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Objective: To explore the value of delta radiomics from cerebral CT perfusion 
(CTP) in predicting hemorrhagic transformation after intravenous thrombolysis 
for acute cerebral infarction (HT-ACI).

Methods: Clinical and imaging data of 419 patients with acute cerebral infarction 
who underwent CTP after treatment between November 2016 and August 2024 
were retrospectively collected. Based on post-thrombolysis cranial CT or MRI 
results, patients were divided into the HT-ACI group (114 cases) and the non-
HT-ACI group (305 cases). The dataset was split into a training set and a test 
set in a 7:3 ratio based on time nodes. In the training set, regions of interest 
(ROI) within the cerebral infarction area on CTP images were delineated using 
3D slicer software, and delta radiomic features were extracted. Hemodynamic 
parameters such as cerebral blood volume (CBV), cerebral blood flow (CBF), and 
time to peak (TTP) were obtained using CTP techniques. These were combined 
with baseline patient data (e.g., age, sex, NIHSS score, medical history) to 
establish various models for predicting HT-ACI through multivariable logistic 
regression analysis. The predictive performance of the models was compared 
using DeLong curves, clinical net benefit was assessed using decision curves, 
and model predictions were validated using the XGboost algorithm. These 
results were then validated in the test set, and a nomogram and calibration 
curve were constructed for clinical application.

Results: In the training set, significant differences were observed between 
the two groups in NIHSS score, pre-illness usually use of anticoagulants, 
age, infarction size, ADC difference, CBF, and Delta radscore (P < 0.05). The 
combined model [AUC 0.878, OR 0.0217, 95%CI 0.835–0.913] demonstrated 
superior predictive performance compared to the clinical model [AUC 0.725, 
OR 0.0310, 95%CI 0.670–0.775] and the imaging model [AUC 0.818, OR 0.0259, 
95%CI 0.769–0.861]. This was confirmed by the XGboost algorithm, and decision 
curves confirmed the higher clinical net benefit of the combined model. Similar 
results were validated in the test set, and a novel nomogram was constructed to 
simplify the prediction process for HT-ACI.
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Conclusion: The combined model established based on delta radiomics from 
CTP may provide early insights into the hemodynamic status of acutely ischemic 
brain tissue, holding significant clinical importance for predicting HT-ACI. This 
method could offer a powerful imaging reference for clinical decision-making 
in patients with ACI, helping to reduce the risk of HT-ACI and improve patient 
outcomes.
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Introduction

Acute cerebral infarction, characterized by high incidence, 
disability, and mortality rates, remains a significant clinical 
challenge. The prognosis of this disease is poor, especially when 
complicated by hemorrhagic transformation after intravenous 
thrombolysis for acute cerebral infarction (HT-ACI). HT-ACI 
occurs due to secondary hemorrhage resulting from blood–brain 
barrier (BBB) disruption and reperfusion injury in ischemic brain 
tissue following acute cerebral infarction. This process can occur 
at any stage of the natural course of acute cerebral infarction or 
after stroke treatment. Statistics indicate that the incidence of 
HT-ACI is as high as 10–20%, with 30 to 40% being progressive, 
profoundly impacting patients’ treatment plans and prognosis 
(1–4). Given the severe consequences of HT-ACI, clinicians 
urgently need a method to predict the risk of post-treatment 
rebleeding in patients early, thereby enhancing the safety of 
endovascular treatment and improving patient outcomes. 
However, traditional assessment methods based on clinical 
symptoms and conventional imaging features have certain 
limitations. Clinical symptom evaluation is often subjective and 
lacks accuracy, while conventional imaging findings cannot 
provide timely and accurate diagnoses. Therefore, identifying 
sensitive predictive markers for HT-ACI is crucial (5–7). In recent 
years, the rapid development of radiomics has offered new 
opportunities for HT-ACI prediction. By mining and screening a 
vast amount of quantitative feature information from acute 
cerebral infarction images, radiomics can establish classifiers to 
aid in the judgment of HT-ACI occurrence, enabling precise 
diagnosis and prediction. This approach is expected to overcome 
the limitations of traditional assessment methods and improve 
prediction accuracy. Currently, some studies have effectively 
predicted the occurrence of HT-ACI using radiomics combined 
with machine learning models or artificial intelligence, but these 
are all based on static radiomics, that is, radiomic parameters 
extracted from non-contrast head CT scans, which may introduce 
certain biases (8–10). Therefore, this study aims to construct a 
model for predicting HT-ACI based on delta radiomic features 
derived from cerebral CT perfusion (CTP) images. This not only 
contributes to a deeper understanding of the pathogenesis of 
HT-ACI but also provides clinicians with a novel and more 
accurate predictive tool to guide clinical treatment decisions and 
improve patient prognosis.

Materials and methods

Study materials

We retrospectively collected and analyzed clinical and imaging 
data from 537 patients with acute cerebral infarction who were 
diagnosed by MRI and CTA and received intravenous thrombolysis 
treatment at Xiangyang NO.1 People’s Hospital Affiliated to Hubei 
University of Medicine between November 2016 and August 2024. 
Inclusion Criteria: ① Met the diagnostic criteria for acute cerebral 
infarction outlined in the 2020 Chinese Guidelines for the Diagnosis 
and Treatment of Acute Ischemic Stroke. ② Exhibited clear 
neurological dysfunction with a National Institutes of Health Stroke 
Scale (NIHSS) score ranging from 4 to 22. ③ Onset of symptoms 
within 4.5 h, which is the effective time window for intravenous 
thrombolysis. ④ No history of contrast agent allergy, no claustrophobia, 
and normal liver and kidney function. ⑤ Met the standards outlined 
in the 2020 Chinese Guidelines for Intravenous Thrombolysis in Acute 
Ischemic Stroke and the Guidelines for Early Endovascular Treatment 
of Acute Ischemic Stroke. ⑥ Underwent CTP (CT Perfusion Imaging) 
examination after thrombolysis and received a follow-up plain CT 
scan 24–48 h later. Exclusion Criteria: ① Patients with a history of 
previous stroke. ② Patients with severe metabolic disorders, tumors, 
or other serious systemic diseases. ③ Contraindications for 
thrombolysis. ④ Pregnant and lactating women. ⑤ Patients who had 
already experienced hemorrhage before the CTP follow-up scan. ⑥ 
Patients with head trauma, cerebral infarction, or myocardial 
infarction within the past 3 months. ⑦ Patients with a platelet count 
<100×10^9/L or fasting blood glucose <2.7 mmol/L (11, 12). Final 
Enrollment: After rigorous screening and exclusion, 419 patients were 
enrolled, including 234 males and 185 females, aged between 36 and 
85 years, with an average age of (57.6 ± 18.5) years. The patients were 
closely followed up for their disease outcomes. Based on CT or MRI 
results, patients were divided into the HT-ACI group (114 patients) 
and the non-HT-ACI group (305 patients) (Figure 1).

Examination methods

Equipment: Siemens SOMATOM Drive Dual-Source 64-Slice CT 
scanners were used. Patient Position: Patients were placed in a supine 
position on the examination table. Scanning Baseline: The scanning 
baseline was set at the orbitomeatal line. Plain Scan Parameters: Tube 
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voltage: 120 kV, tube current: 300 mA, slice thickness: 3 mm, slice 
interval: 1 mm. CTP Scan: Based on the plain CT scan results, a total 
of 23 slices covering the whole brain were determined. Iopromide 
contrast agent (350 mg/mL) was injected as a bolus through the right 
elbow vein using a high-pressure injector at a rate of 4.5 mL/s. 
Scanning began 5 s after the injection. Scanning Parameters: Tube 
voltage: 80 kV, tube current: 200 mAs, matrix: 512×512, slice 
thickness: 1 mm, slice interval: 1, interval: 2 s, continuous scanning 
for 45 s, scanning range: 200 mm. A total of 700–900 frames of 
images were obtained. CTP Image Processing and Data Analysis, 
Image Transfer: The reconstructed dynamic images were transferred 
to the GE ADW4.6 workstation. Software Processing: The BRAIN 
STROKE Perfusion software (non-deconvolution/deconvolution 

algorithm) was used for image post-processing. Data Obtained: 
Time-intensity curves, CT perfusion images, CBF maps, CBV maps, 
and TTP maps of the region of interest (ROI). Image Analysis: Two 
senior imaging specialists with over 10 years of experience analyzed 
the images using a double-blind method. The area centered on the 
infarct lesion was designated as the ROI, avoiding blood vessels and 
sulci of the brain. The absolute values of CBF, CBV, and TTP in the 
infarcted side and the corresponding contralateral region were 
calculated (13, 14). ADC Difference: The lowest ADC value (mm2/s) 
in the core of the infarct lesion and the ADC value (mm2/s) in the 
contralateral mirror region were measured on the ADC sequence of 
brain MRI, and the ADC difference between the contralateral and 
infarcted sides was calculated.

FIGURE 1

Inclusion and exclusion criteria, and case grouping method for this study.
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Image segmentation and radiomic feature 
extraction in cerebral infarct regions

Using the 3D slicer software (version 4.11), the region of interest 
(ROI) for the entire cerebral infarct region was segmented layer by 
layer on 1.0 mm thin-slice CTP images. The criteria for identifying the 
infarct region were defined as follows: based on a comprehensive 
assessment of the DWI sequence from MR and plain CT scans, the 
entire infarct region on CTP was delineated as the ROI. The ROI for 
the infarct region encompassed the core infarct area and the ischemic 
penumbra within 3–10 mm around it, excluding surrounding cerebral 
sulci, cisterns, subarachnoid spaces, and bone tissue. After manually 
delineating the ROI for the infarct region layer by layer, revisions were 
made with reference to coronal and sagittal MR images. The 
segmentation process of the infarct region was manually conducted 
by two radiologists with over 10 years of experience in neurological 
radiology, and the intraclass correlation coefficient (ICC) was used to 
evaluate the consistency of segmentation parameters and the 
reproducibility of radiomic feature extraction between the two 
radiologists. An ICC > 0.75 indicated good consistency and 
reproducibility of radiomic feature extraction. The Radiomics plugin 
in Slicer was utilized to extract radiomic features, with image 
resampling and nearest-neighbor interpolation performed prior to 
this to standardize the CTP images. A total of 879 × 2 radiomic 
features were extracted, including shape features, first-order statistical 
features, texture features, and higher-order features. Subsequently, the 
LASSO algorithm and 10-fold cross-validation were employed to 
generate the Radscore based on the remaining features; Radscore1 
represented the radiomic score derived from texture parameters 
extracted from plain CT scans, while Delta Radscore represented the 

radiomic score calculated as (CTP cerebral perfusion phase texture 
parameters – plain CT scan phase texture parameters)/CTP cerebral 
perfusion phase texture parameters (15) (Figure 2).

Overview of statistical methods

Statistical analysis was conducted using SPSS 22.0 and R 
software. Firstly, the enrolled cases were divided into a training 
set and a test set based on a 7:3 ratio and time points. All 
continuous variables underwent tests for homogeneity of variance 
and normal distribution. Measurement data for the two groups 
(normally distributed) were expressed as X ± S and compared 
using t-tests; measurement data for the two groups (non-normally 
distributed) were expressed as ranges (median, 25–75%) and 
compared using rank-sum tests. Categorical variables were 
expressed as percentages (%) or specific case numbers and 
compared using chi-square tests or Fisher’s exact tests. For 
radiomic parameters, the LASSO algorithm and 10-fold cross-
validation were used to adjust elastic network parameters to avoid 
overfitting, thereby selecting the optimal texture features to 
generate the radiomic score (Radscore). In the training set, three 
prediction models (clinical model, imaging model, and combined 
model) were established using multivariate logistic regression. 
The predictive performance of the models was compared using 
DeLong’s test, and the clinical net benefit of the most valuable 
model was assessed using decision curves. These results were then 
validated in the test set and further verified using the XGboost 
machine learning model by outputting SHAP values. Finally, a 
novel nomogram was established and corresponding clinical trials 

FIGURE 2

A simple schematic diagram of ROI delineation and radiomic feature extraction in cerebral infarct regions in this study.
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and applications were conducted. A p-value <0.05 indicated 
statistical significance (16).

Results

A total of 537 patients with acute ischemic stroke caused by 
anterior circulation vascular occlusion underwent non-contrast 
CT, CTP, and CTA examinations, with the time from stroke onset 
to CT imaging being ≤6 h were enrolled. One hundred and 
eighteen patients were excluded due to reasons such as poor image 
quality or motion artifacts, presence of old cerebral infarction, 
lack of follow-up imaging data, contrast agent extravasation, 
occurrence of hemorrhage before CTP reexamination, and 
patients with cerebral infarction or myocardial infarction. 
Ultimately, 419 patients met the study criteria, with an average age 
of (57.6 ± 18.5) years. Univariate regression analysis revealed no 
statistically significant differences between the two patient groups 
in terms of gender, history of coronary heart disease, history of 
atrial fibrillation, previous stroke or transient ischemic attack 
(TIA), history of hypertension, history of diabetes, smoking 
history, alcohol consumption history, prothrombin time (PT), 
body mass index (BMI), infarct location, pulmonary infection 
(PI), white blood cell count, D-dimer levels, platelet-to-
lymphocyte ratio (PLR), neutrophil-to-lymphocyte ratio (NLR), 
cerebral blood volume (CBV), time to peak (TTP), and Radscore 
1 (p > 0.05). Significant statistical differences were observed 
between the two groups in infarct size, National Institutes of 
Health Stroke Scale (NIHSS) score, pre-illness regular use of 
anticoagulants, age, cerebral blood flow (CBF), ADC difference, 
and Delta Radscore (p < 0.05). Multivariate regression analysis 
confirmed that infarct size, age, CBF, and Delta Radscore were 
independent risk factors for the occurrence of hemorrhagic 
transformation after acute cerebral infarction (HT-ACI).

Based on these risk factors, we established clinical, imaging, and 
combined models. In the training set, the combined model 
demonstrated the highest predictive performance [AUC 0.878, OR 
0.0217, 95% CI 0.835–0.913, sensitivity 86.92%, specificity 77.51%], 
significantly outperforming the clinical model [AUC 0.725, OR 
0.0310, 95% CI 0.670–0.775, sensitivity 72.15%, specificity 60.81%, 
p < 0.05] and the imaging model [AUC 0.818, OR 0.0259, 95% CI 
0.769–0.861, sensitivity 81.70%, specificity 70.15%, p < 0.05]. Similar 
results were validated in the test set, with the combined model 
showing superior predictive performance [AUC: 0.867, OR 0.0353, 
95% CI: 0.794–0.921, sensitivity 82.35%, specificity 81.32%] compared 
to the clinical model [AUC: 0.729, OR 0.0448, 95% CI: 0.642–0.804, 
sensitivity 69.51%, specificity 71.32%, p = 0.001] and the imaging 
model [AUC: 0.818, OR 0.0422, 95% CI: 0.739–0.882, sensitivity 
80.61%, specificity 75.19%, p = 0.04]. Decision curve analysis (DCA) 
confirmed that the combined model had higher clinical net benefit in 
both groups, and the XGboost machine learning model also verified 
the association of infarct size, age, CBF, and Delta Radscore with the 
occurrence of HT-ACI (all p < 0.05). Subsequently, a nomogram and 
calibration curve based on the combined model were developed and 
received clinical application and positive feedback (Tables 1–3 and 
Figures 3–6).

Discussion

With the intensification of domestic environmental pollution and 
the aggravation of social aging, the incidence rate of stroke has 
reached 200/100,000, with ischemic stroke accounting for 69.6% of all 
strokes. Intravenous thrombolysis is currently one of the most effective 
treatments for acute cerebral infarction. Hemorrhagic transformation 
after acute cerebral infarction (HT-ACI) refers to secondary 
hemorrhage within the cerebral infarction area or hemorrhage in 
adjacent areas due to the restoration of blood flow perfusion in the 
ischemic area of the brain after cerebral infarction. HT-ACI is a 
serious complication of intravenous thrombolysis, significantly 
affecting its therapeutic effect. It is also one of the main reasons for 
neurological deterioration in patients with cerebral infarction after 
intravenous thrombolysis and for medical disputes. Previous studies 
have suggested that low serum albumin levels, smoking history, 
diabetes mellitus, coagulation time, and CTP parameters [cerebral 
blood volume (CBV), time to peak (TTP), mean transit time (MTT)] 
are associated with poor prognosis in patients with stroke, but these 
factors lack specificity (17–19). Furthermore, conventional CT and 
MR have certain difficulties and limitations in predicting HT-ACI, 
mainly due to the complexity of HT-ACI, limitations of imaging 
techniques, and individual differences among patients. The 
mechanisms of HT-ACI involve multiple aspects, including post-
infarction ischemic injury, reperfusion injury, coagulation 
dysfunction, and blood–brain barrier disruption. These factors 
interact with each other, making the occurrence of HT-ACI highly 
complex and uncertain. Restricted by the examination time window, 
CT and MR have low sensitivity to small or micro-hemorrhage points, 
which are difficult to distinguish from surrounding brain tissue, 
potentially leading to delayed detection of HT-ACI and exacerbation 
of the condition (20, 21). Our team has found that radiomic 
parameters based on delta changes in cerebral infarction areas, 
extracted from enhanced CT cerebral perfusion imaging and plain CT, 
are helpful in predicting HT-ACI. Therefore, this study established a 
novel nomogram for predicting HT-ACI based on clinical parameters 
combined with the Delta radscore, which has received favorable 
clinical evaluations. This nomogram is non-invasive and requires no 
additional costs, with a high AUC value of 0.878, providing a new 
method for the prediction and treatment evaluation of HT-ACI.

This study found that HT-ACI is correlated with certain factors, 
including the NIHSS score, pre-illness usually use of anticoagulants, 
age, infarct size, ADC difference, CBF, and Delta radscore. The NIHSS 
score (National Institutes of Health Stroke Scale score) is a crucial 
indicator for assessing stroke severity. Research has shown that the 
NIHSS score is closely related to the risk of HT-ACI, with a higher 
NIHSS score generally indicating a higher risk of HT-ACI. It has been 
reported that patients with an NIHSS score ≥ 20 have an increased 
risk of fatal hemorrhagic transformation, reaching 6.8%. The routine 
use of anticoagulants (such as Warfarin, Clopidogrel Sulfate, Aspirin, 
etc.) before illness also increases the risk of HT-ACI. Anticoagulants 
prevent thrombus formation by inhibiting the coagulation process but 
simultaneously increase the risk of bleeding. When administering 
intravenous thrombolysis to patients using anticoagulants, it is 
necessary to more cautiously assess the risk of HT-ACI and closely 
monitor the patient’s bleeding status. Age is an important risk factor 
for HT-ACI. As age increases, the blood–brain barrier becomes 
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relatively fragile, and the elasticity and toughness of blood vessel walls 
gradually decrease, making them more prone to rupture and bleeding. 
Therefore, the risk of HT-ACI significantly increases in elderly patients 
undergoing intravenous thrombolysis. Generally, the larger the infarct 
size, the higher the risk of HT-ACI. Large cerebral infarcts can lead to 
significant brain edema, exerting pressure on surrounding capillaries. 
When reperfusion is restored and collateral circulation opens up, it 
may cause blood vessels to rupture, resulting in a marked increase in 
the incidence of HT-ACI. This study confirms that patients with large 

infarcts (maximum infarct area ≥ 50 cm2 or infarct volume ≥ 145 mL) 
have a sixfold increase in the incidence of HT-ACI compared to 
patients with smaller infarcts (21, 22). In this study, ADC difference, 
CBF, and Delta radscore are newly identified predictors of 
HT-ACI. The ADC (apparent diffusion coefficient) difference reflects 
differences in water molecule diffusion capacity between the infarct 
core and normal regions. In this study, the ADC difference in the 
HT-ACI group was significantly higher than that in the normal group 
(p < 0.05), which may be  related to ischemia, hypoxia, vascular 

TABLE 2 Displays the logistic regression analysis results of the imaging model predicting HT-ACI based on imaging features, with *P < 0.05 indicating 
statistical significance.

Imaging model Univariate analysis Multivariate analysis

Factors P Hazard ratio P Hazard ratio

CBF 0.04* 1.49 (1.01–2.23)

ADC difference 0.04* 1.01 (1.00–1.02) 0.03* 1.01 (1.00–1.02)

CBV 0.43 1.32 (0.66–2.61)

TTP 0.22 2.84 (0.54–14.92)

Delta Radscore <0.05* 2.34 (1.85–2.96) <0.05* 2.41 (1.89–3.07)

Radscore 1 >0.05

*Multivariate regression confirmed that the ADC difference and Delta Radscore were influential factors for HT-ACI.

TABLE 1 Presents the logistic regression analysis results of the clinical model predicting HT-ACI based on clinical features, with *p < 0.05 indicating 
statistical significance.

Clinical model Univariate analysis Multivariate analysis

Factors P Hazard ratio P Hazard ratio

Gender 0.36 1.27 (0.76–2.10)

History of coronary heart disease 0.69 1.14 (0.58–2.22)

History of atrial fibrillation 0.41 1.27 (0.71–2.24)

Previous stroke or transient ischemic attack (TIA) 0.13 1.35 (0.91–1.98)

History of hypertension 0.54 1.01 (0.97–1.05)

History of diabetes 0.13 1.04 (0.98–1.09)

Smoking history 0.37 1.02 (0.98–1.05)

Alcohol consumption history 0.15 1.02 (0.99–1.04)

Prothrombin time (PT) 0.12 1.15 (0.96–1.38)

BMI 0.13 1.09 (0.97–1.20)

Infarct location 0.34 1.15 (0.86–1.54)

Pulmonary infection (PI) 0.38 1.18 (0.82–1.72)

White blood cell count 0.19 1.09 (0.96–1.24)

D-dimer levels 0.61 0.94 (0.77–1.17)

PLR 0.11 1.04 (0.99–1.09)

NLR 0.12 1.05 (1.98–1.10)

Infarct size <0.05* 1.09 (1.05–1.13) <0.05* 1.09 (1.04–1.12)

NIHSS <0.05* 1.28 (1.12–1.48) 0.01* 1.24 (1.07–1.43)

Pre-illness regular use of anticoagulants 0.01* 1.68 (1.15–2.47)

Age 0.04* 1.03 (1.01–1.07)

*Multivariate regression confirmed that the Infarct size and NIHSS were influential factors for HT-ACI.
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damage, and blood–brain barrier disruption caused by acute cerebral 
infarction. Ongoing ischemia and hypoxia in the brain tissue of 
patients with acute cerebral infarction can lead to cytotoxic edema, 
increased DWI signals, and significantly reduced ADC values. The 
ADC difference is collected and calculated from the mirror position 
of brain tissue in the same individual, effectively avoiding individual 
differences caused by factors such as the concentration and viscosity 
of intracellular and extracellular water and body temperature. This 
allows for an objective and accurate assessment of the cerebral 

infarction area, thus aiding in the prediction of HT-ACI. Additionally, 
we found that when the CBF value exceeds 3.12, the incidence of 
HT-ACI significantly increases. An overly rapid or excessive 
restoration of cerebral blood flow can lead to an increase in cerebral 
reperfusion, potentially elevating the risk of hemorrhagic 
transformation. This is because the damaged vascular walls, upon the 
resumption of blood flow, may rupture and bleed due to the intense 
impact of the blood. Furthermore, the dosage and timing of 
thrombolytic drugs also affect the restoration of cerebral blood flow 

FIGURE 3

Illustrates the DeLong’s non-parametric curves for both the training and test sets, revealing that the combined model has the largest area under the 
ROC curve, confirming its optimal predictive performance.

FIGURE 4

Presents the DCA analysis conducted using R software for both the training and test sets, further confirming the higher clinical net benefit of the 
combined model (left: training set, right: test set).
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FIGURE 5

Showcases the clinically well-regarded nomogram prediction tool based on risk factors from the combined model (above: nomogram, below: 
calibration curve). This tool simplifies the assessment process for HT-ACI by assigning scores to each risk factor and summing them up to calculate the 
final risk value. For example, in Case 501, the CBF of 4.5 corresponds to 37.5 points, the infarct area of 40 corresponds to 25 points, the Delta Radscore 
of 0.6 corresponds to 75 points, and the age of 70 corresponds to 37.5 points, totaling 175 points, which corresponds to a risk value >0.9. It is inferred 
that this patient has a high probability of developing HT-ACI, consistent with the clinical outcome.
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FIGURE 6

Depicts the SHAP value plot output by the XGBoost machine learning model. The SHAP values confirm that infarct size (cut-off value 51.30), age 
(55.81), CBF (3.12), Delta Radscore (0.31), etc., are important factors influencing the occurrence of HT-ACI, aligning with our research findings. Red 
represents lower values, while yellow represents higher values.
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and the risk of hemorrhagic transformation. If the dosage of 
thrombolytic drugs is too high or the timing is inappropriate, it may 
result in an overly rapid restoration of cerebral blood flow, thereby 
increasing the risk of HT-ACI (23, 24).

Radiomics is an advanced technique that extracts a large number 
of features (such as shape, intensity, texture, etc.) from medical 
imaging data and performs high-throughput analysis. These features 
can reflect the biological characteristics and malignant progression 
potential of lesions, providing reliable auxiliary information for disease 
diagnosis. In the diagnosis and treatment of multisystem tumors, 
radiomics technology can analyze medical imaging data such as CT 
and MRI to extract quantitative features related to tumors, thereby 
assisting doctors in early diagnosis and decision-making. It is reported 
that prediction models built using radiomics technology can effectively 
classify four types of brain tumors, including craniopharyngioma, 
glioma, glioblastoma, and metastasis, with high accuracy demonstrated 
in various validation sets. Moreover, radiomics models based on 
machine learning algorithms have shown higher accuracy than 
traditional imaging methods in differentiating these brain tumors. 
Therefore, for the prediction of HT-ACI, we have incorporated the 
relatively novel Delta radscore. This high-quality data, based on 
perfusion changes in enhanced CT, helps to extract CT grayscale 
texture changes before and after thrombolysis in the acute cerebral 
infarction area, providing reliable data to evaluate the degree of blood 
flow perfusion and cerebral tissue infarction within the infarcted area, 
and further guiding the treatment of acute cerebral infarction and 
predicting HT-ACI. In this study, based on CTP (CT Perfusion) 
images, a total of 879 × 2 radiomic features were extracted from the 
ROI (Region of Interest) of the whole infarcted area. After screening 
for redundant features, 859 × 2 radiomic features were ultimately 
retained, including morphological features such as Sphericity, and 
high-order texture features such as RunLengthNonUniformity.0.732, 
Skewness.0.588, and Kurtosis.0.393. Sphericity is a shape feature in 
radiomics that intuitively reflects the texture features of the image or 
object surface, describing the shape, roughness, smoothness, and 
grayscale differences of the tissue. A larger value indicates greater 
differences, which may be related to tissue ischemia, necrosis, and 
softening. This study found that acute cerebral infarction patients with 
lower Sphericity values are more prone to HT-ACI, suggesting that 
patients with acute cerebral infarction where the infarcted tissue has 
not completely softened and necrosed should be cautious about the 
dosage during thrombolysis to avoid excessive perfusion leading to 

HT-ACI. High-order texture features generated through frequency 
domain denoising methods such as Fourier transform and wavelet 
transform emphasize areas of grayscale change and their texture 
heterogeneity, allowing more valuable radiomic features to be extracted 
from the original image. RunLengthNonUniformity.0.732 reflects the 
uniformity or orderliness of grayscale distribution within the image or 
infarcted ROI, with a smaller value indicating a more uniform and 
ordered grayscale distribution. Skewness.0.588 and Kurtosis.0.393 
measure the difference in grayscale values between adjacent pixels 
within the image or ROI. A smaller value indicates smaller differences 
in grayscale values between adjacent pixels, resulting in a smoother 
image; a larger value indicates larger differences, resulting in a rougher 
image. Both can more finely assess the grayscale texture differences 
and perfusion differences between the infarcted area and surrounding 
tissues, with a quantization degree of tissue differences significantly 
higher than that of human visual recognition (25–28). Therefore, the 
combined model based on CTP radiomics has shown good prediction 
results for HT-ACI, outperforming clinical and imaging models. The 
combined model can provide strong support for neurologists to 
develop personalized treatment plans and provide prognostic 
guidance. Meanwhile, this study employed dynamic radiomics 
techniques, which offer certain advantages over previous CTP studies. 
It emphasizes the radiomic texture changes before and after treatment, 
avoiding the gray areas that are indistinguishable by the naked eye, 
thus supplementing the deficiencies of previous research and 
promoting new developments in CTP radiomics. More importantly, 
this study incorporated machine learning models and used SHAP 
plots to verify the predictive factors of the nomogram, and conducted 
corresponding clinical practical applications (29).

Limitations

Firstly, due to the single-center nature of the study, the sample size 
remains relatively small, and the study population is primarily Han 
Chinese, with potential differences in dietary and lifestyle habits. 
Consequently, biases may inevitably exist in the study results. Future 
research will involve multi-center and multi-regional studies to validate 
the conclusions of this study. The use of unsupervised fully or semi-
automatic delineation of infarcted regions of interest (ROIs) was not 
employed, potentially introducing errors. The exclusion of radiomic 
parameters from MR plain scans and multi-phase enhanced scans may 

TABLE 3 Shows the logistic regression analysis results of the combined model predicting HT-ACI based on the valuable factors mentioned above, with 
*P < 0.05 indicating statistical significance.

Combined model Univariate analysis Multivariate analysis

Factors P Hazard ratio P Hazard ratio

Infarct size <0.05* 1.09 (1.05–1.13) <0.05* 1.09 (1.04–1.15)

NIHSS <0.05* 1.28 (1.12–1.48)

Pre-illness regular use of anticoagulants 0.01* 1.68 (1.15–2.47)

Age 0.04* 1.03 (1.01–1.07) <0.05* 1.06 (1.02–1.11)

CBF 0.04* 1.49 (1.01–2.23) <0.05* 1.92 (1.14–3.24)

ADC difference 0.04* 1.01 (1.00–1.02)

Delta radscore <0.05* 2.34 (1.85–2.96) <0.05* 2.66 (2.02–3.51)

*Multivariate regression confirmed that the Infarct size, age, CBF and Delta Radscore were influential factors for HT-ACI.
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have omitted meaningful variables. Additionally, this study did not 
utilize radiomics to assess the impact of HT-ACI status on patient 
prognosis, which may limit or challenge clinical decisions based on these 
study results. This study focuses on anterior circulation ischemic stroke 
and does not investigate the value of CTP radiomics in middle-posterior 
circulation stroke or venous stroke. However, we  believe that this 
research also holds certain value in other subtypes of stroke, and 
we anticipate future studies with larger sample sizes to validate this 
conclusion. Although we included patients’ age and gender as calibration 
factors in our multivariate statistical analysis, and we also tried our best 
to balance the proportion of positive patients in the training and test sets 
to enhance the reliability and robustness of this study, differences in 
sample size are inevitable, which has raised concerns about the generality 
and reliability of the results. In the future, we plan to expand our sample 
size to 5,000 cases to reduce the error caused by this imbalance, and 
we believe that the results of this study hold some significance (30).

Conclusion

In summary, the Delta radscore has demonstrated significant 
clinical value in the study of HT-ACI. The novel nomogram 
established based on the Delta radscore may simplify and effectively 
predict HT-ACI, aiding in improving treatment decisions for patients 
with acute cerebral infarction and enhancing perioperative care. With 
continuous advancements in imaging technology and deepening 
research, the application of radiomics in the field of cerebral 
hemorrhage will become increasingly widespread, offering more 
possibilities for disease prevention, diagnosis, and treatment.
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