
Frontiers in Neurology 01 frontiersin.org

Risk factors of neurologic deficit 
after thoracolumbar burst fracture
Yuxi Liu 1, Shilin Zhang 2, Daxiong Feng 3, Jing Luo 4, Hong Zhang 4 
and Likun Wang 4*
1 Department of Orthopaedics, Santai People’s Hospital, Mianyang, China, 2 Department of 
Orthopaedics, The Sixth People’s Hospital of Chengdu, Chengdu, China, 3 Department of 
Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China, 4 Department of 
Rehabilitation, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China

Introduction: Traumatic fractures of the vertebral bodies in the thoracolumbar 
region are the most common type of spinal fractures. Some studies suggest 
that neurological deficits associated with these fractures may be linked to spinal 
canal compromise, kyphosis angle, and other factors. However, this relationship 
remains controversial. The present study aimed to identify the risk factors for 
neurologic deficits following thoracolumbar burst fractures (TBF).

Methods: This study included 322 patients with TBF, comprising 115 patients 
with lamina fractures (LF) and 207 patients without lamina fractures (NLF). 
Neurological deficits were classified according to the American Spinal Injury 
Association (ASIA) classification, with 75 patients exhibiting neurological deficits 
and 247 patients without deficits. Clinical data, ASIA classification, and imaging 
findings were analyzed and compared between the two groups. Risk factors 
were assessed using logistic regression.

Results: Compared with the NLF group, the LF group had higher ASIA 
classification scores (P < 0.05). Multivariate logistic regression identified laminar 
fracture (OR: 0.019, 95% CI: 0.005–0.070, P < 0.000), car accident (OR: 6.082, 
95% CI: 1.248–29.636, P = 0.025), and falling accident (OR: 8.429, 95% CI: 
2.143–33.153, P = 0.002) as independent variables associated with neurologic 
deficit. Additionally, the ROC curve revealed that laminar fractures and falling 
accidents had a high risk association value. A risk association equation, Logit 
(P) = −4.358 + 3.535 × laminar fracture  – 1.353 × falling accidents, was 
established based on the high-value indicators.

Conclusion: Laminar fractures, car accidents, and falls were identified as 
independent risk factors for neurological deficits following TBF. Additionally, 
laminar fractures and falls demonstrated a high risk association value. These 
findings provide valuable insights for optimizing rehabilitation strategies and 
guiding surgical decision-making.
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Introduction

Studies show that traumatic burst fractures of the thoracolumbar spine are the most 
prevalent type of spinal injury (1). These fractures involve the anterior and middle columns of 
the spine, with or without involvement of the posterior column (2). However, they can also 
result in disruption of the vertebral lamina and lead to spinal cord injury.
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Thoracolumbar burst fractures (TBF) usually result from axial 
load mechanisms, which concentrate pressure on the medial 
column of the spine, leading to a widening of the gap between the 
pedicles and potentially causing a vertical laminar fracture. 
Laminar fractures, also known as “greenstick fractures,” typically 
occur in the ventral cortex of the lamina (3). Reports have shown a 
correlation between laminar fractures and dural tears (4). However, 
the role of laminar fractures in neurologic deficits is often 
underestimated, as the course of the injury is dynamic, and the 
lamina plays a crucial role in assessing stability across the 
fracture segment.

There are fewer relevant studies focusing on the risk factors for 
neurological deficits after TBF. In this study, we  analyzed and 
compared patients’ clinical data, neurological deficit classification, and 
imaging findings, and assessed the risk factors using logistic 
regression. A better understanding of the risk-associated factors for 
neurological deficits following TBF enables clinicians to provide more 
accurate information to patients and their families and to develop 
more tailored treatment and rehabilitation programs based on 
expected outcomes.

Materials and methods

This study adhered to the principles outlined in the Helsinki 
Declaration and received approval from our institution’s medical 
ethics committee. Due to the retrospective nature of the study, the 
ethics committee waived the requirement for informed consent. 
We conducted a retrospective analysis of 322 patients with TBF who 
were admitted to our institution between November 2012 and 
November 2022. Among them, 115 had laminar fractures (LF), and 
207 had no laminar fractures (NLF). Neurological deficits were 
classified according to the American Spinal Injury Association 
(ASIA) classification upon patient admission to the hospital (5). 
Patients with neurological deficits (ASIA A, ASIA B, ASIA C, and 
ASIA D) were grouped together and compared with those without 
neurological deficits (ASIA E), comprising 75 and 247 patients, 
respectively. The inclusion criteria were as follows: (1) TBF 
diagnosed according to Denis’ classification system (2); (2) a clear 
history of trauma; (3) fracture segment located between T11 and L2; 
and (4) clearly documented ASIA grading. The exclusion criteria 
included: (1) multiple contiguous or non-contiguous spinal 
fractures; (2) pathological or old fractures; (3) pre-existing 
neurological deficits; (4) penetrating injuries; and (5) incomplete 
clinical data.

After screening the cases that met the inclusion criteria, 
we collected and compared each patient’s age, gender, smoking status, 
alcohol consumption, history of hypertension and diabetes, disease 
duration, mechanism of trauma, fractured vertebral segment, ISSM 
score, ASIA classification, and presence of laminar fracture. The injury 
mechanisms included blows from falling objects, car accidents, falls, 
and other causes. Trauma severity was assessed using the Injury 
Severity Score (ISS) (6), which was determined based on the 
Abbreviated Injury Scale-2005 (7). In this study, to investigate the 
relationship between laminar fractures and neurological deficits, 
components related to neurological deficits and laminar fractures were 
excluded from the ISS calculation, resulting in a modified score, 
the ISSM.

Statistical analysis

Data were analyzed using the Statistical Package for the Social 
Sciences (SPSS) software version 23 and visualized with GraphPad 
Prism 9 software. Continuous variables were expressed as mean ± 
standard deviation (SD), and between-group comparisons were 
performed using independent t-tests. Categorical variables were 
presented as counts and percentages, with comparisons assessed 
using the chi-square test. Ordinal data were analyzed using the 
Kruskal-Wallis test. Binary logistic regression was conducted to 
identify risk factors. The Hosmer-Lemeshow test was used to evaluate 
the model’s goodness-of-fit, and the receiver operating characteristic 
(ROC) curve was analyzed to assess discrimination. All statistical 
tests were two-tailed, and a P-value < 0.05 was considered 
statistically significant.

Results

Clinical data and ASIA classification 
comparison

Clinical data, including age, gender, smoking status, alcohol 
consumption, hypertension, diabetes, disease course, mechanism 
of trauma, fractured vertebral segment, and ISSM score, showed 
no statistically significant differences between the LF and NLF 
groups (P > 0.05, Table 1). However, the ASIA classification score 
in the LF group was significantly higher than in the NLF group 
(P < 0.05, Table  2). In the LF group, 5 patients (4.3%) were 
classified as ASIA A, 6 patients (5.2%) as ASIA B, 16 patients 
(13.9%) as ASIA C, 33 patients (28.7%) as ASIA D, and 55 patients 
(47.8%) as ASIA E. In contrast, in the NLF group, no patients 
(0.0%) were classified as ASIA A, 2 patients (1.0%) as ASIA B, 1 
patient (0.5%) as ASIA C, 12 patients (5.8%) as ASIA D, and 192 
patients (92.8%) as ASIA E.

Risk factors of neurologic deficit after TBF

Univariate analysis revealed that laminar fractures and the 
mechanism of trauma (car accidents, falls, and other accidents) were 
associated with neurological deficits following TBF (P < 0.05, Table 3). 
Subsequently, variables showing significant differences were included 
in the logistic regression analysis and tested using the backward LR 
method. Laminar fractures (OR: 0.019, 95% CI: 0.005–0.070), car 
accidents (OR: 6.082, 95% CI: 1.248–29.636), and falls (OR: 8.429, 
95% CI: 2.143–33.153) were independently associated with 
neurological deficits after TBF (P < 0.05, Table 4). Furthermore, ROC 
curves were plotted to assess the risk association value of each index 
for neurological deficits following TBF. The results indicated that 
laminar fractures and falls had a high risk association value (P < 0.01, 
Figure  1). Finally, the risk association equation Logit 
(P) = −4.358 + 3.535 × laminar fracture – 1.353 × falling accidents 
was established based on high-value indicators, and the goodness-
of-fit was assessed using the Hosmer-Lemeshow test (P = 0.324). The 
area under the curve (AUC) for associating neurological deficits in 
TBF patients was 0.819 (95% CI: 0.769–0.869, P < 0.000), indicating 
good model performance.
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Discussion

Due to advancements in modern urban infrastructure, more 
individuals are participating in the construction and transportation 
industries (8), leading to an increase in car accidents and falls. Reports 
indicate that nearly 90% of vertebral fractures occur in the 
thoracolumbar spine, with burst fractures accounting for 30–60% of 
all thoracolumbar fractures (9–12). TBF is characterized by a fall from 
height impacting the anterior margin of the vertebral body and 

injuring the posterior margin (13). Axial loading causes the vertebral 
body to fracture into multiple fragments, leading to lateral spreading 
of the pedicles and posterior elements, resulting in a vertical laminar 
fracture. Laminar fractures have been demonstrated as reliable 
indicators for assessing the severity of spinal lesions (3). An analysis 
of patients with TBF and vertebral plate fractures revealed significantly 
higher injury severity and greater spinal canal encroachment 
compared to the control group (14). These findings underscore the 
potential risk association value of laminar fractures in relation to 
neurologic deficits.

In this study, the ASIA classification was significantly higher in the 
LF group compared to the NLF group (P < 0.05). It is noteworthy that 
the injury process is dynamic. The presence of neurologic deficits 
following vertical laminar fractures may result from the impalement 
of the posteriorly displaced dural sac on the sharp edges of the laminar 
fracture at the moment of trauma. Additionally, the retraction of the 
laminar fracture fragments to their original position may lead to 
neurological deterioration by entrapment of the dural sac and nerve 
roots when the axial load dissipates (3, 15, 16). The literature has well 
documented the association between laminar fractures, dural tears, 
and the severity of spinal lesions (3, 14, 17). Researchers have also 
sought to identify specific clinical, radiological, or intraoperative 
factors predicting dural tears and nerve root entrapment (16). 
Furthermore, scholars have developed diagnostic and treatment 
methods for cauda equina entrapment in vertical laminar fractures 
associated with lumbar burst fractures (18). Our study also confirmed 

TABLE 1 Clinical data.

Factor No Lamina fracture 
group (n = 207)

Lamina fracture group 
(n = 115)

χ2-value P-value

Age≥40 years (n = 245) 153 (73.9) 92 (80.0) 1.505 0.220

Male (n = 227) 143 (69.1) 84 (73.0) 0.558 0.455

Smoking habit (n = 53) 34 (16.4) 19 (16.5) 0.001 0.982

Alcohol consumption (n = 44) 25 (12.1) 19 (16.5) 1.238 0.266

Hypertension (n = 24) 16 (7.7) 8 (7.0) 0.064 0.800

Diabetes (n = 5) 2 (1.0) 3 (2.6) 0.451 0.502

Course of disease≥3 d (n = 63) 45 (21.7) 18 (15.7) 1.741 0.187

Mechanism of trauma

 Car (n = 44) 30 (14.5) 14 (12.2)

5.134 0.162
 Fall (n = 190) 113 (54.6) 77 (67.0)

 Blow (n = 19) 13 (6.3) 6 (5.2)

 Other (n = 69) 51 (24.6) 18 (15.7)

Fractured vertebral segment

 T11 (n = 8) 5 (2.4) 3 (2.6)

0.849 0.838
 T12 (n = 53) 36 (17.4) 17 (14.8)

 L1 (n = 166) 103 (49.8) 63 (54.8)

 L2 (n = 95) 63 (30.4) 32 (27.8)

ISSM

 ≤16 (n = 259) 169 (81.6) 90 (78.3)

0.659 0.417 >16 (n = 59) 37 (17.9) 22 (19.1)

 >25 (n = 4) 1 (0.5) 3 (2.6)

T, Thoracic; L, Lumbar; ISSM, Injury Severity Score with modification. *P-values derived from chi-square test.

TABLE 2 ASIA classification.

Factor No Lamina 
fracture 
group 

(n = 207)

Lamina 
fracture 
group 

(n = 115)

χ2-
value

P-value

A (n = 5) 0 (0.0) 5 (4.3)

85.080 <0.000

B (n = 8) 2 (1.0) 6 (5.2)

C (n = 17) 1 (0.5) 16 (13.9)

D (n = 45) 12 (5.8) 33 (28.7)

E (n = 247) 192 (92.8) 55 (47.8)

A, Sacral segment losses motor or sensory function; B, Sensory function remains below the 
nerve plane (such as sacral segment S4–S5), without motor function; C, Motor function 
exists below the plane (most key muscle strength <grade 3); D, Motor function remains as 
well (strength >grade 3); E, Sensory and motor functions were normal. *P-values derived 
from Kruskal-Wails test.
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that laminar fractures (OR: 0.019, 95% CI: 0.005–0.070), car accidents 
(OR: 6.082, 95% CI: 1.248–29.636), and falling accidents (OR: 8.429, 
95% CI: 2.143–33.153) were independently associated with neurologic 
deficits after TBF (P < 0.05). In both falls and car accidents, the 
vertebral body undergoes significant longitudinal compression during 
the injury process, causing the vertebral body to burst into multiple 
bone fragments. The compression force is transmitted from the 
vertebral body to the lamina through the pedicle, ultimately resulting 
in a fissure in the lamina, which leads to neurologic deficits. 
Additionally, we found that laminar fractures and falling accidents 
were highly risk association of neurologic deficits (P < 0.01). The risk 

association equation was Logit (P) = −4.358 + 3.535 × laminar 
fracture – 1.353 × falling accidents.

In the treatment of neurological injuries caused by TBF, 
internal fixation following decompression is commonly accepted 
(19). It has been suggested that patients with lumbar burst 
fractures, particularly those with greenstick laminar fractures or 
radiological evidence of posterior displacement of neural elements 
in the injured vertebrae, should undergo posterior surgical 
exploration (16, 17). Researchers have found that various laminar 
fracture characteristics impact the surgical outcome of TBF (3). 
Kyphotic angle (KA) is a critical factor influencing spinal cord 

TABLE 3 Univariate analysis.

Variable No Neurologic deficit 
group (n = 247)

Neurologic deficit group 
(n = 75)

OR (95%Cl) P-value

Age≥40 years (n = 245) 191 (77.3) 54 (72.0) 1.326 (0.739–2.382) 0.344

Male (n = 227) 171 (69.2) 56 (74.7) 0.763 (0.425–1.372) 0.367

Smoking habit (n = 53) 39 (15.8) 14 (18.7) 0.817 (0.416–1.603) 0.557

Alcohol consumption (n = 44) 30 (12.1) 14 (18.7) 0.602 (0.301–1.207) 0.153

Hypertension (n = 24) 21 (8.5) 3 (4.0) 2.230 (0.646–7.694) 0.204

Diabetes (n = 5) 3 (1.2) 2 (2.7) 0.449 (0.074–2.737) 0.385

Course of disease≥3 d (n = 63) 52 (21.1) 11 (14.7) 1.552 (0.763–3.153) 0.225

Lamina fracture (n = 115) 55 (22.3) 60 (80.0) 0.072 (0.038–0.136) <0.000

Mechanism of trauma 0.005

 Car (n = 44) 40 (16.2) 4 (5.3) 3.430 (1.185–9.926) 0.023

 Fall (n = 190) 134 (54.3) 56 (74.7) 0.402 (0.226–0.717) 0.002

 Blow (n = 19) 13 (5.3) 6 (8.0) 0.639 (0.234–1.743) 0.382

 Other (n = 69) 60 (24.3) 9 (12.0) 2.353 (1.106–5.005) 0.026

Fractured vertebral segment 0.541

 T11 (n = 8) 6 (2.4) 2 (2.7) 0.909 (0.180–4.599) 0.908

 T12 (n = 53) 42 (17.0) 11 (14.7) 1.192 (0.580–2.451) 0.633

 L1 (n = 166) 122 (49.4) 44 (58.7) 0.688 (0.408–1.160) 0.160

 L2 (n = 95) 77 (31.2) 18 (24.0) 1.434 (0.792–2.599) 0.234

ISSM 0.306

 ≤16 (n = 259) 201 (81.4) 58 (77.3) 1.281 (0.683–2.401) 0.440

 >16 (n = 59) 44 (17.8) 15 (20.0) 0.867 (0.451–1.666) 0.668

 >25 (n = 4) 2 (0.8) 2 (2.7) 0.298 (0.041–2.152) 0.230

T, Thoracic; L, Lumbar; ISSM, Injury Severity Score with modification; OR, odds ratio; Cl, confidence interval. *P-values derived from binary logistic regression analysis.

TABLE 4 Logistics regression.

Variable β SE Wals Sig Exp(B) 95%Cl

Lamina fracture −3.940 0.654 36.289 <0.000 0.019 0.005–0.070

Mechanism of trauma

 Car 1.805 0.808 4.993 0.025 6.082 1.248–29.636

 Fall 2.132 0.699 9.309 0.002 8.429 2.143–33.153

 Other 0.520 0.700 0.552 0.458 1.682 0.427–6.630

Cl, confidence interval. *P-values derived from binary logistic regression analysis.
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injury and neurological deficits following spinal fractures. Studies 
consistently demonstrate that a greater KA is associated with 
increased spinal canal narrowing, higher risks of neurological 
impairment, and post-surgical correction loss (20–22). 
Particularly, a KA exceeding 20° is often considered a threshold 
for spinal instability and potential neurological deterioration (21, 
22). The presence of posterior element injuries, such as laminar 
or facet fractures, further exacerbates the risk (20, 21). Imaging 
assessments, including Cobb angle measurement, play a crucial 
role in predicting neurological outcomes (22, 23). Early surgical 
correction of kyphotic deformity is recommended to prevent 
progressive spinal cord compression and optimize recovery (22). 
Although spinal canal compromise is widely recognized as a major 
determinant of neurological deficits and ASIA classification, the 
role of KA in this relationship remains an important but 
underexplored aspect. Given the strong association between KA 
and spinal canal narrowing, KA may serve as an additional 

predictive measure of neurological outcomes, potentially 
complementing or even exceeding the predictive value of laminar 
fractures. However, due to the limitations of the current dataset, 
a direct comparative analysis between KA, spinal canal 
compromise, and ASIA classification was not performed. Future 
studies should incorporate detailed radiological assessments, 
including spinal canal compromise and KA, to determine their 
relative contributions to neurological impairment 
more comprehensively.

However, this study has several limitations. Firstly, it included 
patients exclusively from a single hospital’s spine surgery 
department, necessitating a larger, multicenter study to minimize 
potential bias. Secondly, being retrospective, there is a risk of 
incomplete clinical data, which could introduce errors, especially 
given the small sample size. Additionally, potential confounders, 
such as different spinal fracture mechanisms (e.g., flexion-extension, 
axial loading), intravertebral MRI findings, and other clinical 

FIGURE 1

Value of lamina fracture, car and falling accidents in neurologic deficit. (A) Risk association value of lamina fracture in neurologic deficit. (B) Risk 
association value of car accidents in neurologic deficit. (C) Risk association value of falling accidents in neurologic deficit. (D) ROC curve of neurologic 
deficit associated by risk association equation. AUC, area under the curve.
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factors, may have influenced the observed association between 
laminar fractures and neurological deficits. Since these factors were 
not comprehensively analyzed in our study, they could contribute to 
residual confounding effects. Future studies should incorporate a 
more detailed analysis of fracture mechanisms and imaging 
characteristics to provide a clearer understanding of their impact on 
neurological outcomes. In future research, we aim to address these 
issues by gathering data from multiple centers, conducting 
prospective investigations, and integrating advanced 
imaging techniques.

Conclusion

In this study, we identified laminar fractures, car accidents, and 
falls as independent risk factors for neurological deficits in patients 
with TBF. Among them, laminar fractures and falls exhibited high 
risk association value for neurological impairment. These findings 
highlight the importance of assessing laminar fractures when 
evaluating spinal trauma severity and emphasize the need for early 
intervention in high-risk patients. Furthermore, the risk association 
model established in this study may provide a reference for clinical 
decision-making. However, this study has certain limitations. As a 
retrospective study conducted in a single center, potential selection 
bias and incomplete clinical data may exist. Future studies should 
incorporate multicenter prospective designs and advanced imaging 
techniques to further validate these findings and explore additional 
factors influencing neurological outcomes.
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