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Background: The traditional procedure of intracranial aneurysm (IA) diagnosis 
and evaluation in MRA is manually operated, which is time-consuming and 
labor-intensive. In this study, a deep learning model was established to diagnose 
and measure IA automatically based on the original MR images.

Methods: A total of 1,014 IAs (from 852 patients) from hospital 1 were included 
and randomly divided into training, testing, and internal validation sets in a 7:2:1 
ratio. Additionally, 315 patients (179 cases with IA and 136 cases without IA) 
from hospital 2 were used for independent validation. A deep learning model 
of MR 3DUnet was established for IA diagnosis and size measurement. The 
true positive (TP), false positive (FP), false negative (FN), recall, sensitivity, and 
specificity indices were used to evaluate the diagnosis performance of MR 
3DUnet. The two-sample t-test was used to compare the size measurement 
results of MR 3DUnet and two radiologists. A p-value of < 0.05 was considered 
statistically significant.

Results: The fully automatic model processed the original MRA data in 13.6 s 
and provided real-time results, including IA diagnosis and size measurement. 
For the IA diagnosis, in the training, testing, and internal validation sets, the 
recall rates were 0.80, 0.75, and 0.79, and the sensitivities were 0.82, 0.75, and 
0.75, respectively. In the independent validation set, the recall rate, sensitivity, 
specificity, and AUC were 0.71, 0.74, 0.77, and 0.75, respectively. Subgroup 
analysis showed a recall rate of 0.74 for IA diagnosis based on DSA. For IA size 
measurement, no significant difference was found between our MR 3DUnet and 
the manual measurements of DSA or MRA.

Conclusion: In this study, a one-click, fully automatic deep learning model 
was developed for automatic IA diagnosis and size measurement based on 
2D original images. It has the potential to significantly improve doctors’ work 
efficiency and reduce patients’ examination time, making it highly valuable in 
clinical practice.
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Introduction

Intracranial aneurysm (IA) is an abnormal saccular protrusion on 
the intracranial arterial wall. Rupture of IA is the third most common 
cerebrovascular accident disease, following cerebral thrombosis and 
hypertensive intracerebral hemorrhage (1, 2), with an annual 
incidence rate of approximately 1% (3). IA rupture is the primary 
cause of non-traumatic subarachnoid hemorrhage (SAH), accounting 
for 85% of all SAH cases, which have high mortality (approximately 
50%) (4) and disability rate (approximately 10–20%) (5). If IA can 
be detected and diagnosed in a timely manner, preventive treatment 
can be  taken to reduce the risk of rupture and avoid serious 
consequences. Therefore, early detection and diagnosis of IA are very 
important in clinical practice (6).

At present, the gold standard for diagnosing IA is digital 
subtraction angiography (DSA), while computed tomography 
angiography (CTA) is the most commonly used screening method in 
clinical practice. However, both are invasive examinations requiring 
contrast media and radiation exposure. Magnetic resonance 
angiography (MRA) is an alternative method to CTA and DSA that 
does not require invasion, contrast agents, or radiation exposure (7, 8). 
The traditional procedure of IA diagnosis and evaluation in MRA 
includes three steps: 3D reconstruction, IA identification, and size 
measurement. The entire process is manually operated, which is time-
consuming and labor-intensive. Long processing times greatly affect 
the rapid diagnosis of IA, and the increased workload of radiologists 
may lead to missed diagnoses and serious consequences. Therefore, 
developing a fast and automated technology for the automatic diagnosis 
and size measurement of IA has important clinical significance.

In recent years, deep learning technology has developed rapidly 
and demonstrated significant value in the diagnosis and prognosis 
evaluation of many diseases. Previous studies have successfully applied 
it for the automatic reconstruction of head blood vessels and the 
automatic diagnosis of IA on CTA and DSA images (9–14). There 
were also studies using deep learning for IA recognition based on 3D 
reconstruction MRA images (15–20). However, until now, there was 
no artificial intelligence model to automatically perform IA diagnosis 
and size measurement on original 2D MR images. In this study, 
we collected samples from multiple centers and developed a deep 
learning model to automatically diagnose intracranial IA and measure 
its size based on original 2D MR images. We  believe it would 
significantly help doctors improve their work efficiency and reduce 
patients’ examination time, which was of great significance for the 
early diagnosis and prognosis improvement of IA.

Materials and methods

Research participants

The study was approved by the Ethics Committee of our hospital 
(No. 2022(23), dated 26 April 2022). As this is a retrospective study, 
informed consent was not required.

A total of 928 patients with IA were retrospectively collected from 
hospital 1 between January 2015 and September 2022. All IAs were 
diagnosed by two radiologists with more than 8 years of brain MRI 
experience. If their diagnosis was inconsistent, a DSA examination was 
used for further confirmation. The inclusion criteria were as follows: (a) 
diagnosis of IA by MRA or (and) DSA and (b) the maximum diameter 
of IA was greater than 2 mm. The exclusion criteria were as follows: (a) 
age < 18 years, (b) poor MR image quality; and (c) undergoing aneurysm 
embolization or clipping surgery before MRI examination. All IAs were 
randomly divided into training, testing, and internal validation sets in a 
7:2:1 ratio. In addition, 365 patients were enrolled from hospital 2 
(including 179 patients with untreated intracranial aneurysms and 136 
normal controls) between February 2018 and October 2022 for external 
validation. The flowchart of patient enrollment is shown in Figure 1.

Clinical data collection MRA and DSA 
imaging

The clinical characteristics of age and sex were collected from the 
medical records. All MR images were obtained from four different MRI 
manufacturers. For the MRI systems, including the 3.0 T Magnetom 
Prisma, 3.0 T Trio Tim, and 1.5 T Magnetom Essenza by Siemens 
Corporation, the MRA data were obtained using the following 
parameters: repetition time (TR), 22 ms; echo time (TE), 3.69 ms; flip 
angle, 20°; field of view (FOV), 384 × 384; and section thickness: 
0.6 mm. The scanning parameters of the T1WI sequence were as follows: 
TR, 153 ms; TE, 2.4 ms; FOV, 250 × 250; thickness, 5 mm; inter-slice 
gap, 1 mm; and flip angle, 70°. The scanning parameters of the T2WI 
sequence were as follows: TR, 5,560 ms; TE, 89 ms; FOV, 250 × 250; 
thickness, 5 mm; inter-slice gap, 1 mm; and flip angle, 150°. For an MRI 
of 3.0 T Achieva made by Philips Corporation, the MRA data were 
obtained with the following parameters: TR, 25 ms; TE, 3.45 ms; flip 
angle, 20°; FOV, 332 × 332; and section thickness: 0.6 mm. The scanning 
parameters of the T2WI sequence were as follows: TR, 532 ms; TE, 
10.8 ms; FOV, 240 × 200; thickness, 5 mm; inter-slice gap, 2 mm; and flip 
angle, 150°. The scanning parameters of the T2WI sequence were as 
follows: TR, 4,569 ms; TE, 98.5 ms; FOV, 240 × 200; thickness, 5 mm; 
inter-slice gap, 2 mm; and flip angle, 180°. The DSA images were 
acquired from GE Innova IGS 5 and Innova 3100 with a rotational 
acquisition of 7.5 frames per second. Each DSA sequence consists of 
15–30 frames with an image resolution of 1,024 × 1,024 pixels per frame.

IA identification and deep learning

Two radiologists with over 8 years of experience manually and 
independently performed the IA identification and size measurement 
in the MRI and DSA scanning workstation. According to the 
morphology, all IAs were divided into regular and irregular subgroups. 
The maximum distance separating any two points on the surface of 
the IA was established as the maximum diameter, categorizing the IAs 
into three subgroups: < 3 mm, 3–5 mm, and > 5 mm.
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A 3D CNN called MR 3D Unet was proposed for the automatic 
diagnosis and size measurements of IA from original 2D MR images. 
This MR 3D Unet was a symmetric encoder–decoder architecture that 
typically consists of four layers of encoders and four layers of decoders. 
A residual module in the encoder, instead of the original tiling 
structure, was used to extract the IA context information. Each layer 
of the encoder consists of two 3 × 3 × 3 convolutions + ReLU and a 2 
× 2 × 2 max-pooling, which gradually downsamples and increases the 
number of channels to extract the high-level features, in which the 
number of convolutional channels in the four layers of the encoder is 
64, 128, 256, and 512, respectively. The residual structure symmetric to 
the encoder was used in the decoder. Each layer of the decoder consists 
of a 2 × 2 × 2 deconvolution + jump-join (spliced to the features of 
corresponding layers of the encoder) and two 3 × 3 × 3 convolutions + 
ReLU, which gradually upsample and decrease the number of channels 
to recover the spatial details. The bottom layer connects the encoder to 
the decoder by two 3 × 3 × 3 convolutions, and the final segmentation 
result is output by a 1 × 1 × 1 convolution. Through the transformation 
of the decoder, the encoded features were extended to a full-resolution 
image with the same size and dimensions as the input volume. The 
advantage of using the residual model was that it ensured stable 
training even as the network depth increased significantly. Moreover, 
the fusion of different levels of features could be achieved through 
U-shaped skip connections. Most importantly, to increase the receptive 
field of the network, the dilated convolutions were used in the encoder’s 
top layer. The benefit of dilated convolutions lies in their ability to 
expand the receptive field without sacrificing information, thereby 

ensuring that each convolutional output encompasses a broader 
spectrum of data. Dilated convolutions could extract more global 
information and contextual features from the original 2D MR images.

In our MR 3D Unet, the input volume of the original MR image 
was set to 80*80*80. To balance the data distribution, we sampled 
patches containing aneurysms as positive samples and patches without 
aneurysms as negative samples. Before these samples entered the 
network, we  performed data augmentation, including rotation, 
flipping, and scaling. The pixel values of the patches were normalized 
to between 0 and 1. Our MR 3D Unet was implemented using 
PyTorch. Initially, a learning rate of 0.001 was used, which dropped to 
half every 25 epochs. The model was trained for 200 epochs using 
mini-batch gradient descent with a momentum of 0.9, and the average 
binary cross-entropy loss and Dice loss were used as the loss functions 
to optimize the network. In the test stage, the patches were generated 
by sequential sampling in the original MR image. Long and short 
diameters of the target IA were automatically calculated. The long 
diameter was defined as the maximum distance between any two 
points within the IA dome. The short diameter was defined as the 
maximum distance perpendicular to the long diameter (Figure 2).

Statistical analysis

Multiple parameters, including true positive (TP), false positive 
(FP), false negative (FN), recall, sensitivity, and specificity indices, 
were used to assess the diagnosis performance of the MR 3DUnet. A 

FIGURE 1

Flowchart of the patient enrollment.
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TABLE 1 Characteristics of patients in hospital 1 and hospital 2.

Hospital 1 Hospital 2

Variables

Age 58.04 ± 12.54 49.07 ± 10.51

Sex

  Male 248 (29.1%) 169 (53.7%)

  Female 604 (70.9%) 146 (46.3%)

Morphology

  Regular 787 (77.6%) 165 (83.3%)

  Irregular 227 (22.4%) 33 (16.7%)

Size

  <3 mm 366 38

  3–5 mm 420 101

  >5 mm 228 59

Location

  ACCA 98 (9.7%) 10 (5.05%)

  ICA 777 (76.6%) 174 (87.9%)

  MCA 77 (7.6%) 10 (5.05%)

  PCA 62 (6.1%) 4 (2.0%)

two-sample t-test was employed to compare the size measurements 
obtained from MR3DUnet and radiologists. Inter-observer agreement 
between the two radiologists was quantified using the intraclass 
correlation coefficient (ICC). ICC > 0.75 means good consistency. A 
subgroup analysis of the aneurysm diagnosis and size measurement 
based on DSA was additionally performed. The data analysis was 
performed using R software (version 4.3.21).

Results

The demography of the included patients is shown in Table 1. A 
total of 852 patients (1,014 IAs) from hospital 1 were used for the 
training, testing, and internal validation sets. A total of 178 patients 
had multiple independent IAs: 168 patients (19.7%) had 2 lesions, and 
10 patients (1.2%) had 3 lesions. The locations of IAs were as follows: 
anterior communication artery and anterior cerebral artery (ACCA) 
(98 cases, 9.7%), internal carotid artery (ICA) (777 cases, 76.6%), 
middle cerebral artery (MCA) (77 cases, 7.6%), and posterior 
circulation artery (PCA) (62 cases, 6.1%). A total of 315 patients 
(including 179 patients with untreated intracranial aneurysms and 136 
normal controls) from hospital 2 were included as independent 
validation. Among 18 patients with multiple independent IAs, 17 
patients (9.5%) had two lesions and 1 patient (0.6%) had 3 lesions. The 
distribution of IAs was as follows: ACCA (10 cases, 5.05%), ICA (174 
cases, 87.9%), MCA (10 cases, 5.05%), and PCA (4 cases, 2.0%).

The fully automatic model could quickly process the original MRA 
data in 13.6 s and obtain real-time results, including IA diagnosis and 
size measurement. For the IA diagnosis, in the training, testing, and 

1 http://www.r-project.org

internal validation sets, the recall rates of the MR 3DUnet were 0.80, 
0.75, and 0.79, and the sensitivities were 0.82, 0.75, and 0.75, 
respectively. In the independent validation set, the recall rate, 
sensitivity, specificity, and AUC were 0.71, 0.74, 0.77, and 0.75, 
respectively (Table  2; Figure  3). For the IA size measurement, no 
significant difference was found between our MR 3DUnet and the 
manual measurements of the two radiologists. The MR 3DUnet 
measured the long and short diameters of the IAs as 6.27 ± 2.43 mm 

FIGURE 2

Flowchart of the traditional manual method and our automatic deep learning algorithm for IA diagnosis and measurement.
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and 4.62 ± 1.79 mm, respectively. The long and short diameters 
measured manually on MRA were 5.10 ± 2.66 mm and 3.81 ± 1.86 mm, 
respectively. The intraclass correlation coefficient (ICC) showed good 
consistency between the two radiologists (ICC > 0.75).

In the independent validation set, DSA data were available for 67 
patients (74 aneurysms) out of 179 patients with IAs. Subgroup 
analysis showed a recall rate of 0.74 for IA diagnosis based on the DSA 
standard. The recall rate for irregular IAs was 0.73, while for regular 
IAs it was 0.75. The recall rates for IAs with sizes of <3 mm, 3–5 mm, 
and > 5 mm were 0.69, 0.79, and 0.70, respectively (Table 3). The long 
and short diameters measured manually on DSA were 6.27 ± 2.43 and 
5.10 ± 2.66, respectively. The intraclass correlation coefficient (ICC) 
showed good consistency between the two radiologists (ICC > 0.75).

Discussion

In the current clinical study, the 3D reconstruction, IA 
identification, and size measurement of MRA were very time-
consuming and labor-intensive. A reliable artificial intelligence tool 
could greatly reduce the workload of radiologists and improve the 
efficiency of clinical diagnosis. In this research, we developed a deep 
learning algorithm utilizing the 3DUnet architecture for automatic 

diagnosis and size measurement of IA directly from the original 2D 
MR images. In terms of diagnosis, the recall rate, sensitivity, and 
specificity were 0.71, 0.74, and 0.77, respectively, in the external test 
set. In terms of size measurement, the results of our model showed no 
significant difference from the manual measurements taken by the two 
radiologists. To our knowledge, this is the first deep learning tool 
capable of automatically detecting and measuring IAs in raw 2D MRA 
data. The fully automatic “one-click” model could quickly process the 
original data within 15 s and obtain real-time results with high 
accuracy. It has the potential to significantly improve medical 
efficiency and reduce the workload of radiologists in clinical practice.

In this study, our 3DUnet was proposed based on the CNN model. 
The Unet was used because its architecture, with encoder and decoder 
blocks, offers high efficiency and accuracy, effectively extracting 
features from the global and local domains (21–23). The CNN 
algorithm based on this architecture provided pixel-level estimation, 
which could be used for detailed spatial prediction, such as the size of 
aneurysms. In addition, this network was very fast, and the 
segmentation of a 512 × 512 image took less than 1 s on the recent 
GPU (24). Our “one-click” 3DUnet model had many advantages 
compared to previously reported deep learning models. Previously, 
Nakao et al. (19) established a deep learning model that could detect 
IA using a “2.5D” net (applying the 9 directions of MIP images to 
cellular neural networks). Joo and Choi (20) developed a deep learning 
model combining 3D Unet and 3D ResNet, which could detect IA in 
approximately 1 min. Stember et  al. (25) successfully developed a 
CNN for IA detection and size measurement from magnetic resonance 
MIP images. However, these previous models were all based on 3D 
images, requiring radiologists to first perform 3D reconstruction on 
the original image. Additionally, most of these models lacked 
automatic measurement functions, requiring doctors to manually 
measure the size of the aneurysm. This greatly reduced work efficiency 
and reduced its clinical value.

TABLE 2 Diagnostic performance of our deep learning model.

Patients Aneurysms TP FP FN Recall F1 
score

Precision Sensitivity Specificity

Training set 614 750 598 291 152 0.8 0.73 0.67 0.82

Internal 

validation set

79 89 70 43 19 0.79 0.69 0.62 0.75

Test set 159 175 132 122 43 0.75 0.62 0.52 0.75

Independent 

validation

315 198 140 65 58 0.71 0.69 0.68 0.74 0.77

TP: true positive; FP: false positive; FN: false negative. Recall: lesion-level recall. Sensitivity: patient-level sensitivity. Specificity: patient-level sensitivity.

FIGURE 3

ROC curve and AUC value.

TABLE 3 Results of subgroup analysis of the aneurysms diagnosis based 
on DSA.

Subgroups TP FN FP Recall

Diagnosis based on DSA 55 19 31 0.74

Morphology Regular 39 13 0.75

Irregular 16 6 0.73

Size <3 mm 9 4 0.69

3–5 mm 27 7 0.79

>5 mm 19 8 0.70
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In the subgroup analysis, we  found that our 3D Unet model 
showed a good ability for aneurysms of different shapes, indicating 
that the shape had minimal impact on the model’s accuracy. However, 
it is worth noting that the size of the IA significantly affected the 
performance of the model. The recall rate for aneurysms (<3 mm) was 
relatively lower, which aligns with previous studies (15, 20). For IA 
diagnosis, the recall of our algorithm was not very high. The possible 
reason was that most of the included IAs were small in size. In this 
study, small aneurysms (<3 mm) accounted for 33% of all IAs, which 
was much higher than those in previous studies (approximately 11%) 
(16, 26). On the other hand, to enhance the generalization of the 
model, our data were included from two different hospitals and four 
different MRI manufacturers. This might reduce the accuracy of the 
model but increase its reliability.

This study had several limitations. First, it was retrospective. 
Prospective studies with long-term longitudinal follow-ups could help 
further validate our model. Second, due to the continuous collection of 
all cases, the numbers of aneurysms in MCA, ACCA, and PCA were 
imbalanced. Finally, our algorithm was trained using unruptured 
aneurysms and might not be suitable for ruptured aneurysms. In the 
future, we will strive to overcome these limitations to improve and validate 
the accuracy of the model using larger samples and prospective studies.

Conclusion

In this study, a one-click fully automatic deep learning model was 
developed for automatic IA diagnosis and size measurement based on 
2D original MR images. It has the potential to significantly improve 
doctors’ work efficiency and reduce patients’ examination time, 
making it highly valuable in clinical practice.
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