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Background: Although diffusion magnetic resonance imaging (dMRI), 
particularly diffusion kurtosis imaging (DKI), has demonstrated efficacy in 
distinguishing between low- and high-grade gliomas, its predictive utility 
across various molecular genotypes remains unclear. Evaluating the accuracy 
of DKI and identifying sources of heterogeneity in its predictive performance 
could advance noninvasive molecular diagnostic methods and support the 
development of personalized treatment strategies.

Materials and methods: A literature search of the PubMed, Web of Science, 
Cochrane Library, Embase, and Medline databases was performed. The studies 
retrieved were screened by two researchers (HFZ and ZGH), and those fulfilling 
the inclusion criteria were subsequently included in the meta-analysis. Study 
quality was assessed using the Quality Assessment of Diagnostic Accuracy 
Studies 2 (QUADAS-2) tool. The analyses summarized the mean differences 
in mean kurtosis (MK) and mean diffusivity (MD) in patients harboring various 
genotypes using suitable models, and explored heterogeneity. Finally, a bivariate 
restricted maximum likelihood estimation method and meta-regression analysis 
were performed to assess diagnostic potential and stability.

Results: Fourteen studies comprising 886 patients were included in this 
meta-analysis. Regarding MK and MD, the mean difference between isocitrate 
dehydrogenase (IDH) mutation and IDH wild type was −0.21 (95% confidence 
interval [CI] −0.27 to −0.15; I2 = 93%) and 0.22 (95% CI 0.11 to 0.33; I2 = 92%), 
respectively. This heterogeneity could be  explained by imaging parameters 
such as repetition time, echo time, maximal b-value, and number of diffusion 
directions. However, the mean difference did not reflect the genetic status of 
1p/19q, α-thalassemia/mental retardation syndrome-X-linked (ATRX) gene, or 
O6-methylguanine-DNA-methyltransferase (MGMT). Analysis of diagnostic 
accuracy revealed that the pooled areas under the curve for MK and MD, based 
on IDH status, were 0.96 (95% CI 0.93 to 0.97) and 0.76 (95% CI 0.71 to 0.81), 
respectively. Heterogeneity was not observed for these DKI parameters.

Conclusion: MK and MD exhibited potential diagnostic utility in the prediction 
of glioma molecular status and should be explored in medical practice. These 
parameters should be compared with other MRI models to develop a stable and 
suitable genetic molecular prediction method for patients with gliomas.

OPEN ACCESS

EDITED BY

Kyle Carson Kern,  
University of California, Los Angeles, 
United States

REVIEWED BY

Claudia Testa,  
University of Bologna, Italy
Adil Bashir,  
Auburn University, United States

*CORRESPONDENCE

Jian Xie  
 xiejian0630@126.com

RECEIVED 11 December 2024
ACCEPTED 07 April 2025
PUBLISHED 25 April 2025

CITATION

Zhao H, Hou Z, He Q, Liu X and Xie J (2025) 
The diagnostic and prediction performance 
of MR diffusion kurtosis imaging in the glioma 
molecular classification: a systematic review 
and meta-analysis.
Front. Neurol. 16:1543619.
doi: 10.3389/fneur.2025.1543619

COPYRIGHT

© 2025 Zhao, Hou, He, Liu and Xie. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Systematic Review
PUBLISHED 25 April 2025
DOI 10.3389/fneur.2025.1543619

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2025.1543619&domain=pdf&date_stamp=2025-04-25
https://www.frontiersin.org/articles/10.3389/fneur.2025.1543619/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1543619/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1543619/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1543619/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1543619/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1543619/full
mailto:xiejian0630@126.com
https://doi.org/10.3389/fneur.2025.1543619
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2025.1543619


Zhao et al. 10.3389/fneur.2025.1543619

Frontiers in Neurology 02 frontiersin.org

Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/view/
CRD42024568923, CRD42024568923.
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Introduction

Gliomas are the most common primary intracranial malignancy (1). 
Clinicians have reported significant differences in treatment response, risk 
for recurrence, and overall survival among patients diagnosed with 
gliomas (2). Previous studies have suggested that these differences could 
be  attributed to molecular expression status, especially isocitrate 
dehydrogenase (IDH), chromosomal alterations in 1p/19q, alpha-
thalassemia X-linked intellectual disability syndrome (ATRX), and 
O6-methylguanine-DNA methyltransferase (MGMT) (3). For example, 
Galbraith et al. (4) described the high heterogeneity and invasiveness of 
wild-type IDH glioma cell clusters. Similarly, Iwadate et  al. (5) 
demonstrated that 1p/19q co-deletion could reflect favorable outcomes 
and a lower risk for disease recurrence. Moreover, clinical trials have 
shown that some genetic markers—particularly ATRX and MGMT—
were associated with therapeutic responses (5, 6). These findings highlight 
the importance of identifying the genetic status of gliomas to guide 
treatment strategies and improve patient outcomes (Figure  1). 
Traditionally, molecular diagnoses have primarily been determined from 
tissue samples obtained after surgical resection. However, not all patients 
accept the risk for neurological damage and mortality associated with 
surgery (7). Therefore, developing noninvasive diagnostic methods is 
critical for those who are unable or unwilling to undergo 
surgical intervention.

With advances and developments in medical technologies, diffusion 
magnetic resonance imaging (dMRI) and its related sequences, 
particularly diffusion-weighted imaging (DWI) and diffusion tensor 
imaging (DTI), have demonstrated potential for predicting glioma 
molecular subtypes based on the capture of water molecular condition 
(8–10). This non-invasive and specific technique has attracted the 
interest of clinicians and radiologists. Several trials have supported the 
predictive potential of dMRI for the molecular classification of gliomas. 
For example, Zhang et al. (9) analyzed preoperative MRI data from 247 
patients diagnosed with gliomas and found that the apparent diffusion 
coefficient value on DWI could predict glioma histological grade and 
IDH expression status. Similarly, Xiong et al. (10) reported that fractional 
anisotropy values on DTI were significantly different between IDH 
mutant and IDH wild-type gliomas in 90 patients. However, due to 
volume and mass effects, the parameter values derived from DWI and 
DTI may be influenced by tumor heterogeneity and the surrounding 

normal peritumoral tissue. While it is possible to define and analyze the 
tumor region at the voxel level, the influences of regional overlap and 
tumor heterogeneity cannot be entirely eliminated. Similarly, due to the 
mass effect of gliomas, normal brain tissue, nerve fiber bundles, and 
small blood vessels may be displaced or distorted (11, 12). We have 
identified tumor regions as accurately as possible using manual drawing 
and software-based analyses. However, irrelevant brain structures cannot 
be completely recognized or eliminated based on imaging data (13). 
Therefore, basic dMRI sequences, such as DWI and DTI, may not 
accurately capture the complex information crucial for the prediction of 
genetic status (14). Additionally, magnetic resonance spectroscopy and 
amide proton transfer imaging techniques can assist clinicians in 
predicting the gene expression status of gliomas by analyzing metabolite 
concentration and chemical environment (15, 16). Volume and mass 
effects still influence MRI-related analyses. Therefore, it is necessary to 
develop higher-resolution MRI technologies.

Diffusion kurtosis imaging (DKI) can reveal the microstructural 
complexity of tumor tissues and provide additional metrics related to the 
non-Gaussianity of water diffusion (17). Previous studies have shown 
that DKI can effectively distinguish between low-grade gliomas (LGG) 
and high-grade gliomas (HGG) (18). Additionally, recent meta-analyses 
have further supported the predictive value of DKI in differentiating 
glioma grades (Table  1). For instance, meta-analyses conducted by 
Huang et al. (19) and Abdalla et al. (20) included 270 and 460 patients, 
respectively, both confirming the high diagnostic accuracy of DKI in 
glioma grading. Furthermore, Falk et al. (21) reported that mean kurtosis 
(MK), the main parameter of DKI, can differentiate HGG from LGG 
with a sensitivity of 0.85 and a specificity of 0.92. Meanwhile, Luan and 
his team found similar results (22). Among these studies, Xu and his 
colleagues conducted the most comprehensive meta-analysis to date, 
incorporating the largest number of studies and patients (23). Their 
findings provided strong evidence supporting the value of DKI in the 
prediction of glioma grades. Although DKI can predict glioma grades 
(HGG or LGG) stably, the utility of DKI for predicting glioma genotypes, 
like IDH, ATRX, MGMT genetic statuses, remains controversial. Su and 
Xu (24, 25) found that mean diffusivity (MD), a DKI parameter, could 
predict IDH mutations, with higher MD values observed in IDH-mutant 
gliomas. In contrast, Zhao et al. (26) reported that DKI parameters failed 
to provide consistent and reliable results for differentiating the IDH 
status. To address these conflicting results, we conducted a meta-analysis 
to assess the predictive utility of DKI. Our aim was to determine whether 
DKI could be considered a promising noninvasive diagnostic method, 
contributing to improved diagnostic accuracy and molecular 
classification in glioma management (27).

Methods

A team consisting of two neuro-oncologists, two neurosurgeons, 
and a senior statistician meticulously designed, registered, and 
conducted the meta-analysis in accordance with the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 

Abbreviations: dMRI, diffusion magnetic resonance imaging; DKI, diffusion kurtosis 

imaging; QUADAS-2, Quality Assessment of Diagnostic Accuracy Studies 2; MK, 

mean kurtosis; MD, mean diffusivity; IDH, isocitrate dehydrogenase; CI, confidence 

interval; ATRX, α-thalassemia/mental retardation syndrome-X-linked; MGMT, 

O6-methylguanine-DNA-methyltransferase; DWI, diffusion-weighted imaging; 

DTI, diffusion tensor imaging; DKI, Diffusion kurtosis imaging; LGG, low-grade 

gliomas; HGG, high-grade gliomas; PRISMA, Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses; QUADAS-2, Quality Assessment of 

Diagnostic Accuracy Studies-2; PLR, positive diagnostic likelihood ratio; NLR, 

negative diagnostic likelihood ratio; ROC, receiver operating characteristic.

https://doi.org/10.3389/fneur.2025.1543619
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.crd.york.ac.uk/PROSPERO/view/CRD42024568923
https://www.crd.york.ac.uk/PROSPERO/view/CRD42024568923


Zhao et al. 10.3389/fneur.2025.1543619

Frontiers in Neurology 03 frontiersin.org

(PRISMA) guidelines (Supplementary Tables S1, S2). The analysis was 
prospectively registered in PROSPERO on July 24, 2024 (CRD 
42024568923) (28).

Electronic search and eligibility criteria

An online literature search was conducted by a neuro-oncologist 
and a neurosurgical clinician (ZGH, with over 30 years of clinical 
experience, and HFZ, with 4 years of professional training as a neuro-
oncologist) across five databases: PubMed, Web of Science, Cochrane 
Library, Embase, and Medline. The search covered the period from 
January 1, 1970, to July 25, 2024. The full search queries and step-by-
step results are summarized in Supplementary Tables S3–S6. The 
inclusion criteria were as follows: (1) Histological grades and 
genotypes of gliomas must be identified through histopathological 
examination; (2) The included studies should provide detailed 
information on the patient population and the sensitivity and 
specificity rates of the diagnostic methods; (3) The DKI parameters 
must be derived from tumor tissue and include at least one of the 
following: MK or MD, along with the 95% confidence interval (95% 
CI); (4) The genetic status of patients reported in the article should 
encompass at least one of the following: IDH, 1p/19q, ATRX, or 
MGMT; and (5) The included articles must ensure the application of 
contemporary imaging technologies. Both prospective and 

retrospective observational cohort studies were eligible for inclusion 
in this meta-analysis. Comments, conference abstracts, reviews, case 
reports, duplicate articles, or articles lacking DKI parameters were 
progressively excluded from the search.

Data extraction and study quality 
assessment

To evaluate the diagnostic efficiency of DKI in glioma genotypes, 
a standardized table was established for data collection prior to the 
study. Two authors (HFZ and ZGH) independently performed a 
literature search and review, and documented the findings. Data 
extracted from the included studies were as follows: first author; 
publication year; trial type; population; number of patients with each 
genotype; mean age; World Health Organization criteria; histological 
grade; imaging vendors and strength; b-value and maximal b-value; 
repetition time; echo time; diffusion direction; MK; MD; and 
prediction efficacy (sensitivity and specificity). To mitigate selection 
bias, the reviewers compared results and analyzed any discrepancies 
at the conclusion of the extraction process. If contentious differences 
could not be  reconciled, a senior researcher (JX) performed the 
second round of data extraction. The quality of the included studies 
was assessed using the Quality Assessment of Diagnostic Accuracy 
Studies-2 (QUADAS-2; Supplementary Tables S7, S8) (29).

FIGURE 1

Significance of diffusion kurtosis imaging (DKI) and its key parameters in patient treatment. (A) When a patient was diagnosed with glioma, DKI was 
recommended. (B) Based on the molecular expression status predicted from the patient’s DKI main parameters’ values, clinicians could more 
accurately determine the histological grade. (C) Then, this information guided decisions on the extent of surgical area and the individualized adjuvant 
treatment strategies. Finally, patient survival rates could be monitored during follow-up, contributing to the advancement of medical care.
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Statistical analysis

Mean differences in MK and MD were summarized to analyze 
variations across various glioma genotypes through inverse variance 
meta-analysis using an appropriate model. If preliminary 
heterogeneity was assessed as low or moderate (I2 ≤ 50%), a fixed 
effects model was applied; conversely, if heterogeneity was high 
(I2 > 50%), a random effects model was adopted (30). To explore 
sources of heterogeneity, further subgroup analyses based on patient 
characteristics, imaging vendors, and pre-processing parameters were 
performed. The results of the τ2 statistic and χ2 test were examined to 
evaluate variance between studies. The I2 statistic was also utilized to 
assess heterogeneity in the subgroup analyses. To estimate the 
diagnostic accuracy of DKI for glioma genotypes, a bivariate random 
effects meta-analysis with a restricted maximum likelihood estimation 
method was used. A likelihood ratio scattergram was used to assess 
model fit effects. Publication bias was examined using a funnel plot 
and the Deek’s test. A Fagan nomogram was used to indicate post-test 
probabilities based on varying pre-test probabilities for clinical 

decision making. Forest plots of diagnostic scores, odds ratio, positive 
diagnostic likelihood ratio (PLR), and negative diagnostic likelihood 
ratio (NLR) were used to quantify the diagnostic effect. Statistical 
analyses were performed using Stata 17.0 Software, Revman 5.4 and 
MedCalc.1,2,3 MedCalc was a comprehensive statistical analysis 
software widely used in various medical studies, specifically for 
receiver operating characteristic (ROC) curve analysis (31). Compared 
with Stata and Review Manager, MedCalc can control for the influence 
of heterogeneity within different studies and the limitations of small 
experimental populations. The effects of heterogeneity were 
minimized to obtained more accurate results based on DeLong and 
Binomial exact methods by manually inputting data from each study. 
Differences with p < 0.05 were considered to be statistically significant 
(32, 33).

1 https://www.stata-uk.com/software/stata

2 https://training.cochrane.org/online-learning/core-software

3 https://www.medcalc.org/

TABLE 1 Meta-analyses investigating Diffusion Kurtosis Imaging (DKI) to predict low (LGG) vs. high-grade glioma (HGG).

First 
author

Registered 
number/
conducted 
data

Diagnostic 
methods

Studies 
number

Patients 
number 

(LGG/HGG)

The pooled 
efficacy

Publish 
bias

Key findings

Falk Delgado 

A.

CRD

42017064204

N/A 5 245 (108/137) Sensitivity: 85% (95% CI, 

74–92%)

Specificity: 92% (95% CI, 

81–96%)

ROC curve: 0.94

Low The DKI parameter MK 

had high accuracy in the 

discrimination between 

glioma grades. DKI could 

be added to the routine 

imaging protocol for work-

up of suspected gliomas.

Xu C.
Up to December 

15, 2020

Histopathology or 

Clinical diagnosis
13 706 (277/429)

Sensitivity: 88% (95% CI, 

83–91%)

Specificity: 91% (95% CI, 

86–95%)

ROC curve: 0.93 (95% CI, 

0.90–0.95)

Low

DKI demonstrated a high 

diagnostic performance for 

differentiation of LGG 

from HGG.

Luan J. Up to 2019. MRI technology 16 675 (340/335)

Sensitivity: 88% (95% CI, 

82–92%)

Specificity: 95% (95% CI, 

78–91%)

ROC curve: 0.93 (95% CI, 

0.91–0.95)

Low

Quantitative parameters of 

DKI, especially MK, had 

high diagnostic accuracy 

for preoperative grading of 

gliomas.

Abdalla G.
CRD

42018099192

Histologic and 

immunohistochemistry 

examination

9 460 (230/230)

Sensitivity: 87% (95% CI, 

78–92%)

Specificity: 85% (95% CI, 

76–91%)

ROC curve: 0.92

Low

DKI showed good 

diagnostic accuracy in the 

differentiation of HGG and 

LGG gliomas further 

supporting its potential 

role in clinical practice.

Huang R.
Up to April 31, 

2018
MRI technology 5 270 (116/154)

Sensitivity: 91% (95% CI, 

78–96%)

Specificity: 91% (95% CI, 

80–97%)

ROC curve: 0.96

Low

This current meta-analysis 

provided evidences that 

DKI had the high 

diagnostic accuracy to 

differentiate HGG from 

LGG
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Results

Search strategy and included studies

No restrictions were imposed on study type to maximize the 
number of studies retrieved. The initial literature search retrieved 2061 
studies, of which 112 were identified as relevant reviews, while 1924 were 
classified as unrelated research papers and were excluded after thorough 
evaluation. The online database search strategy subsequently identified 
25 results, with 14 remaining after excluding 3 abstracts, 5 duplicate 
cohorts, and 3 studies that lacked essential information. Ultimately, 
therefore, 14 studies comprising 886 patients fulfilled the inclusion 
criteria and were included in the qualitative analysis (25, 26, 34–45). A 
PRISMA flow-diagram illustrating the screening process is presented in 
Figure 2. Patient characteristics, detailed imaging device parameters, and 
post-processing approaches are summarized in Tables 2, 3.

Assessment of quality and risk of bias

To determine whether the patients involved could be considered 
as part of the same population, the retrospective studies were classified 
according to their associated risks. Assessment according to The 
QUADAS-2 tool indicated a moderate risk of bias in 3 studies due of 
the type of clinical trial being conducted (36, 38, 45). Furthermore, the 
randomization process and outcome assessment in these 3 studies 
may have been influenced, prompting them to be  categorized as 
“having concerns” in domains D1 and D4. Based on quality and risk 
of bias assessment, it was concluded that these studies could 
be included in the meta-analysis. No additional bias was identified 
according to the QUADAS-2 criteria.

Mean difference in MK and MD among 
various glioma genotypes

Based on the inverse variance random effects model, the mean 
difference in MK between the IDH mutant and wild genotype was 
−0.21 (95% CI −0.27 to −0.15; p < 0.001). The mean difference in MD 
between the IDH mutation and wild type was 0.22 (95% CI 0.11 to 0.33; 
p < 0.001) (Figure 3A). In the random effects model, the pooled mean 
differences in MK and MD exhibited high heterogeneity (I2 = 93 and 
92%, respectively) (Supplementary Table S9). This means that the DKI 
parameter could significantly reflect the difference in molecular water 
conditions between patients with IDH mutation(s) and those with wild-
type glioma. However, neither MK nor MD effectively reflected 1p/19q 
or MGMT expression. It is important to note that, although assessment 
of the MK prediction value based on ATRX status yielded disappointing 
results, MD exhibited a potential trend toward distinguishing ATRX 
expression status in the meta-analysis (mean difference 0.24 [95% CI 
−0.01 to 0.50]; p = 0.06), which may need further exploration using 
larger experimental sample sizes. To explore the source of heterogeneity 
in the mean difference related to IDH, funnel plot analysis was 
performed to evaluate publication bias (Figures 3B,C). The plot reveals 
clear asymmetry and the presence of an outlier study for MK. However, 
the analysis indicated that publication bias for MD was minimal. 
Further analyses will be  conducted to investigate heterogeneity. It 
should be noted that, due to the limited number of data points for 

1p/19q, MGMT, and ATRX status, publication bias was not assessed nor 
was heterogeneity or investigated in these cases.

Heterogeneity resource and subgroup 
analysis

Based on inverse variance meta-analysis, it was essential to 
explore the heterogeneity of the mean difference in IDH genotypes. 
The heterogeneity of MK was lower in studies using specific imaging 
device parameters, including diffusion encoding direction ≤30 
(I2 ≤ 0.5), maximal b value <2,500 s/mm2 (I2 = 0), repetition time 
(TR) ≥ 6,000 ms (I2 = 0), and echo time (TE) < 100 ms (I2 = 0.37). 
Similar outcomes were observed in the MK heterogeneity analysis 
(Table 4). Although the mean differences in MK and MD decreased 
slightly after subgroup analysis, their diagnostic utilities remained 
effective and stable in differentiating between IDH mutant and wild-
type genotypes. However, due the low mean differences and limited 
number of studies, subgroup analyses were not performed for mean 
differences in the 1p/19q, ATRX, and MGMT genotypes.

Bivariate model

To perform a bivariate restricted maximum likelihood meta-
analysis, some studies that reported the necessary data for diagnostic 
meta-analysis, such as true positives, false positives, true negatives, 
false negatives, and area under the curve, were considered (25, 26, 34, 
36, 37, 41, 42, 44, 45). When MK was used for predicting IDH status, 
the summary sensitivity and specificity were found to be 0.87 and 
0.84, respectively (Figure 4A). The summary ROC (sROC) curve is 
presented in Figure 4B with an area under the curve of 0.88. Fagan’s 
nomogram indicated that individuals who tested positive for MK had 
an 85% probability of harboring the IDH mutant genotype 

FIGURE 2

Study selection process.
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TABLE 2 Study details for included articles.

First 
authora

Yearb Trial type Patients 
number

Mean age 
(Mean ± SD)

WHO 
criteria

Gradec Imager 
vendord

The 
number of 
b-valuee

Maximal b 
value

Repetition/
echo timee

The number 
of diffusion 
directions

Hempel JM_a 2017 Prospective 77 51 ± 15 2016 0,29,26,19 Biograph mMR 6 2,500 5900/95 30

Guo H 2022 Prospective 62 52 ± 13 2016 0,14,20,28
MAGNETOM 

Skyra
10 3,000 4500/111 62

Zeng S 2023 Retrospective 70 47 ± 12 2021 0,19,11,39
MAGNETOM 

Skyra
11 3,000 3700/72 N/A

Hempel JM_b 2016 Prospective 61 50 ± 14 2007 0,25,15,10 Biograph mMR 6 2,500 5900/95 30

Zhu H 2023 Retrospective 81 47 ± 11 2016 0,28,17,36 Discovery MR750 4 2,500 6500/85 25

Wang X 2020 Prospective 54 48 ± 15 N/A
LGG:19;

HGG:32

MAGNETOM 

Skyra
6 2,500 3000/109 30

Tan Y_a 2019 Retrospective 58 49 ± 7 2016 0,24,15,19 GE Signa HDxt 3 2000 6500/11 30

Qiu J 2023 Prospective 40 55 ± 12 N/A 0,0,14,26 Discovery MR750 3 2,500 N/A 60

Tan Y_b 2020 Retrospective 62 50 ± 13 2016
LGG:26 

HGG:36
GE Signa HDxt 3 2000 6500/85 30

Zhao J 2019 Prospective 52 45 ± 12 2016 0,24,8,20
MAGNETOM 

Verio
3 2000 5500/85 30

Wang P 2023 Prospective 67 50 ± 12 2021 0,22,20,25
MAGNETOM 

Skyra
3 2000 4200/101 N/A

Xu Z 2021 Retrospective 51 46 ± 15 N/A 0,13,17,21 GE Signa HDxt 3 2000 10,000/97 25

Hempel JM_c 2017 Retrospective 60 51 ± 15 2016 0,28,20,12 Biograph mMR 6 2,500 5900/95 30

Xie Y 2021 Prospective 91 47 ± 7 2016 0,27,20,44 Discovery MR750 3 2,500 6500/85 25

Some detail were not be shown due make the table more clear. aArticles published by the same first author are distinguished using an underscore followed by a letter; bYear of publication; cWHO Glioma Grade I, II, III, IV; dAll scanners in published articles were 3.0 
Tesla; eb-value units in sec/mm2; Repetition/Echo Time in msec.
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(Figure 5A). The PLR and NLR were calculated to be 5.51 and 0.15, 
respectively (Supplementary Figure S1C). Furthermore, the sensitivity 
and specificity for MD prediction were 0.86 and 0.84 (Figure 4D), 
respectively, with an area under the sROC curve of 0.91 (Figure 4E). 
The PLR and NLR for MD were 5.21 and 0.17 
(Supplementary Figure S1D). Fagan supported that the patients 
identified using MD would have an 84% likelihood of having IDH 
mutant gliomas after pathological examination (Figure  5B). The 
diagnostic scores and odds ratios supported the strong diagnostic 
value of both MK and MD (Supplementary Figure S1). Deek’s funnel 
plot indicated low heterogeneity for both MK and MD (Figures 4C,F). 
Bivariate meta-regression analysis revealed that factors, such as age, 
publication year, number of patients, percentage of LGG, b value, 
maximal b value, TR, TE, direction, and imaging vendor, did not 
significantly influence prediction accuracy (Table 5). Compared with 
the pooled sensitivity and specificity, the diagnostic values for MK and 
MD were inconsistent in terms of the area under the sROC curve. This 
discrepancy may be attributed to the inadequate curve fitting resulting 

from the small sample size and limited number of studies 
(Figures 6A,B). To obtain a more accurate result, MedCalc software 
was used to recalculate the areas under the sROC curve for the 
predictive values of MK and MD, which yielded values of 0.96 and 
0.76, respectively (Figure 6C).

Discussion

The present meta-analysis included 14 clinical studies comprising 
886 patients to evaluate the predictive value of DKI for the molecular 
classification of gliomas. Our findings indicated that MD and MK, as 
DKI parameters, could effectively distinguish specific molecular 
subtypes. Specifically, higher MK and lower MD values were associated 
with IDH status, underscoring the utility of these parameters for 
molecular prediction. The summarized sROC curve and meta-
regression analyses, which accounted for relevant covariates, further 
confirmed the efficacy and stability of DKI parameters for predicting 

TABLE 3 Diffusion metrics by glioma genotype for included articles.

First 
author

Mean kurtosis (Mean ± SD, patient populations) Mean diffusivity (Mean ± SD, patient populations)

IDH Mut./
Wt.

ATRX_
Del./Exp.

LOH 
1p/19q_Y/N

MGMT_
Me./Un.

IDH Mut./
Wt.

ATRX_
Del./Exp.

LOH 
1p/19q_Y/N

MGMT_
Me./Un.

Hempel 

JM_a

0.48 ± 0.11;47

0.71 ± 0.12;30

0.41 ± 0.07;25 

0.64 ± 0.13;52

0.55 ± 0.09;22 

0.58 ± 0.18;55

1.47 ± 0.38;47

1.44 ± 0.26;30

1.72 ± 0.29;25

1.33 ± 0.28;52

1.19 ± 0.25;22

1.57 ± 0.31;55
N/A

Guo H et al.
0.72 ± 0.19;18

0.70 ± 0.17;44

1.32 ± 0.36;18

1.46 ± 0.43;44

Zeng S et al.
0.56 ± 0.17;35

0.69 ± 0.14;35

Hempel 

JM_b

0.43 ± 0.09;33

0.57 ± 0.10;16

0.41 ± 0.11;19

0.51 ± 0.10;26

0.47 ± 0.05;12

0.46 ± 0.13;23

0.50 ± 0.11;19

0.48 ± 0.14;15

1.82 ± 0.37;33

1.43 ± 0.39;16

1.90 ± 0.45;19 

1.56 ± 0.29;26

1.63 ± 0.25;12 

1.74 ± 0.45;23

1.65 ± 0.33;19

1.57 ± 0.48;15

Zhu H 

et al.#

0.51 ± 0.16;42

0.67 ± 0.18;39

Wang X
0.55 ± 0.09;17

0.68 ± 0.16;34

0.60 ± 0.14;19

0.60 ± 0.15;32

0.65 ± 0.15;22

0.63 ± 0.15;29

1.69 ± 0.13;17

1.53 ± 0.27;34

1.58 ± 0.21;19

1.56 ± 0.26;32

1.52 ± 0.17;22

1.60 ± 0.28;29

Tan Y_a
0.48 ± 0.16;27

0.67 ± 0.13;31

1.49 ± 0.41;27

1.22 ± 0.26;31

Qiu J
0.67 ± 0.11;11

1.53 ± 0.25;29

1.42 ± 0.06;11

0.93 ± 0.08;29

Tan Y_b
0.48 ± 0.15;30

0.66 ± 0.14;32

0.56 ± 0.18;46

0.62 ± 0.14;16

0.90 ± 0.23;30

0.76 ± 0.24;32

0.85 ± 0.26;46

0.78 ± 0.17;16

Zhao J
0.53 ± 0.05;28

0.69 ± 0.06;23

1.49 ± 0.10;28

1.34 ± 0.11;23

Wang P
0.57 ± 0.11;42

0.76 ± 0.13;25

0.54 ± 0.11;23

0.60 ± 0.12;17

1.19 ± 0.15;42

0.90 ± 0.13;25

1.20 ± 0.14;23

1.17 ± 0.17;17

Xu Z
0.43 ± 0.15;25

0.63 ± 0.17;26

1.85 ± 0.34;25

1.47 ± 0.40;26

Hempel 

JM_c

0.34 ± 0.09;22

0.56 ± 0.10;22

Xie Y
0.59 ± 0.13;42

0.80 ± 0.08;49

0.89 ± 0.36;42

0.64 ± 0.09;49

IDH Mut./Wt., IDH Mutation or IDH wild type; ATRX_Del./Exp., ATRX Deletion or ATRX expression; LOH 1p/19q_Y/N, The loss of heterozygosity was/was not happened on Chromosome 
1q and 19q; MGMT_Me./Un., the MGMT gene existed/did not appear methylated; SD, Standard Deviation.
#The MK value of Zhu H et al. calculated by the DIPY Toolbox (https://www.dipy.org).
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IDH status. Subgroup analyses provided insights into the sources of 
heterogeneity and the impact of imaging protocol adjustments. 
We  found that TR, TE, maximal b-value, and diffusion-encoding 
direction played significant roles in reducing heterogeneity. A longer 
TR permits adequate longitudinal relaxation (T1) and signal recovery, 
thereby minimizing the influence of T1 effects on the diffusion 
parameters (46). A shorter TE reduces signal attenuation, yielding 
more stable measurements (47). Excessively low maximal b-values 
were found to improve signal quality, leading to more stable estimates 
of MK and MD (48). Although a lower diffusion direction could 
regulate heterogeneity, we considered a trade-off between heterogeneity, 
prediction value, and signal quality. Based on the I2 value and effect 
estimates from the subgroup analysis of heterogeneity, we inferred that, 
although a greater number of diffusion directions may lead to 
heterogeneity across different studies and patient populations, it also 
captured more complex and detailed information about water molecule 
movement. These enhanced data are valuable for predicting the genetic 
status of gliomas and for personalized medical treatment. Therefore, 
we recommend improving the quality of MRI images and reducing 
heterogeneity by adjusting scanning parameters, such as scan time, 
magnetic field intensity, and imaging sequence. The utility of DKI in 
predicting glioma molecular expression can be further improved by 
appropriately increasing the number of diffusion directions (49).

From a macroscopic physical structure perspective, as an imaging 
technique, DKI can detect diffusion information based on a 

non-Gaussian diffusion model and compute signal differences along 
several gradient directions to obtain a detailed signal that measures 
water diffusion (50). As critical parameters, MK and MD can capture 
and reflect different motion states of water molecules within diverse 
organizational structures. MK is typically associated with structural 
complexity and tends to increase when the diffusion pathways of water 
molecules become more intricate due to high cell density, cellular 
atypia, and alterations in the extracellular matrix. In contrast, the MD 
value reflects the degree of diffusion of all water molecules in each 
direction, indicating the diffusion ability of water molecules in tissues. 
A higher MD value represents an increase in the overall water 
molecule diffusion and a decrease in diffusion resistance (51–53). 
Furthermore, genetic status can influence tumor size, growth 
direction, texture, and blood supply, all of which can affect the 
diffusion of water molecules. These factors contribute to the predictive 
value of DKI parameters in determining molecular type.

From a genetic and microstructural perspective, previous studies 
have demonstrated that genetic expression status, particularly 
regarding IDH, can significantly influence cell metabolism and 
epigenetic changes (54, 55). For example, IDH-mutant gliomas are 
associated with the accumulation of metabolites, such as 
2-hydroxyvalerate, which can elevate intracellular oxidative stress levels 
(56). IDH mutations inhibit histone demethylation and cell 
differentiation (57). However, wild-type IDH tumor tissue exhibited 
the opposite effect. These specific genetic statuses may influence the 

FIGURE 3

Inverse variance meta-analysis. (A) The mean difference for Mean Kurtosis and Mean Diffusivity in various genotypes. (B) The funnel plot of Mean 
Kurtosis. (C) The funnel plot of Mean Diffusivity. IDH_mut., IDH mutation type; IDH_wt., IDH wild type; LOH, Loss of Heterozygosity; Y, yes; N, no; 
MGMT_Me., MGMT methylation; MGMT_Un., MGMT Unmethylation; ATRX_Del., ATRX deletion; ATRX_Exp., ATRX expression. The Mean Kurtosis value 
of Zhu H et al. calculated by the DIPY Toolbox.
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TABLE 4 Subgroup analyses of heterogeneity in prediction of IDH status.

Parameter Subgroup of 
studies

The 
number 

of 
Studies

The 
number 

of 
patients

IDH status Effect 
Estimate

τ
2 value

χ
2 value

Ι
2 value

Z value 
(p 

value)Mut. Wild

MK

Diffusion-encoding 

Direction = 25
3 223 114 109

−0.20 [−0.23, 

−0.16]
0 1.66 0

10.95 

(p < 0.01)

Diffusion-encoding 

Direction = 30
7 392 204 188

−0.18 [−0.21, 

−0.15]
0 12.05 0.5

11.89 

(p < 0.01)

Diffusion-encoding 

Direction > 60
2 99 26 73

−0.42 [−1.28, 

−0.44]
0.39 132.49 0.99

0.95 

(p = 0.34)

Maximal b value < 

2,500 s/mm2
5 289 152 137

−0.17 [−0.20, 

−0.15]
0 1.56 0

14.61 

(p < 0.01)

Maximal b 

value = 2,500 s/mm2
7 433 214 219

−0.27 [−0.39, 

−0.16]
0.02 145.83 0.96

4.71 

(p < 0.01)

Maximal b value > 

2,500 s/mm2
2 132 53 79

−0.06 [−0.21, 

0.09]
0.01 5.56 0.82

0.79 

(p = 0.43)

b value < 6 8 501 247 254
−0.26 [−0.36, 

−0.17]
0.02 144.61 0.95

5.32 

(p < 0.01)

b value ≥ 6 6 353 172 181
−0.15 [−0.21, 

−0.09]
0 26.90 0.81

4.70 

(p < 0.01)

Repetition time < 

6,000 msec
8 471 242 229

−0.16 [−0.20, 

−0.12]
0 27.88 0.75

7.72 

(p < 0.01)

Repetition time ≥ 

6,000 msec
5 343 166 177

−0.19 [−0.22, 

−0.16]
0 1.85 0.00

12.95 

(p < 0.01)

Echo time < 

100 msec
10 634 331 303

−0.18 [−0.21, 

−0.16]
0 14.31 0.37

15.72 

(p < 0.01)

Echo time ≥ 

100 msec
3 180 77 103

−0.11 [−0.22, 

0.00]
0.01 13.03 0.85

1.94 

(p = 0.05)

MD

Diffusion-encoding 

Direction = 25
2 142 67 75

0.28 [0.17, 

0.39]
0 1.09 0.08

5.19 

(p < 0.01)

Diffusion-encoding 

Direction = 30
6 348 182 166

0.16 [0.10, 

0.23]
0 8.53 0.41

4.94 

(p < 0.01)

Diffusion-encoding 

Direction > 60
2 102 29 73

0.18 [−0.43, 

0.79]
0.19 32.54 0.97

0.58 

(p = 0.56)

Maximal b value < 

2,500 s/mm2
5 289 152 137

0.23 [0.14, 

0.31]
0.01 12.06 0.67

5.43 

(p < 0.01)

Maximal b 

value = 2,500 s/mm2
4 308 150 158

0.26 [0.07, 

0.45]
0.04 62.56 0.94

2.71 

(p = 0.01)

The number of b 

value < 6
7 420 205 215

0.28 [0.15, 

0.40]
0.03 90.62 0.93

4.32 

(p < 0.01)

The number of b 

value ≥ 6
4 239 115 124

0.11 [−0.07, 

0.28]
0.02 13.17 0.77

1.21 

(p < 0.01)

Repetition time < 

6,000 msec
6 357 185 172

0.15 [0.05, 

0.26]
0.01 25.80 0.81

2.96 

(p < 0.01)

Repetition time ≥ 

6,000 msec
4 262 124 138

0.24 [0.15, 

0.32]
0 4.46 0.33

5.25 

(p < 0.01)

Echo time < 

100 msec
7 439 232 207

0.20 [0.13, 

0.28]
0.01 14.36 0.58

5.19 

(p < 0.01)

Echo time ≥ 

100 msec
3 180 77 103

0.13 [−0.06, 

0.32]
0.02 15.79 0.87

1.30 

(p = 0.19)
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FIGURE 4

Diagnosis efficacy analysis of Mean Kurtosis and Mean Diffusivity basing on IDH status. (A) Sensitivity and Specificity effect. (B) Receiver operating 
characteristic curve with Prediction & Confidence Contours. (C) The Deek’s funnel plot. (D) Sensitivity and Specificity effect. (E) Receiver operating 
characteristic curve with Prediction & Confidence Contours. (F) The Deek’s funnel plot.

FIGURE 5

Analysis of pre-test probability. (A) The analysis of Mean Kurtosis. (B) The analysis of Mean Diffusivity.
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proliferative ability and the DKI characteristics of gliomas. Zhao et al. 
conducted further analyses and demonstrated that IDH wild-type 
gliomas exhibited high proliferative activity, which influenced tumor 
progression and MK and MD values in DKI. More specifically, the 
movement of water molecules in complex wild-type IDH tissues was 
hindered, leading to a lower diffusion coefficient and, consequently, a 
reduced MD value. Furthermore, the diffusion trajectory of water 
molecules was more irregular, causing a deviation from the Gaussian 
distribution and resulting in a higher MK value (26, 58, 59). These 
factors may explain why MK and MD can differentiate IDH conditions. 
However, DKI parameters appeared to be less effective in distinguishing 
specific genetic statuses, such as 1p/19q codeletion, MGMT, and 
ATRX. Based on the biological studies, we found that these genes did 
not significantly influence the diffusion characteristics of water 
molecules. For example, the mechanisms underlying 1p/19q codeletion 
and ATRX primarily regulate genomic stability and chromosomal 
structural changes (60). Additionally, the methylation status of MGMT 
mainly affects the sensitivity of patients with glioma to 

chemotherapeutic drugs (61). Thus, genetic alterations do not directly 
affect the tissue structure or diffusion characteristics of water molecules 
in tumors, leading to the conclusion that DKI may not accurately 
reflect the expression status of these genes within tumor structures.

Recent meta-analyses demonstrated that DKI can distinguish the 
LGG and HGG and provide valuable insights (Table 1). With advances 
in imaging technology, radiologists and clinicians want to identify 
whether the predictive utility of DKI in determining the molecular 
genetic status of gliomas is stable equally. Our analysis suggests that 
DKI and its parameters, particularly MK and MD, offer some utility 
in differentiating glioma molecular status. However, a model with 
stable accuracy has not yet been sufficiently tested. Therefore, 
we suggest that DKI should be of interest to researchers, and large-
scale clinical trials and explorations should be conducted to compare 
it with other modes to identify which MRI mode yields more stable 
diagnostic utility. We believe that predictive capabilities will improve 
gradually in the future, paving the way for advances in the noninvasive 
molecular diagnosis of gliomas.

TABLE 5 Meta-regression analysis of diffusion kurtosis imaging prediction accuracy.

DKI parameter Characteristics Coef. Std. err. t p > |t| 95% CI

MK

Age < −0.01 0.20 −0.02 0.99 −0.55 0.55

Publish year −0.18 0.24 −0.65 0.55 −0.83 0.52

The number of Patients 0.001 0.05 0.02 0.98 −0.13 0.13

LGG percent 3.10 5.42 0.57 0.62 −11.96 18.18

The number of b value −0.02 0.15 −0.10 0.93 −0.44 0.41

Maximal b value < −0.01 < 0.01 −0.65 0.55 < −0.01 < 0.01

Repetition time 0 0 0.66 0.55 < −0.01 < 0.01

Echo time −0.02 0.04 −0.51 0.64 −0.13 0.09

The number of (diffusion) 

directions
−0.04 0.04 −1.07 0.36 −0.15 0.08

Vendor A 2.49 1.38 1.81 0.15 −1.33 6.30

Vendor B −1.14 0.81 −1.41 0.23 −3.40 1.11

Vendor C −0.28 1.29 −0.17 0.88 −3.80 3.37

Vendor D 0.92 1.32 0.70 0.52 −2.75 4.60

MD

Age −0.09 0.17 −0.55 0.68 −2.26 2.07

Publish year 0.15 0.24 0.60 0.66 −2.96 3.25

The number of Patients −0.03 0.04 −0.70 0.61 −0.49 0.44

LGG percent −1.37 5.92 −0.23 0.86 −76.65 73.91

The number of b value −0.22 0.29 −0.76 0.59 −3.94 3.50

Maximal b value < −0.01 < 0.01 −0.76 0.59 −0.02 0.02

Repetition time 0 0 −0.76 0.58 < −0.01 < 0.01

Echo time < −0.01 0.01 −0.48 0.72 −0.15 0.14

The number of (diffusion) 

directions
−0.05 0.17 −0.31 0.81 −2.26 2.15

Vendor A −0.67 0.88 −0.76 0.59 −11.83 10.49

Vendor B − − − − − −

Vendor C − − − − − −

Vendor D 0.67 0.86 0.76 0.59 −10.49 11.83

To avoid rater bias, MRI vendors were anonymized. For example, Vendor A was Biograph brand; Vendor B: Magnetom brand; Vendor C: Discovery brand; Vendor D: GE Signa brand. In the 
meta-regression analysis of MD, the Vendor B and C only was involved in the single included article. Thus, the influence of Vendor B and C could not be analyzed in the MD.
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Compared with recent meta-analyses, our analysis further 
supported that DKI can predict the glioma molecular subtypes, 
especially IDH status. However, the present meta-analysis had some 
limitations. First, although we provided data supporting the utility 
of DKI parameters in predicting IDH status, the related-
parameter(s) prediction thresholds remained unclear due to 
missing patient data and the insufficient sample size. Second, 
equally important genotyping, such as 1p/19q, ATRX, and MGMT, 
were not analyzed in this meta-analysis due to the absence of 
relevant information, which could not obtained despite attempts to 
contact the authors of the studies in question. As such, studies with 
larger populations are necessary to further investigate 
these parameters.

Conclusion

Our findings provide evidence supporting the predictive utility of 
DKI in glioma molecular classification, particularly regarding IDH 
status. We  recommend that DKI and its associated parameters 
be explored in future clinical trials and compared with other modalities 
to identify more stable and valuable models. This will improve the 
accuracy and comprehensiveness of future diagnostic models.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding author.

Author contributions

HZ: Conceptualization, Data curation, Formal analysis, 
Investigation, Methodology, Writing  – original draft. ZH: 

Supervision, Validation, Visualization, Writing – review & editing. 
QH: Formal analysis, Writing – original draft. XL: Investigation, 
Writing  – original draft. JX: Conceptualization, Data curation, 
Formal analysis, Investigation, Methodology, Software, Supervision, 
Validation, Visualization, Writing – original draft, Writing – review 
& editing.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This study was supported 
by the National Natural Science Foundation of China (82172028).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

FIGURE 6

Likelihood ratio scatter gram and summarized Receiver Operating Characteristic analysis of Mean Kurtosis and Mean Diffusivity. (A) The likelihood ratio 
scatter gram of Mean Kurtosis. (B) The likelihood ratio scatter gram of Mean Diffusivity. (C) The re-calculation in MedCalc.
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SUPPLEMENTARY FIGURE S1

The quantification of Diffusion Kurtosis Imaging diagnostic effects. (A) The 
forest plots of diagnostic score, odds ratio in Mean Kurtosis. (B) The forest 
plots of diagnostic score, odds ratio in Mean Diffusivity. (C) The forest plots 
of positive diagnostic likelihood ratio and negative diagnostic likelihood ratio 
in Mean Kurtosis. (D) The forest plots of positive diagnostic likelihood ratio 
and negative diagnostic likelihood ratio in Mean Diffusivity.
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