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Dementia is a syndrome of impaired brain function in which cognitive functions such 
as memory, language, attention, direction, and judgment are impaired, affecting 
or interfering with daily functioning. As dementia becomes more widespread, it 
is crucial to investigate the underlying mechanisms that contribute to cognitive 
decline. C-C chemokine receptor 5 (CCR5) has been extensively researched for its 
role in immune responses and function as a co-receptor in HIV infection. Current 
research indicates that CCR5, which acts as a regulator of synaptic plasticity, 
is involved in modulating various forms of learning and memory. Most studies 
suggest that CCR5 generally has a detrimental effect on diseases associated with 
dementia. This review seeks to deliver an extensive analysis of CCR5’s role in 
cognitive processes by summarizing existing literature from both animal and human 
studies. It will cover the involvement of CCR5 in standard learning and memory 
functions, as well as in various types of dementia. The review will specifically address 
conditions such as HIV-related neurocognitive impairment (HAND), Alzheimer’s 
disease (AD), stroke, vascular dementia, multiple sclerosis (MS), frontotemporal 
dementia (FTD), dementia with Lewy bodies (DLB), and Parkinson’s disease with 
dementia (PDD). Based on the fact that CCR5 plays a contributing role in many 
diseases that cause dementia, this review also proposed CCR5 inhibition as a 
possible target for alleviating and ameliorating dementia.
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1 Introduction

Dementia encompasses a significant cognitive decline that disrupts daily independence 
and is more accurately described as a syndrome rather than a single disease. It results from 
various primary neurologic, neuropsychiatric, and medical conditions, often involving 
multiple contributing diseases (1). With more than 55 million individuals impacted worldwide 
and nearly 10 million new cases emerging each year, the global prevalence of dementia is 
projected to increase to 152.8 million by 2050. In China alone, approximately 15 million 
people over 60 years live with dementia, representing a quarter of the global total (2).

Advancing age, genetic factors, systemic vascular diseases, and infections are key risk 
factors for dementia (3–5). Dementia is often categorized into neurodegenerative and 
non-neurodegenerative diseases (Table  1), with neurodegenerative conditions being the 
predominant cause. Mixed dementia, involving different elements, is also common (1). 
Proinflammatory biomarkers correlate with the extent of cognitive deterioration. The 
hippocampus, crucial for memory and learning, is especially vulnerable to neural impairments 
due to inflammation, owing to its elevated inflammatory marker expression (6). Among these 
markers are Interleukin-1α (IL-1α), Interleukin-1β (IL-1β), Interleukin-6 (IL-6), tumor 
necrosis factor-α (TNFα), and CCL2, contributing to microglial activation, synaptic 
irregularities, cognitive decline, and hindered adult neurogenesis (7, 8).
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Chemokine receptors are increasingly recognized for their 
functions in cognitive function (9). CCR5, in particular, has been 
studied for its involvement in various neuroinflammatory processes 
and its impact on cognition. These studies have focused on diseases 
such as HIV-related neurocognitive impairment (HAND) 
(Supplementary Table  1), Alzheimer’s disease (AD) 
(Supplementary Table 2), Stroke (Supplementary Table 3), multiple 
sclerosis (MS) (Supplementary Table  4), Vascular dementia (10), 
Frontotemporal Dementia (FTD) (11), Dementia with Lewy Bodies 
(DLB) (12), and Parkinson’s disease with dementia (PDD) (12). Most 
studies on CCR5 have indicated that dementia is associated with 
elevated expression of CCR5 or its ligands. These findings propose 
that either inactivating CCR5 or causing its deficiency might 
diminish inflammation and improve cognitive function. However, 
two studies have posited that CCR5 deletion may exacerbate memory 
dysfunction and enhance neuronal death in AD and stroke (13, 14).

2 CCR5 and its role in learning and 
memory

CCR5 is a G protein-coupled receptor (GPCR) with seven 
transmembrane domains (Figure  1), and its gene is situated on 
chromosome 3p21. Because of its important function in the immune 
system, CCR5 expression is observed in various immune cells (15). In 
the central nervous system (CNS), CCR5 is highly enriched in many 
brain regions, including the CA1 region of the hippocampus and 
cortex (16). The hippocampus and cortex are essential for acquiring, 
consolidating, and retrieving episodic and spatial memories, which 
contribute to cognitive development. Compared with astrocytes and 
neurons, CCR5 is expressed more in microglia in the CNS (17). CCR5 
is thought to be  involved in the immunological processes and 
inflammation within the CNS. However, some evidence shows that 
CCR5 activation may also influence brain functions beyond immune 
responses, potentially affecting brain development and neuronal 
transmission. CCR5 interacts with several ligands, including CCL3, 
CCL4, CCL5, CCL8, CCL11, CCL14a, and CCL16 (18).

Numerous studies have investigated CCR5’s role in learning and 
memory (Table 2). It is considered a significant inhibitor of neuronal 

plasticity in the hippocampus and cortex, thereby diminishing 
learning and memory capabilities (16). CCR5 affects these cognitive 
functions by modulating the mitogen-activated protein kinases 
(MAPKs) (19, 20) and cAMP-responsive element-binding protein 
(CREB) (19, 21, 22) signaling pathways, which are crucial for 
hippocampal learning, memory, and cortical plasticity. Disruption 
of CCR5 function leads to increased levels of MAPK and CREB 
during learning, which boosts synaptic plasticity, and long-term 
potentiation (LTP) (23), and improves hippocampal learning and 
memory. Conversely, overexpression of CCR5 results in deficits in 
these cognitive areas. While CCR5 knockout does not alter MAPK 
or CREB signaling under baseline conditions, it increases their 
levels after training. This enhanced signaling correlates with 
improved learning and memory. In line with its effects on MAPK/
CREB signaling, CCR5 knockout also enhances LTP in the 
hippocampal CA1 region and improves performance in diverse 
recognition tasks (16). Inhibition of CCR5 with maraviroc, similar 
to genetic CCR5 ablation, also enhances contextual memory in rats 
following fear conditioning training (24). In middle-aged mice, the 
administration of maraviroc to block CCR5 alleviated deficits 
related to memory linkage (21). This finding aligns with the notion 
that reducing CCR5 levels can enhance learning and memory. In 
contrast, transgenic mice with CCR5 overexpressed in excitatory 
neurons exhibited impaired learning and memory, indicating that 
CCR5 serves an inhibitory function in neuronal plasticity and 
memory processes.

TABLE 1 Classification of causes of dementia.

Causes of 
neurodegenerative 
dementia

Causes of non-
neurodegenerative 
dementia

Alzheimer’s disease

Dementia with Lewy bodies

Vascular dementia

Frontotemporal lobar degeneration

Parkinson’s disease

Vitamin deficiencies (e.g., B12, 

thiamine)

Hypothyroidism

Normal pressure hydrocephalus

Chronic alcohol abuse

Chemotherapy-related cognitive 

dysfunction Infections (e.g., human 

immunodeficiency virus, 

neurosyphilis)

Intracranial masses (e.g., subdural 

hematomas, brain tumors)

Stroke and traumatic brain injury

Psychiatric illness

FIGURE 1

CCR5 belongs to the family of G protein-coupled receptors 
characterized by seven transmembrane domains, along with three 
extracellular and three intracellular loops. The extracellular 
N-terminus, positioned on the outer surface of the plasma 
membrane, serves as the principal site for chemokine ligand 
recognition and initial interaction. Extracellular loop regions 
cooperate with both the N-terminal domain and transmembrane 
segments to maintain the stability of the ligand-receptor complex, 
while also mediating structural rearrangements following ligand 
engagement to facilitate signal propagation across the membrane. 
The seven transmembrane α-helical bundles undergo spatial 
reorientation upon ligand binding, resulting in receptor activation 
through transition from a resting to an activated conformation - an 
essential mechanistic event in signal transduction. The intracellular 
loop structures function as molecular relays, conveying structural 
alterations from the transmembrane core to downstream 
intracellular signaling molecules. These loops additionally contain 
phosphorylation motifs targeted by GPCR kinases, playing pivotal 
roles in processes such as receptor desensitization and subsequent 
internalization. This figure was created with BioGDP.com.
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Similarly, CCR5 activation by its ligand CCL3 negatively impacts 
the performance of Y-maze tasks. These effects can be counteracted 
by maraviroc, a CCR5 antagonist. Notably, maraviroc also completely 
prevents CCL3-induced impairments in long-term potentiation 
(LTP). Importantly, maraviroc does not affect plasticity in the absence 
of CCL3 activation, indicating that CCR5’s tonic activity alone does 
not influence synaptic plasticity (25). During the contextual memory 
linking test, the CCL5 group exhibited diminished contextual memory 
linking, reflecting that increased CCR5 activity impairs this process. 
Likewise, CCL5 knockout (Ccl5−/−) mice, like CCR5 knockout 
(Ccr5−/−) mice, displayed a prolonged linking window, underscoring 
the importance of CCL5 in regulating CCR5’s role in memory linking. 
An age-related rise in CCL5–CCR5 expression results in memory-
linking impairments in aged mice, which can be  reversed by 
maraviroc, suggesting significant potential for clinical 
applications (21).

3 CCR5 in HIV-associated 
neurocognitive disorder (HAND)

HIV-associated neurocognitive disorder (HAND) is a 
comprehensive syndrome of neurological deficits observed in 
individuals with HIV, manifesting in various stages of cognitive, 
behavioral, and motor impairments (26). These may include 
difficulties with complex tasks, delayed speech, diminished initiative, 
reduced fine motor skills and speeds, unsteady gait, and deficits in 
learning and memory. A recent meta-analysis of 225 studies reveals 
that approximately 40% of people living with HIV experience 
cognitive impairment (27).

CCR5 serves as a coreceptor for HIV entry into host cells after the 
gp120 binds to the CD4 receptor (28). HIV-infected cells, cross the 
blood–brain barrier, leading to viral replication in microglia and 
macrophages and subsequent brain infection (29). Additionally, 
astrocytes and neurons may also act as target cells for HIV (30). 
Up-regulation of CCR5 has been observed in brain samples from 

AIDS patients (31), as well as in microglia, astrocytes, and neurons 
exposed to HIV proteins (32). Some evidence shows that CCR5 may 
worsen cognitive impairments linked to HIV infection 
(Supplementary Table  1), and the cognitive performance of HIV 
patients has been improved to varying degrees after the use of 
pharmacological inhibitors of CCR5 (33–35).

CCR5 may contribute to HAND by promoting the release of 
neurotoxic mediators through activated glial cells. This process 
involves CCR5-mediated secretion of cytokines like TNF-α, IL-1β, 
and IL-6, observed in astrocytes stimulated with the HIV-1 protein 
gp120 (36). The interaction of HIV-1/gp120 with CCR5 on microglia 
leads to their activation and subsequent toxin production, which 
appears crucial for causing significant neurodegeneration. Kaul et al. 
demonstrated that gp120-induced neurotoxicity was significantly 
decreased when microglia were either removed or inactivated in 
mixed neuronal/glial cerebrocortical cultures (37). This finding 
highlights the crucial role of microglial receptors CCR5 in mediating 
neurotoxicity. The data suggest that microglia are important for the 
neurotoxic effects of gp120, indicating that these cells, through their 
interaction with HIV-1 coreceptors, are central to the 
neurodegenerative processes observed in HAND.

HIV/gp120 binds to CCR5 and CD4, activating microglia and 
macrophages via the p38MAPK signaling pathway (Figure 2). This 
activation leads to the release of neurotoxic substances such as 
glutamate (38) and inflammatory cytokines (TNF-α, IL-1β), which 
further stimulate adjacent glial cells like astrocytes (39). These 
astrocytes release more inflammatory cytokines (40) and nitric oxide 
(NO), forming peroxynitrite (ONOO-), which is neurotoxic (41). 
Glutamate release from microglia/macrophages causes excessive 
activation of the N-methyl-D-aspartic acid receptor (NMDAR), 
leading to harmful intracellular signals, and eventually, neurons may 
undergo necrosis or apoptosis. Additionally, CCR5 knockout or CCR5 
antagonists in HIV mouse models reduce microglial activation and 
accumulation, preventing gp120-induced spatial memory deficits (42).

Another potential pathway through which CCR5 contributes to 
HIV-related cognitive impairment involves the direct activation of 

TABLE 2 Studies of CCR5 in learning and memory.

Methods Model Main findings Ref.

Ccr5 knockout mice, Ccl5 knockout mice, and aged mice 

using maraviroc were tested for contextual memory 

connectivity.

Mouse Increasing neuronal CCR5 activity specifically impaired contextual 

memory.

Both Ccr5 KO and Ccl5 KO showed an extended linking window.

The administration of maraviroc, a CCR5 blocker, improved memory-

related deficits in middle-aged mice.

Shen et al. (21)

The retention of fear memory was determined 24 h after 

the fear memory consolidation training course. The levels 

of these chemokines (CCR5 / CCL5) and IL-6 were 

measured in the hippocampus and prefrontal cortex of 

chronically stressed rats.

Rat Chronic stress and contextual fear conditioning lead to increased 

expression of CCR5 and CCL5.

Pre-treatment with maraviroc before contextual fear conditioning improves 

memory consolidation.

Merino et al. 

(24)

Ccr5 knockout mice, Ccr5+/ -mice, and CCR5-

overexpressing transgenic mice were examined for 

neuroplasticity, learning, and memory.

Mouse CCR5 knockdown strengths MAPK or CREB signaling and long-term 

potentiation (LTP), which can boost experience-dependent plasticity and 

memory.

Neuronal CCR5 overexpression led to deficits in learning and memory.

Zhou et al. (16)

The effects of CCL3 on hippocampal synaptic 

transmission, plasticity, and spatial memory were 

assessed.

Mouse CCL3 activation of CCR5 impairs hippocampal synaptic transmission, 

plasticity, and LTP, which negatively affects memory and cognitive behaviors.

Maraviroc, a CCR5 antagonist, can prevent these adverse effects.

Marciniak et al. 

(25)
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CCR5 on neurons by gp120 (16) (Figure 2). This activation reduces 
MAPK/CREB signaling, which in turn leads to deficits in LTP, 
affecting synaptic plasticity and resulting in cognitive impairments. 
Similar to the endogenous CCR5 ligands (43), HIV gp120 V3 peptides 
can bond to and activate CCR5. Administration of the V3 peptide 
before fear conditioning resulted in a contextual memory deficit in 
wild-type mice, whereas Ccr5+/− and Ccr5 −/− mice showed a 
marked improvement in memory function. The expression of MAPK 
phosphorylation (pMAPK) in the CA1 subregion of the dorsal 
hippocampus was decreased after learning, indicating that the V3 
peptide may affect memory by interfering with pMAPK in the 
hippocampal CA1 region.

Although astrocytes do not normally produce intact virions 
under standard conditions, they can make and release nonstructural 
proteins (44) such as Tat, an HIV transcription factor, when infected 
with HIV (45). These proteins stimulate inflammation and neuronal 
damage. Unlike gp120, which binds directly to CCR5, Tat does not 
interact directly with CCR5. In mixed neuronal/glial cocultures 
consisting of astrocytes, microglia, and other glial cells, CCR5 
removal from glial cells reduced neuronal death treated with HIV Tat 

protein in combination with morphine. This protective outcome 
associated with CCR5 loss was observed with pretreatment with the 
CCR5 antagonist maraviroc (46, 47). Given that these experiments 
were performed in HIV-1 Tat transgenic mice, the findings 
demonstrate that CCR5 can influence HAND independent of direct 
interactions with HIV/gp120.

4 CCR5 in Alzheimer’s disease (AD)

Alzheimer’s disease (AD) is the most common type of dementia 
(48), corresponding to about 65% of all dementia cases. AD commonly 
presents with a gradual decline in episodic memory and cognitive 
function, eventually contributing to impairments in language and 
visuospatial skills (49). The rate at which dementia symptoms progress 
from mild to moderate and then to severe can vary widely among 
individuals. Extracellular plaques of insoluble β-amyloid peptide (Aβ), 
neurofibrillary tangles (NFT) of P-tau in neuronal cytoplasm, and 
destruction of neurons, called neurodegeneration are the hallmarks of 
AD (50, 51).

FIGURE 2

The interaction of HIV/gp120 with CCR5 and CD4 triggers microglial activation, leading to a signaling cascade involving p38 MAPK that leads to the 
release of neurotoxic substances and inflammatory cytokines like TNF-α and IL-1β. These cytokines activate microglia, astrocytes, and other cells, 
exacerbating brain injury. This process impairs glutamate uptake and increases neurotoxic nitric NO production. Elevated glutamate leads to NMDAR 
overstimulation, excessive Ca²+ influx, and subsequent neuronal damage through mitochondrial dysfunction, free-radical generation, and apoptosis. 
The binding of HIV-related ligands to CCR5 also reduces pMAPK and pCREB levels, impairing synaptic plasticity and worsening cognitive deficits in 
HAND. MAPK: mitogen-activated protein kinases. iNOS: inducible nitric oxide synthase. ONOO-: peroxynitrite. NO: nitric oxide. ·O2-: superoxide anion 
radical. NMDAR: N-methyl-D-aspartic acid receptor. nNOS: neuronal nitric oxide synthase. ROS: reactive oxygen species. Cyt c: Cytochrome c. CREB: 
cAMP-responsive element-binding protein. HAND: HIV-associated neurocognitive disorder. This figure was created with BioRender.com.
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Many studies have documented elevated CCR5  in both AD 
patients and animal models of AD (Supplementary Table 2), such as 
mice and rats. This heightened CCR5 expression has been observed 
in brain samples from individuals with AD (52). Moreover, CCR5 
ligands, specifically CCL3 and CCL4, are also upregulated in 
Aβ-stimulated microglia in AD brains and APP/PS1 mouse models of 
the disease (53–55). This suggests that not only is CCR5 expression 
increased in AD, but the elevated levels of its ligands may further 
amplify CCR5 activity, potentially contributing to the progression of 
AD. This relationship highlights the possible involvement of CCR5 in 
the pathophysiology of AD and points to potential therapeutic targets 
for managing or slowing the disease.

In Passos et al.’s study (56), AD was assessed by evaluating mice’s 
ability to learn and recall spatial information using the water maze 
paradigm. CCR5−/− mice showed an increased time spent in the 
correct quadrant during testing, indicating less cognitive impairment 
from Aβ1-40 injection. The study also noted a marked increase in 
activated astrocytes and microglia in response to Aβ. Since glial cell 
activation is an early AD pathology and often triggered by Aβ 
accumulation, the study attributed the cognitive improvements in 
CCR5 knockout mice to reduced glial activation and β-amyloid 
accumulation. Passos et al. found reduced levels of inducible nitric 
oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in the 
hippocampus of CCR5−/− mice. Their previous work highlighted 
CREB, nuclear factor-κB (NF-κB), and activator protein-1 (AP-1) as 
crucial regulators of COX-2 and iNOS expression triggered by Aβ in 
the mouse hippocampus. The study indicates that the reduced 
expression of these enzymes in CCR5-deficient mice is linked to 
diminished activation of AP-1, NF-κB, and CREB. Consistent with the 
effect of CCR5 gene knock-out, the CCR5 antagonist DAPTA 
decreased microglia and astrocyte activation in the hippocampus, 
along with reducing the number of cells expressing NF-κB protein, a 
key player in pro-inflammatory cytokine signaling pathways, in a 
neuroinflammatory rat model of AD (Figure 3) (57). These findings 
suggest that DAPTA might alleviate crucial factors of 
neuroinflammation associated with AD.

Festa et al. found elevated CCR5 levels in neurons of rTg4510 and 
PS19 tauopathy mouse models (58, 59). They also observed increased 
concentrations of CCL3/4/5 in the PS19 mice. Elevated Mechanistic 
Target of Rapamycin Complex 1 (mTORC1) signaling and decreased 
light chain (LC3)-II levels in these mice indicated impaired autophagy, 
as mTORC1 inhibits this process. CCR5 depletion and inhibition with 
maraviroc normalized mTORC1 signaling and LC3-II levels, and 
improved cognitive function in PS19 mice (58, 59). Their study 
demonstrated that CCL3/4/5 secreted by activated microglia was 
responsible for inhibiting autophagy. Immunodepletion of these 
chemokines or suppression of mTORC1 activity prevented the 
reduction in LC3-II levels. CCL3/4/5 did not activate mTORC1 in 
CCR5-KO neurons, suggesting that these chemokines signal through 
CCR5 to affect mTORC1 activity (59). These experiments showed that 
CCL3/4/5 secreted by activated microglia, activated CCR5 on neurons, 
caused mTORC 1 activation, and decreased LC3-II level, thus 
inhibiting neuronal autophagy and ultimately leading to abnormal 
aggregation of tau protein (Figure 3).

While many studies link increased CCR5 expression with AD 
pathology and suggest that CCR5 inhibition could improve cognitive 
function (56–60), there is evidence that reducing CCR5 might 
increase Aβ deposition and memory impairment (14). This paradox 

is thought to occur because CCR5 deletion can upregulate CCR2, 
leading to activated astrocytes, increased Aβ production, and 
hippocampal cellular apoptosis, potentially worsening the disease (14, 
55, 61).

5 CCR5 in stroke, traumatic brain 
injury (TBI) and vascular dementia

Stroke and traumatic brain injury (TBI) are major contributors to 
adult disability due to their impact on neurological recovery (62). 
Cognitive impairment is notably prevalent following a stroke. Statistics 
indicate that approximately 10% of individuals who experience a first 
stroke will develop dementia (63). This risk increases with recurrent 
strokes, with about one-third of people suffering a recurrent stroke 
also developing dementia. Additionally, milder cognitive deficits, 
including memory impairments, affect around 40% of stroke survivors 
(63). These cognitive issues can markedly affect daily functioning and 
quality of life, underscoring the need for effective rehabilitation and 
management strategies.

A study observed that deleting CCR5 led to increased neuronal 
death and larger infarcts in mice with induced cerebral ischemia 
(Supplementary Table  3). Despite this, there were no notable 
differences in astrocytes and microglia between wild-type and 
CCR5-deficient mice under occlusion (13). Following transient 
cerebral ischemia caused by bilateral common carotid artery 
occlusion (BCCAo), CCR5-deficient mice displayed reduced 
necrotic cavity areas and fewer ischemic neurons. Furthermore, 
these CCR5−/− mice exhibited elevated levels of the neurotrophic 
factor BDNF compared to wild-type BCCAo mice (64). 
Additionally, CCR5 knockdown in the pre-motor and motor 
cortices, along with pharmacological inhibition of CCR5, resulted 
in significant improvements in motor recovery and cognitive 
function following a stroke. Stroke results in the disruption of 
connections between neighboring and interacting brain regions. 
The potential mechanism by which CCR5 knockdown may promote 
recovery from brain injury could involve either the preservation of 
synaptic connections in neighboring cortical regions or the 
enhancement of new synapse formation after the injury. CCR5 
knockdown affects recovery through two primary intracellular 
signaling pathways: CREB and DLK. These pathways are essential 
for transmitting injury signals, modulating dendritic spine 
structure, and facilitating axonal regeneration (62). 
Pharmacological blockers of CCR5 improve recovery after TBI 
under a mechanism consistent with CCR5 knockdown (65). 
Conversely, another investigation indicated that the absence of the 
CCR5 might offer neuroprotection during brain ischemia and 
reperfusion injury (13). Mice lacking CCR5 exhibited significantly 
heightened neuronal damage following TBI. The potential 
protective role of CCR5  in stroke may stem from its ability to 
modulate the inflammatory response. Consequently, CCR5 might 
help mitigate brain damage by reducing microglial activation 
and neuroinflammation.

Vascular dementia is a widespread cause of dementia, second 
only to AD, attributing to approximately 15% of cases (66). Often 
coexisting with AD, a combination of vascular and neurodegenerative 
factors has been identified as a primary contributor to age-related 
cognitive decline (67). Tournier et al. have presented findings linking 
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the presence of the inactive human form CCR5-Δ32 (in conjunction 
with ApoEε4) to a heightened risk of dementia (10), particularly in 
cases of vascular and mixed dementia. Their in-depth study, 
conducted on mice neurons, shed light on potential mechanisms that 
contribute to the onset of dementia (10). The research highlighted 
that oxidative stress triggers an upsurge in neuronal CCR5 expression. 
Interestingly, the absence of CCR5  in genetically modified mice 
resulted in neuronal death. This indicates that CCR5 may exert a 
protective effect on neurons under conditions of vascular damage-
induced oxidative stress. Consequently, an increase in CCR5 
expression in neurons could be  viewed as a defense mechanism, 
whereas the lack of CCR5 may render neurons more susceptible to 
apoptosis, potentially heightening the risk of developing 
vascular dementia.

6 CCR5 in multiple sclerosis (MS)

Multiple sclerosis (MS) is a condition marked by inflammation 
and the loss of myelin within the CNS. Its clinical manifestations are 
varied, encompassing symptoms such as weakness in the limbs, 

blurred vision, coordination difficulties, abnormal sensations, fatigue, 
and cognitive impairments (68). The prevalence of MS ranges from 
30/100,000 to 40/100,000 (69).

Analysis of samples from MS patients (70–72) and rodent models 
of experimental autoimmune encephalomyelitis (EAE) (73, 74) reveals 
an upregulation of CCR5  in inflammatory brain lesions 
(Supplementary Table 4). During the progressive phase of the disease, 
CCR5 appears to be primarily located in infiltrating lymphocytes, 
macrophages, and microglia within actively demyelinating regions 
(75). In some cases, CCR5 has occasionally been observed in 
astrocytes (70) and dendritic cells (76).

In a murine model of MS, specifically EAE, the loss of CCR5 was 
shown to reduce the severity of demyelination (77). Mice were 
intraperitoneally administered various doses of maraviroc when early 
clinical signs of EAE emerged. Administering maraviroc led to a 
notable reduction in clinical scores and enhanced motor functions. 
Additionally, maraviroc treatment notably reduced inflammatory cell 
infiltration into the spinal cord, microgliosis, astrogliosis, levels of 
pro-inflammatory cytokines, and cell death (78). Furthermore, 
research by Alghibiwi et  al. demonstrated that DAPTA has a 
significant neuroprotective effect in the EAE model (79), which is 

FIGURE 3

In Alzheimer’s disease (AD), the activation of CCR5 on microglia and astrocytes by Aβ leads to the increased expression of NF-κB, AP-1, and CREB, 
which enhances the production of neuroinflammatory mediators like COX-2 and iNOS. This neuroinflammation is further exacerbated by the secretion 
of CCL3, CCL4, and CCL5 by microglia. These chemokines activate CCR5, which in turn increases mTORC1 activity via the PI3K-AKT-TSC2 pathway. 
This disruption of autophagy contributes to the accumulation of tau and Aβ, aggravating neurodegenerative processes. NF-κB: nuclear factor-κB. AP-1: 
activator protein-1. CREB: cAMP-responsive element-binding protein. iNOS: inducible nitric oxide synthase. COX-2: cyclooxygenase-2. LC3: light 
chain. PI3K: Phosphatidylinositol 3-kinase. AKT: protein kinase B. TSC2: Tuberous Sclerosis Complex-2. This figure was created with BioRender.com.
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mediated by down-regulating inflammatory mediators and affecting 
the NF-κB/Notch signaling pathway. Collectively, these findings 
suggest that both maraviroc and DAPTA have potential as therapeutic 
agents for multiple sclerosis by modulating inflammation 
and neuroprotection.

7 CCR5 in frontotemporal dementia 
(FTD), dementia with Lewy bodies 
(DLB), and Parkinson’s disease with 
dementia (PDD)

Frontotemporal dementia (FTD) is frequently ranked as the second 
or third most common dementia subtype (80, 81). Torres et al. provided 
clear evidence of decreased expression of CCL3 and CCR5  in the 
lymphocytes and monocytes of FTD patients, in contrast to those with 
AD (11). Higher expression of CCL3 and CCR5 in peripheral cells and 
its transmigration through the CNS parenchyma might be important, 
which suggests that peripheral CCL3 and CCR5 expressing cells seem 
to play a limited role in the pathogenesis of FTD. Certainly, this 
inference also needs to be investigated more in the future.

α-Synuclein (αSyn) is widely recognized for its role in Parkinson’s 
disease (PD) and is also associated with other synucleinopathies (82, 
83), particularly Lewy Body dementias (LBD), which include 
Dementia with Lewy Bodies (DLB) and PD with dementia (PDD). The 
accumulation of αSyn in the hippocampus is a key factor in cognitive 
deficits observed in LBD. Silva et al. showed that elevated αSyn levels 
lead to cofilin pathology and dendritic spine disruption (12). This 
process involves a molecular mechanism associated with both cellular 
prion protein and CCR5. Using an animal model of aSyn, their study 
also showed that αsyn-induced hippocampal cofilin pathology was 
associated with synaptic dysfunction and cognitive impairment in vivo. 
Notably, blocking CCR5 with a peptide antagonist fully restored the 
integrity of dendritic spines in hippocampal neurons affected by αSyn 
accumulation, which shows promise in future preclinical trials.

8 Discussion and prospects

Initially, CCR5 was regarded solely as part of the immune-
inflammatory system, primarily involved in leukocyte movement and 
pathogen defense during infections. However, its biological functions 
are now recognized to extend beyond this scope. Research has 
indicated that CCR5 may negatively influence memory circuits and 
synaptic plasticity (16). Activation of CCR5 can impact neuronal 
function by inhibiting CREB or MAPK, reducing synaptic plasticity, 
and hindering axonal regeneration following neuronal injury (16, 62). 
Although microglia are the principal cells expressing CCR5 in the 
CNS, the specifics of CCR5’s role in neuron-glial interactions during 
learning remain uncertain. CCL3/4/5 produced by microglia might 
significantly affect CCR5 function and, consequently, memory 
cognition (21, 59). While the majority of studies suggest that CCR5 
has a detrimental effect on cognitive functions, there are exceptions, 
such as in AD and stroke research, where CCR5 loss in mice has been 
associated with memory impairment.

No significant association was found between the CCR5-delta32 
polymorphism and dementia (84). However, it is important to 
highlight that the statistical power of some studies was limited due to 

small sample sizes, suggesting that larger cohorts are needed to 
reliably assess the impact of CCR5-delta32 on dementia. Additionally, 
population stratification could act as a confounding factor in 
association studies, as ethnic differences or other variables might 
influence the frequencies of marker alleles within populations.

Altogether, the studies suggest that CCR5 could indeed influence 
cognitive function in dementia beyond the well-studied context of 
HIV, opening up the potential for CCR5-targeted therapies. While 
this review focuses on CCR5, it’s important to note that other 
chemokine receptors also impact cognition. Given that CCR5 and 
similar receptors share ligands and signaling pathways, a deeper 
understanding of their roles in learning and memory could pave the 
way for effective treatments for cognitive impairments in various 
conditions like HAND and AD.
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