factor and tyrosine kinase receptor 
B (TrkB) in a rat model of Poststroke depression. Med Sci Monit. (2020) 26:26e926323. 
doi: 10.12659/MSM.926323

 26. Xu S, Liu Y, Pu J, Gui S, Zhong X, Tian L, et al. Chronic stress in a rat model of 
depression disturbs the glutamine-glutamate-Gaba cycle in the striatum, 
hippocampus, and cerebellum. Neuropsychiatr Dis Treat. (2020) 16:557–70. doi: 
10.2147/NDT.S245282

 27. Zhou L, Chen L, Ma L, Diao S, Qin Y, Fang Q, et al. A new nomogram including 
total cerebral small vessel disease burden for individualized prediction of early-onset 
depression in patients with acute ischemic stroke. Front Aging Neurosci. (2022) 
14:14922530. doi: 10.3389/fnagi.2022.922530

 28. Gu Y, Zhao P, Feng W, Xia X, Tian X, Yan Y, et al. Structural brain network 
measures in elderly patients with cerebral small vessel disease and depressive symptoms. 
BMC Geriatr. (2022) 22:568. doi: 10.1186/s12877-022-03245-7

https://doi.org/10.3389/fneur.2025.1541709
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://doi.org/10.1007/s00415-018-9077-3
https://doi.org/10.1212/WNL.0000000000000837
https://doi.org/10.11477/mf.1416200776
https://doi.org/10.1093/nar/gkw772
https://doi.org/10.1093/nar/gkw772
https://doi.org/10.1002/acn3.52030
https://doi.org/10.1016/j.neurobiolaging.2022.05.010
https://doi.org/10.1017/S0033291723000302
https://doi.org/10.1038/s41583-018-0002-7
https://doi.org/10.7554/eLife.72981
https://doi.org/10.3389/fnbeh.2022.953303
https://doi.org/10.1007/s00213-010-1881-0
https://doi.org/10.1001/jamapsychiatry.2019.0801
https://doi.org/10.4103/0366-6999.168058
https://doi.org/10.12659/MSM.926323
https://doi.org/10.2147/NDT.S245282
https://doi.org/10.3389/fnagi.2022.922530
https://doi.org/10.1186/s12877-022-03245-7

	Using individualized structural covariance networks to analyze the heterogeneity of cerebral small vessel disease with depressive states
	1 Introduction
	2 Materials and methods
	2.1 General information
	2.1.1 Research target
	2.1.2 Inclusion and exclusion criteria
	2.1.2.1 Inclusion criteria
	2.1.2.2 Exclusion criteria
	2.1.3 Diagnostic criteria and scale assessment
	2.2 Data acquisition and imaging marker evaluation
	2.3 Experimental procedures
	2.3.1 Voxel-based morphometry analysis
	2.3.2 Constructing individualized differential structure covariance networks
	2.4 Statistical analysis

	3 Results
	3.1 Demographic information
	3.2 Distribution of differential structural covariance edges between groups
	3.3 Correlation analysis of differential edge and total MRI burden of CSVD with degree of depression

	4 Discussion

	References

