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Introduction: Charcot–Marie–Tooth disease (CMT) is a group of rare 
neuropathies but still the most common hereditary neuromuscular disorder 
with heterogeneous phenotype and usually slow progression. Currently, there 
are no approved treatments or validated biomarkers for sensitive monitoring of 
disease progression.

Objectives: This study aimed to analyse selected plasma metabolite 
concentrations in a CMT cohort and compare them to healthy controls. For this 
purpose, 84 patients and 34 controls were enrolled in the study.

Results: We detected a total of 33 metabolites from which acetylcarnitine was 
found elevated and glycine was found decreased in CMT patients. In addition, the 
CMTX1 subgroup has decreased valine levels compared to controls. However, 
further analysis revealed poor disease predictive abilities of the detected 
metabolites for any CMT group. Furthermore, we found no associations of these 
metabolites with CMT severity.

Conclusion: Our study data provide information about plasma metabolite 
levels in CMT patients. However, these findings suggest that the metabolites 
mentioned above might be  unspecific biomarkers of neuropathy and do not 
reflect disease severity.
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Introduction

Charcot–Marie–Tooth (CMT) disease is a clinically and genetically heterogeneous group 
of disorders with the phenotype of usually slowly progressive, chronic neuropathy affecting 
both the motor and the sensory nerves. CMT disease is the most common hereditary 
neuromuscular disorder, with an estimated prevalence of 1/2500 (1). It presents with 
progressive distal muscle atrophy and weakness, distal sensory loss, and foot deformities that 
can seriously reduce a patient’s quality of life. Currently, there are no approved therapies, 
however, promising new treatments are approaching the clinical translation stage (2). 
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Therefore, given the slow progressive nature of the disease, sensitive 
disease progression and treatment responsive biomarkers become 
crucial for the upcoming clinical trials.

In the recent years, metabolome analysis has been widely applied 
for discovering diagnostic and prognostic markers as well as for 
uncovering underlying pathophysiological mechanisms of diseases, 
including polyneuropathies. Metabolomics is the characterization of 
small molecules (<1,500 Daltons) in biological matrices using analytical 
chemistry techniques (3). Knowledge about metabolites involved in 
different metabolic pathways that are affected in polyneuropathies can 
be helpful to provide insight into disease mechanisms, and potentially 
identify biomarkers and therapeutic targets. Numerous studies have 
confirmed that some plasma metabolites are associated with diabetic 
neuropathy (4–9). Soldevilla et al. (10) used untargeted metabolomic 
approach of plasma samples in a cohort of 42 CMT1A patients and 15 
controls. They identified 12 plasma metabolites that might be promising 
candidates for CMT1A disease biomarkers. However, there are no 
widely accepted metabolite biomarkers for CMT, and data about 
metabolic profiles in hereditary neuropathies are still lacking.

In this study, we analysed selected metabolites and metabolite 
ratios in CMT patient plasma and compared them age- and 
sex-matched healthy controls. Further, we evaluated serum metabolites 
in patients with CMT1A, CMTX1, CMT2A, HINT1, other genetic 
subtypes, unknown genetic type and mild, medium, severe degree of 
CMT. Moreover, we  aimed to investigate the association between 
CMT severity and potential biomarkers in plasma.

Methods

Patient’s evaluation and blood sampling

A cohort of 84 patients form geneticists’, neurologists’ and paediatric 
neurologists’ clinical practices with CMT and 34 healthy controls were 
recruited to this study as described before (11, 12). Twelve CMT patients 
and 5 healthy controls were under 18 years of age. All CMT individuals 
underwent genetic testing including PMP22 duplication/deletion analysis, 
and exome sequencing with analysis of hereditary neuropathy-associated 
genes, as described before (11). CMT disease severity was evaluated by an 
expert neurologist with widely accepted CMT Neuropathy Score Version 
2 (CMTNSv2). In this study, patients were divided based on the severity 
into three groups: mild (CMTNSv2 score 0 to 10), medium (CMTNSv2 
score 11 to 20), and severe (CMTNSv2 score >21) group (13).

As a control group, our study included age- and sex-matched healthy 
individuals without known neurological diseases or symptoms.

Blood sampling and storage were conducted following a strict 
standard operating procedure. Briefly, blood samples from patients and 
controls were taken in an outpatient setting by certified medical staff and 
processed within 1 h. Blood was collected into EDTA-containing tubes 
and centrifuged at 20°C at 3,500 rpm for 10 min. Plasma was then 
aliquoted and stored at −20°C.

Metabolite analysis

Targeted plasma metabolic analysis was performed by ultrahigh 
performance liquid chromatography-mass spectrometry (UHPLC–MS) 
to determine plasma levels of 55 selected metabolites, from which 33 were 

detected (Supplementary Table 1) in plasma samples from CMT patients 
and healthy controls. These metabolites were selected as they are routinely 
screened via mass spectrometry (MS/MS) in clinical laboratories during 
newborn screening (14). By measuring these established markers, changes 
detected in their concentrations in CMT patients’ blood could offer a 
readily implementable diagnostic tool for this disorder.

The LC–MS analysis was performed on a Dionex 3,000 HPLC 
system (Thermo Scientific) coupled with an Orbitrap Q Exactive 
(Thermo Scientific) mass spectrometer. An ACQUITY UPLC BEH 
Amide, 1.7 μm, 2.1×100 mm analytical column (Waters) equipped with 
a VanGuard: BEH C18, 2.1×5 mm pre-column (Waters) was used for 
chromatographic separation. The column temperature was 40°C; the 
sample injection volume was 2 μl. Mobile phase A—0.15% formic acid 
(v/v) and 10 mM ammonium formate in water was used, and as mobile 
phase B—0.15% formic acid (v/v) in 85% acetonitrile (v/v) with 10 mM 
ammonium formate was used. The gradient elution with a flow rate of 
0.4 ml/min was performed resulting in a total analysis time of 17 min. 
The Orbitrap Q Exactive (Thermo Scientific) mass spectrometer was 
operated in a positive electrospray ionization mode. The following 
parameters were used for the ion source: spray voltage 3.5 kV, aux gas 
heater temperature 400°C, capillary temperature 350°C, aux gas flow 
rate 12, and sheat gas flow rate 50. The MS detection was performed in 
a full MS scan mode; the scan range was set to m/z 50 to 400, mass 
resolution 35,000, AGC target 1e6, maximum IT 50 ms. The Trace 
Finder 4.1 software (Thermo Scientific) was used for data processing. A 
seven-point linear calibration curve with internal standardization and 
1/x weighing was constructed to quantify of the metabolites.

Statistical analysis

Clinical data distribution was expressed as medians with 
interquartile ranges (IQRs). Statistical analysis was performed with 
Prism 9 and MetaboAnalyst 6.0.1

Each metabolite concentration was normalized to the sample 
medium to minimize the effect of different measurement batches. By 
default, we excluded metabolites with >20% missing values, which 
led to no exclusions in our dataset. Fold change and p-value were 
plotted as volcano plots using FC > 1.3 and p-value < 0.05 as 
significance cut-offs (Prism9). Normalized concentrations were 
plotted as violin plots, and significance testing was done using Sidak’s 
multiple comparison test. Orthogonal partial least squares-
discriminant analysis (OPLS-DA) was performed using 
MetaboAnalyst 6.0. For this, data was log10 transformed and scaled 
by mean centering and dividing by the standard deviations square 
root of each metabolite.

Standard protocol approval and patient 
consent

The study was approved by the Central Medical Ethics Committee 
of Latvia (No. 3/18-03-21). Written informed consent was obtained 
from all participants in the study.

1 www.metaboanalyst.ca
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Results

This study included 84 CMT patients and 34 healthy controls. The 
patient group was subdivided according to the genetic findings: 
CMT1A (n = 37), CMTX1 (n = 17), CMT2A (n = 4), HINT1 (n = 5), 
other genetic subtypes (n = 14), unknown genetic type (n = 7). There 
was no significant difference in sex (chi-square, χ2 = 0.345, p = 0.557) 
or age (independent samples t-test, t = 0.143, p = 0.509) between CMT 
and control groups (Table 1).

A total of 33 metabolites (Supplementary Table 1) were analysed in 
plasma. We used univariate statistical analysis to screen for differential 
plasma metabolites between separate genetic CMT groups with a 
sufficient number of cases [CMT1A (n = 37) and CMTX1 (n = 17)] 
and the control group. We identified differential metabolites with the 
volcano plot (V-plot) and OPLS-DA (Figures 1a–d). We found that 
acetylcarnitine in the CMT1A group and glycine and valine in the 
CMT1X group are different from the controls at level p < 0.05, 
VIP > 1, and FC > 1.3 (Figure 1e, Tables 2 and 3).

Further we  screened for differential metabolites in all CMT 
patients and controls.

We identified two plasma metabolites that were significantly 
changed to controls without being able to separate CMT subtypes 
based on their metabolic profiles (Figures 2a,b). The plasma ratio of 
acetylcarnitine was elevated and the plasma ratio of glycine was 
decreased in the CMT compared with controls (Mann–Whitney U 
test, U = 1773.000, p = 0.04; U = 1018.000, p = 0.15, respectively) 
(Figure 2c, Table 4).

Predictive abilities of CMT-related 
biomarkers

Next, we attempted to classify CMT1A and CMTX1 patients, as 
well as all CMT patients with the measured metabolite levels and their 

ratios using machine learning, which all achieved an AUC < 0.74 
(Supplementary Figure 1). As the most promising results we took a 
closer look at the important features of the CMT1A model (Figure 3), 
which was the most significant CMT subgroup, and constructed a 
classification based on multiple regression of three features. The ROC 
curve (Figure 3b) achieved an AUC of 0.73 and sample classification 
(Figure 3c) indicates a poor separation ability.

Metabolic profiles in CMT of different 
severity

Further, we  divided the 66 patient who had their CMTNSv2 
severity score measured into three severity groups: mild (CMTNSv2 
score 0–10; n = 34), moderate (CMTNSv2 score 11–20; n = 27), and 
severe (CMTNSv2 score > = 21; n = 5) groups. Pairwise PCA and 
OPLS-DA analysis identified two differential metabolites (p < 0.05; 
VIP > 1; FC > 1) in moderate versus severe (Table  5) and one 
metabolite in mild versus severe CMT group comparison (Table 6).

However, we  could not find significant changes in tyrosine, 
acetylcarnitine or proline between the severity groups or with controls. 
In addition, correlation analysis showed no metabolites with a score 
>0.5, indicating a poor correlation of our measured metabolites 
(Supplementary Figure 2).

Discussion

CTM disease biomarkers for treatment response prediction are a 
bottleneck for finding a specific treatment approach. In this study, 
we searched for plasma metabolites in a large CMT cohort (Table 1) 
to improve understanding of the molecular basis of the disease. 
Moreover, we aimed to identify future biomarkers of the disease.

In the present study, we analysed 33 metabolites in plasma. 
We  identified 2 metabolites (acetylcarnitine and glycine) that 
changed most significantly between CMT patients and controls 
(Figure 2). Acetylcarnitine levels in the CMT cohort were higher 
than in the controls (Table 4). In general, measurements of the 
carnitine pool have been used to identify the disease and predict 
mortality among disorders such as diabetes, sepsis, cancer, and 
heart failure (15). Acetylcarnitine is short-chain acylcarnitine, with 
plasma levels reaching nearly 80% of all acylcarnitines (16–19). 
Acylcarnitines are recognized for facilitating fatty acid β-oxidation 
(FAO) in mitochondria and peroxisomes, producing energy to 
sustain cell activity (19, 20). Blood concentrations of acylcarnitine 
reflect intracellular levels and the regulation of acetyl-CoA and free 
CoA via carnitine acetyl-CoA transferase (19, 21). Increased 
production of acylcarnitine represents a critical mechanism to 
buffer the metabolic status between fed (glucose oxidation) and 
fasted (fat oxidation) states, referred to as metabolic flexibility (22, 
23). Therefore, persistent elevations in blood concentrations of 
acylcarnitine over time may represent a signal of metabolic 
inflexibility (15). Previous research in mouse models demonstrates 
that primary insulin resistance destroys insulin signalling 
transduction in Schwann cells, depleting important myelin lipid 
components and eventually leading to demyelination (24). In 
addition, disruption of Schwann cells mitochondria leads to 
transition from synthesis to oxidation of fatty acids and secondary 

TABLE 1 CMT study groups.

Study participants Number of 
patients (male/

female)

Mean age 
(SD)

All CMT patients 84 (37/47) 39 (17)

CMT1A (PMP22 dup) 37 (13/22) 38 (17.3)

CMTX1 (GJB1) 17 (6/8) 35.8 (16.4)

CMT2A (MFN2) 4 (2/2) 34 (17.7)

CMT2N (AARS1) 4 (2/2) 38.1 (19)

NMAN (HINT1) 5 (2/3) 44.1 (20.7)

CMT2F (HSPB1) 2 (1/1) 39.5 (18)

HMN5C (BSCL2) 3 (1/2) 38.8 (17.8)

CMT2Z (MORC2) 1 (1/0) 48

SMALED2A (BICD2) 1 (0/1) 50

CMT1B (MPZ) 1 (0/1) 65

HSP (SPG11) 1 (1/0) 21

CMT with unknown 

monogenic cause
7 (3/4) 39.2 (18.2)

Control group 34 17/17 39.5 (19.7)
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acylcarnitine formation and accumulation (24–26). Poorabbas 
et al. (27) showed that Type II diabetes patients with complications 
(e.g., neuropathy) had 25% lower serum L-carnitine levels than 
diabetic patients without complications that could be explained by 
increased production of other acylcarnitines. Zhenni et al. (25) 
proved that elevated plasma acetylcarnitine levels are positively 
associated with diabetic polyneuropathy risk. To sum up, 
acetylcarnitine plays a role in diabetic neuropathy pathophysiology 
and plasma acetylcarnitine levels correlate with diabetic 
polyneuropathy development. So far elevated plasma acylcarnitine 
levels in hereditary neuropathy have been reported before in CMT 

caused by a variant in the HADHB gene encoding the β-subunit of 
mitochondrial trifunctional protein (28). These findings suggest 
that acetylcarnitine might be  an unspecific metabolite marker 
in neuropathy.

Further, we  analysed plasma metabolites between genetic 
groups. In CMT1A group acetylcarnitine level was elevated 
compared to the control group (Figure 1, Table 2). In the CMTX1 
group glycine and L-valine concentration in serum was decreased 
compared to the control group (Figure 1, Table 3). Low systemic 
glycine is emerging as a hallmark of peripheral nerve disorders, 
correlating with peripheral neuropathy (29). In mice models, a 

FIGURE 1

Visualization of differential metabolite profiles compared to healthy controls of (a) CMT1A and (b) CMTX1 using V-plots. Significance thresholds are 
indicated with dashed lines (FC > 1.3, p < 0.05). oPLSDA plots of (c) CMT1A and (d) CMTX1. (e) Violin plots of metabolites identified to be significantly 
chqnged in the volcano plots (**** p < 0.0001, ** p < 0.01, *p < 0.05).

TABLE 2 Differential plasma metabolites between CMT1A patients and healthy controls.

Metabolite p-value VIP FC Control group 
(median [IQR])

CMT1A (median 
[IQR])

L-acetylcarnitine 1.9384E-4 2.4906 1.4742 10.8350 [9.86] 12.1200 [7.75]

Differential metabolites were selected according to VIP > 1, FC > 1.3, and p < 0.05. Values are expressed as medians [IQR]. p values were calculated from a t-test for continuous variables; VIP, 
variable influence on projection; CMT, Charcot–Marie–Tooth disease.

TABLE 3 Differential plasma metabolites between CMTX1 patients and healthy controls.

Metabolite p-value VIP FC Control group 
(median [IQR])

CMTX1 (median 
[IQR])

Glycine 0.0039756 2.2636 0.58076 299.9250 [154.25] 125.3300 [241.10]

L-valine 0.019376 1.3453 0.60479 529.5950 [455.44] 323.2700 [317.20]

Differential metabolites were selected according to VIP > 1, FC > 1.3, and p < 0.05. Values are expressed as medians [IQR]. p values were calculated from the t-test for continuous variables; 
VIP, variable influence on projection; CMT, Charcot–Marie–Tooth disease.
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reduction in serine and glycine levels in plasma after dietary 
restriction is sufficient to increase plasma and tissue levels of 
deoxysphingolipids and causes functional peripheral sensory 
deficits (30). Moreover, it is reported that valine, leucine and 

isoleucine biosynthesis is one of the main pathways involved in 
diabetic polyneuropathy (8). Although glycine and valine 
metabolism contribute to the pathogenesis of peripheral 
neuropathy, the exact mechanism of involvement is not fully 

FIGURE 2

Visualization of differential metabolite profiles in all CMT cases compared to healthy controls using (a) V-plot. Significance thresholds are indicated 
with dashed lines (FC > 1.3, p < 0.05). (b) OPLS-DA score plot of CMT versus control. (c) Violin plot of glycine and acetylcarnitine as the significant 
metabolites identified in the V-plot (p < 0.05).

TABLE 4 Differential plasma metabolites between CMT patients and healthy controls.

Metabolite p-value VIP FC Control group 
(median [IQR])

CMT (median [IQR])

L-acetylcarnitine 2.7234E-4 2.232 1.3883 10.8350 [9.86] 13.4850 [7.49]

Glycine 0.03318 1.5599 0.76581 299.9250 [154.25] 194.5500 [224.53]

Differential metabolites were selected according to VIP > 1, FC > 1.3, and p < 0.05. Values are expressed as medians [IQR]. p values were calculated from the t-test for continuous variables; 
VIP, variable influence on projection; CMT, Charcot–Marie–Tooth disease.

FIGURE 3

(a) Violin plots of one metabolite and two ratios were used for the CMT1A predictive model. Concentrations were normalized to the average of each 
sample. ANOVA with Bonferroni correction shows no significant differences. (b) ROC curves of a predictive model based on multiple linear regression 
and (c) classifications of samples using the constructed model.

TABLE 5 Differential plasma metabolites between moderate and severe CMT patients.

Metabolite p-value VIP FC Moderate CMT 
(median [IQR])

Severe CMT 
(median [IQR])

L-tyrosine 0.023081 1.8717 0.74866 80.7300 [64.82] 77.1100 [88.74]

L-acetylcarnitine 0.033947 2.09858 0.67648 12.6300 [6.73] 16.1300 [16.80]

Differential metabolite ratios were selected according to VIP > 1, FC > 1.3, and p < 0.05. Values are expressed as medians [IQR]. p values were calculated from a t-test for continuous variables; 
VIP, variable influence on projection; CMT, Charcot–Marie–Tooth disease.
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understood. In our study valine was decreased only in one genetic 
group. Therefore, it remains unclear whether these metabolites 
could potentially become specific CMT biomarkers.

Next, we  aimed to explore the predictive abilities of 
CMT-related metabolite markers (Supplementary Figure  1). 
Soldevilla et al. (10) found that from 12 differential metabolites in 
the CMT1A cohort, four of them (glutaminyl-serine, sphingosine-
1-phosphate, tryptophan and leucine) could provide potential 
biomarkers of the disease as assessed by their significance in ROC 
curves (AUC > 0.889). However, in our study we  detected 33 
metabolites and only one metabolite (leucine) overlapped in both 
studies. Although we  identified 1 differential metabolite 
(acetylcarnitine) in CMT1A cohort, in the predictive model of 
CMT1A all metabolites showed poor accuracy for predicting the 
disease (AUC < 0.73) (Figure 3).

Due to CMT heterogeneity and the slow rate of progression, sensitive 
outcome measures and biomarkers are challenging to develop. Therefore, 
an association between potential biomarkers and disease severity is 
beneficial. Recently, several publications demonstrated a correlation 
between neurofilament light chain concentration in plasma and CMT 
disease severity (11, 12, 31, 32). In our study, we aimed to screen for 
potential metabolite biomarkers in varying severity degrees of 
CMT. Three candidate biomarkers (tyrosine, acetylcarnitine, proline) 
showed significant differences in pairwise analysis in mild versus severe 
and moderate versus severe CMT patient groups (Tables 5 and 6). 
However, we could not find significant changes in metabolites between 
all severity groups or with controls. Moreover, we looked for associations 
between CTM severity (CMTNSv2) and plasma metabolite levels in 66 
CMT patients. Our study detected a poor correlation of all our measured 
metabolites (Supplementary Figure 2). In a previously published cohort 
(n = 42) by Soldevilla et al. (10)correlation analysis between metabolite 
levels and severity of the disease in CMT1A patients detected 5 
metabolites (urobilinogen, glumatyl-serine, sphingosine-1-phosphate, 
palmitic amide, leucine) with good correlation (Spearman 
coefficient > 0.629). However, despite a larger cohort and more genetic 
CMT types, we could not replicate these results for leucine, the only 
overlapping metabolite present in our dataset. Therefore, more data and 
longitudinal evaluation are needed to establish whether metabolite 
markers can be used to monitor disease progression.

Conclusion

Our study provides information about plasma metabolite levels in 
CMT patients. We have identified that CMT patients have significantly 
higher levels of acetylcarnitine and decreased glycine levels compared 
to controls. In addition, the CMTX1 subgroup has decreased valine 
levels compared to controls. Despite significant differences, our 
predictive models suggest no good predictive power of the detected 
serum metabolites for any CMT group. Furthermore, we found no 
associations of these metabolites with CMT severity. Consequently, 

the metabolites mentioned above might be unspecific biomarkers of 
neuropathy, however, longitudinal assessment is needed to evaluate 
metabolite marker capabilities.

Limitations of the study

We provided data from a relatively large CMT cohort in the present 
study. However, the sample size between genetic subtypes varied. 
Another limitation was the small sample size in the severe CMT group 
compared to mild and moderate CMT. It should be noted that in the 
correlation analysis between detected metabolites and disease severity, 
we did not evaluate the association with the age of the patients. In this 
study, we focused on the metabolite set used in clinical diagnostics, e.g., 
amino acids and acylcarnitines. However, it is limited. Including other 
metabolites in our analysis or performing untargeted analysis could 
allow us to identify biomarkers with better performance.
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