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Introduction: Alzheimer’s disease (AD) represents a degenerative condition 
affecting the nervous system, characterized by the absence of a definitive cause 
and a lack of a precise therapeutic intervention. Extensive research efforts are 
being conducted worldwide to enhance early detection methods for AD and to 
develop medications capable of effectively halting the initiation and progression 
of the disease during its early stages. Some current detection methods for 
early diagnosis are expensive and require invasive procedures. More and more 
evidence shows that gait is related to cognition. A deeper investigation into the 
intricate interplay between gait and cognition is necessary to elucidate their 
reciprocal influences and the temporal sequence of these interactions. In the 
future, it is hoped that with the results of clinical manifestations, neuroimaging, 
and electrophysiology, simple and objective gait analysis results can be used as 
an alternative biomarker for cognitive decline to diagnose dementia early.

Research objective: This research offers a comprehensive scoping review of the 
contemporary landscape of clinical gait evaluation. It delineates the pertinent 
concepts of gait analysis and machine learning in AD and elucidates the intricate 
interplay between gait patterns and cognitive status.

Methods: A comprehensive literature search was conducted within PubMed for 
all articles published until march 18, 2024, using a set of keywords, including 
“machine learning and gait “and “gait and Alzheimer.” original articles that met 
the selection criteria were included.

Results and significance: A strong correlation exists between autonomous gait 
and cognitive attributes, necessitating further investigation into the selective 
interplay between gait and mental factors. Conversely, the gait information of 
Alzheimer’s disease (AD) patients can be captured using a 3D gait analysis system. 
Numerous gait characteristics can be derived from this gait data, and the early 
identification of AD can be facilitated by applying a graph neural network-based 
machine learning approach.
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1 Introduction

A degenerative illness of the central nervous system, AD manifests itself in heightened 
cognitive impairment and behavioral abnormalities (1). The clinical manifestations are 
memory impairment, aphasia, apraxia, agnosia, visuospatial disturbance, abstract thinking 
and computational disorders, personality and behavior changes, gait disturbance, and 
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decreased ability to perform daily living (1). AD not only causes 
patients to lose their ability to work, socialize, and take care of 
themselves, thus impacting their quality of life, but it also places a 
significant burden on their families and society (2, 3). Despite 
extensive research, there is currently no proven cure for AD, and its 
etiology remains unclear (4). The pathogenesis of AD is primarily 
based on hypotheses involving amyloid-beta (Aβ) deposition (5), tau 
phosphorylation (6), and changes in neurotransmitters (4). However, 
current diagnostic methods, such as cerebrospinal fluid assays and 
PET-CT, are expensive, invasive, and often inaccessible to many 
patients (7, 8). These limitations highlight the critical need for early 
and accurate diagnostic tools that are non-invasive, cost-effective, and 
widely available (9, 10). Moreover, existing treatments for AD are 
largely palliative, focusing on symptom management rather than 
disease modification (3, 11). These treatments offer modest benefits 
and fail to address the underlying pathological processes (12). As a 
result, there is an urgent need for novel therapeutic approaches that 
can effectively halt or slow AD progression, particularly in its early 
stages (13, 14).

Emerging evidence suggests that impairments in cognitive 
processes, including attention, executive functioning, and operational 
memory, are linked to decreased gait speed and instability in walking 
patterns (15). This association underscores the potential of gait 
assessment as a non-invasive biomarker for cognitive dysfunction in 
older adults (16, 17). Gait analysis may provide clinicians with a 
valuable tool for early intervention, potentially slowing the progression 
of AD and improving patients’ quality of life (1). While the association 
between gait and cognition in AD is well-established, a comprehensive 
understanding of the intricate interplay between specific gait 
parameters and cognitive domains remains elusive. Furthermore, the 
potential of utilizing advanced machine learning techniques to 
leverage gait data for early AD diagnosis has not been fully explored. 
This review aims to address these gaps by providing a comprehensive 
overview of the current landscape of clinical gait evaluation in AD, 
elucidating the relationship between gait patterns and cognitive status, 
and exploring the potential of machine learning in this context.

1.1 The definition and elements of gait

Gait reflects the manner or pattern of walking and is a 
biomechanical expression of the function of the central nervous 
system (18). Normal gait depends on the coordination of the central, 
peripheral, and musculoskeletal systems (18). When the coordination 
and balance of the above systems are damaged, it can lead to different 
degrees of walking difficulties and abnormal gait (19). Walking in the 
real world requires attention to various environmental features and 
recovery from postural disturbances (19). This process involves the 
cooperation of the cerebral cortex, subcortical, spinal cord, and 
peripheral neuroskeletal systems (19). Gait deviations are often 
associated with the pathological features of specific nerve, muscle, or 
bone diseases. Gait has many characteristics (spatiotemporal, 
kinematic, kinetic parameters, etc.). Some studies have developed 
various gait models based on gait parameters. The gait characteristics 
are categorized into different gait domains in the different gait models, 
e.g.,16 gait characteristics of older adults are classified into five 
domains, including speed, variability, rhythm, asymmetry, and 
postural control (20).

1.2 The definition and elements of gait 
analysis

Clinical gait analysis is the process of recording and interpreting 
biomechanical data during walking to identify abnormalities and 
guide clinical decision-making (21). It is commonly used for 
pre-treatment assessment, monitoring disease progression, and 
evaluating therapeutic outcomes (22). While human observation can 
detect deviations from normal gait, it may not identify the primary 
issues or compensatory strategies (23). Some studies have found that 
the pace measured with a stopwatch is lower than that measured 
using electronically-enabled devices such as wearable sensors (24). 
Therefore, the use of specialized gait analysis instruments can 
enhance the accuracy of assessments. At present, a consensus has 
been reached on the composition of clinical gait analysis (25), and the 
analysis methods mainly include simple wearable, running table, and 
three-dimensional analysis. The most advanced method of clinical 
gait analysis is 3D gait analysis (Figure 1) (26, 27). This technique 
uses a marker-based motion capture system with optoelectronic 
cameras to track reflective markers placed on anatomical landmarks. 
It combines data from force plates to quantify joint kinematics 
(angles) and kinetics (forces and moments) and often includes 
dynamic electromyography (EMG) and high-quality video 
recordings. The advantages of 3D gait analysis include high precision 
and the ability to provide detailed biomechanical insights (26, 27). 
However, it also has limitations, such as the need for specialized 
equipment, expertise in marker placement, and susceptibility to soft 
tissue artifacts and marker displacement. Additionally, the long 
preparation time and the requirement for a controlled environment 
can limit its accessibility for some patients. Gait analysis is most 
effective for analyzing repetitive gait patterns. For conditions like 
ataxia, where gait patterns are highly variable, or in cases where 
fatigue significantly affects gait, the utility of this method may 
be limited (28, 29).

1.3 The definition and elements of machine 
learning

Machine learning is an essential branch of artificial intelligence 
that employs a data-driven approach, where algorithms and models 
are trained to motivate computer systems to automatically extract 
potential patterns and regularities from large data sets, which in turn 
helps clinicians make decisions and predictions (30). Machine 
learning has recently emerged as a powerful tool in the field of 
medical imaging, including computer vision techniques that 
autonomously recognize and analyze image features. This 
methodology facilitates extracting advanced features and patterns 
from intricate neuroimaging datasets (31). The graph neural network 
(GNN), an influential machine learning paradigm, has recently 
garnered significant attention from researchers. In contrast to 
conventional neural networks, GNNs are better suited for managing 
unstructured data, encompassing social networks, molecular 
configurations, and the like. The core idea is to represent the data in 
the form of graphs and to carry out the information transfer and 
feature learning through the structure of the graphs and the 
properties of nodes (32, 33). Graph neural networks provide a new 
approach to gait research in AD patients by modeling gait data as a 
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graph, with nodes representing key gait feature points and edges 
representing their relationships and interactions (34).

Gait prediction for AD is convenient and noninvasive and can 
be used in a new direction. Machine learning algorithms can process 
and analyze gait data to obtain more accurate and detailed gait 
assessment Results.

2 Methods

Drawing upon research examining the link between gait and 
cognition, this paper consolidates diverse clinical gait abnormalities 
and pertinent parameters associated with Alzheimer’s disease. The 
authors adopted a scoping review rather than a systematic review 
approach to address this broader research objective. A scoping review 
was chosen over a systematic review due to the wider scope of the 
research question and the need to map the extent of evidence on the 
topic. Scoping reviews are beneficial for identifying gaps in the 
literature and providing an overview of the existing research 
landscape. Unlike systematic reviews, which focus on specific 
questions and outcomes, scoping reviews allow for a more 
comprehensive and flexible approach.

2.1 Search criteria

A comprehensive literature search followed the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines. The search was performed across multiple 
databases, including PubMed, Scopus, and Web of Science. The 
primary search terms used were “gait and cognition,” “gait and 
Alzheimer’s disease,” and “machine learning and gait.” Boolean 
operators (AND, OR) effectively combined these terms. No date limit 
was applied, and articles were updated until March 18, 2024. Following 
the initial screening, 29 pertinent publications were included, as 
detailed in Table 1.

2.2 Data screening and selection process

The screening process involved two independent reviewers who 
assessed the titles and abstracts of identified articles. Discrepancies 
were resolved through discussion, and inter-rater reliability was 
assessed using Cohen’s kappa coefficient. The kappa values were 
interpreted as follows: poor (<0.20), fair (0.20–0.40), moderate (0.40–
0.60), good (0.60–0.80), and excellent (0.80–1.00). This process 
ensured the reliability and consistency of the selected studies.

3 Results

Traditionally, walking has been considered an autonomous 
behavior. However, this idea is now considered oversimplified (35). 
Gait is recognized as a marker of whole-brain health and an essential 
tool for predicting health status and survival in the elderly (36). A 
substantial body of research has shown that higher cognitive 
functions are necessary for safe and successful gait, replacing the 
notion that gait is merely a motor task (37). For example, studies 
have shown that executive function is closely related to gait 
variability (38). Specifically, decreased executive function is 
associated with increased stride time variability and reduced gait 
stability (39), which are significant predictors of falls and cognitive 
decline (40). Another study found that higher cerebral amyloid-β 
deposition is associated with increased double support time (41). 
These findings suggest that gait parameters can serve as early 
indicators of cognitive impairment. The conventional view is that 
gait and cognitive function decline parallel to aging, with both 
deteriorating over time to produce two common geriatric entities: 
falls and dementia (42). However, an emerging perspective suggests 
that cognitive decline predicts reduced mobility and fall risk, while 
reduced mobility and slow gait predict further cognitive 
deterioration (43). These phenomena are interrelated rather than 
merely concurrent. For example, a longitudinal study showed that 
older adults with early onset of reduced mobility, characterized by 

FIGURE 1

3D gait analysis, measurements made using a 3D photo tracking system (based on markers on the skin associated with bony landmarks) combined 
with a composite force measurement platform that quantifies joint kinematics (angles) and kinetics (muscles and other soft tissues exerting 
momentum on the joints).
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TABLE 1 Summary of studies on gait and cognitive decline in Alzheimer’s disease.

References Duration 
(years)

Research 
type

research purposes Research results

Wilkins et al. (119) 1987 Case–control 

studies

Comparison of attention in patients with 

prefrontal lobe lesions and those with 

temporal lobe lesions

With low-frequency auditory and tactile stimuli, patients with 

prefrontal lesions showed significantly more execution errors 

than those with temporal lesions (p < 0.05)

Marquis et al. (120) 2002 Cohort studies Independent predictors of dementia 

onset in normal older adults

In older persons at high risk of dementia, step speed is an 

independent predictor of dementia onset (r = 0.13).

Fellgiebel et al. (121) 2003 Case–control 

research

Hippocampal and white matter 

alterations in individuals with Mild 

cognitive impairment (MCI) and AD: a 

diffusion tensor investigation

MCI and AD patients have substantially greater left hippocampus 

diffusion tensor imaging (DTI) MD values than healthy controls 

(p = 0.002).

Montero-Odasso 

et al. (122)

2009 A randomized 

controlled study

Effect of donepezil on falls in patients 

with MCI

MCI patients in the donepezil group had faster gait speed after 1 

month (p = 0.045), and MCI patients in the donepezil group had 

decreased gait variability after 4 months (p = 0.04), and the 

administration of donepezil significantly increased the gait speed 

of AD patients in both single- and dual-tasking, and decreased 

their gait variability single-tasking and multitasking (p < 0.05)

Buracchio et al. 

(123)

2010 Cohort studies Gait modifications in MCI patients Twelve years before MCI started, a slowing of stride was already 

noticeable. (p < 0.001)

Montero-Odasso 

et al. (124)

2010 Case–control 

studies

Changes in gait during dual tasking in 

patients with MCI

In the dual-task condition in both single-task and dual-task 

modes, the MCI group’s rate of stride time variability was 

noticeably higher than that of the standard control group 

(p = 0.002).

Yamada et al. (112) 2011 Cohort studies The association between fall risk and 

dual-task expenses in healthy older 

individuals

In older persons who walk faster than average, dual-task cost 

predicts fall risk. (p < 0.001)

Taniguchi et al. 

(125)

2012 Cohort studies An investigation on how Japanese elderly 

individuals’ gaits alter and their 

cognitive abilities

Gait frequency was not associated with cognitive level (p > 0.05)

Lord et al. (126) 2013 A descriptive study Independent gait in the elderly Classification of gait characteristics in old age into nine domains 

and 13 features

Verlinden et al. 

(127)

2013 Cohort studies Gait patterns in normal aging Gait variability is highly correlated with age and can represent the 

earliest gait abnormalities caused by aging

Callisaya et al. (128) 2012 Cohort studies Association of magnetic resonance 

analysis of cranial structures with gait 

changes

Progressive white matter lesions and step speed slowing (p = 0.04) 

were linked with white matter atrophy (p = 0.001), step length 

reduction (p = 0.005), and rhythmic alterations (p = 0.001); 

hippocampus atrophy was associated with both outcomes 

(p = 0.006).

Koenraadt et al. 

(129)

2014 Cross-sectional 

studies

HBO in the prefrontal cortex during the 

gait cycle using the functional near-

infrared spectroscopy (fNIRS) approach

Significant changes in HbO occur in the prefrontal cortex during 

all phases of normal gait.

Del Campo, et al. 

(130)

2016 Cross-sectional 

studies

Relationship in a dementia-prone elderly 

population between localized brain 

b-amylin (Ab) and gait speed

The anterior cingulate gyrus, occipital lobe, and nucleus 

accumbens all showed a link between Ab and reduced walking 

speed (p < 0.05).

Sakurai et al. (131) 2019 Cross-sectional 

studies

Cognitive Impairment in ApoE4 and 

Slow Gait Coexistence

The coexistence of ApoE4 and slow pacing reduced MMSE 

scores, and there was an interaction between the two [F(1.1074) = 

18.4, p < 0.001]

Graff-Radford et al. 

(132)

2019 Prospective study Relationship between cerebrospinal fluid 

biomarkers and cognition in Alzheimer’s 

disease

More were cognitively impaired after age and sex adjustment 

(27% vs. 9%; p = 0.005). Amyloid PET status was similar with and 

without high-convexity tight sulci (HCTS), but tau PET standard 

uptake value ratio (SUVR) was lower for those with HCTS after 

age and sex adjustment (p < 0.001).

(Continued)
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TABLE 1 (Continued)

References Duration 
(years)

Research 
type

research purposes Research results

Montero-Odasso 

et al. (44)

2020 Cohort studies Dual memory and gait loss in older 

persons and the risk of dementia in the 

future

Dementia is most likely to occur in older people who experience 

concurrent decreases in gait speed and cognition (HR: 3.12, 95% 

Cl 1.23–7.93, p = 0.017).

Montero-Odasso 

et al. (133)

2020 Cross-sectional 

studies

Differences in step speed in dual-tasking 

older adults assessed using a stopwatch 

and electronic walkway

Step speeds tested using stopwatches were lower than those 

measured using electronically enabled devices (p < 0.001)

Tian et al. (79) 2020 Cohort studies Neuroimaging features of elderly 

persons with memory loss and slowing 

gait speed

Elderly persons with impaired memory and gait speed essentially 

revealed lower volumes in the superior frontal gyrus, superior 

parietal lobule, thalamus, precuneus, and cerebellum (p < 0.01)

Chen et al. (134) 2020 Case–control 

studies

Machine learning classification models 

can predict different types of MCI 

patients.

The principal component analysis-support vector machine 

(PCA–SVM) model demonstrated better classification 

performance, with 91.67% accuracy and 0.9714 area under the 

receiver operating characteristic curve (ROC AUC), using the 

polynomial kernel function to classify PD–MCI and non-PD–

MCI patients.

Zheng et al. (60) 2022 Case–control 

studies

Cognitive effects of dual-task gait 

analysis

In the MCI group, the cadence of both the walking motor task 

(WMT), the walking task (WT), and the walking calculation task 

(WCT) were significantly different. However, the cadence in the 

NE group only showed a significant difference between WMT 

and WT.

Seifallahi et al. (135) 2022 Case–control 

studies

Tools for assessing and diagnosing the 

development of AD

Using these features and a support vector machine classifier, the 

model classified the two groups with an average accuracy of 

97.75% and an F-score of 97.67% for five-fold cross-validation 

and 98.68 and 98.67% for leave-one-subject out cross-validation. 

These results demonstrate the potential of our approach as a new 

quantitative complementary tool for detecting AD among older 

adults.

Huang et al. (136) 2022 A cross-sectional 

study

Memory deficits and increased risk of 

falls, potential neuroanatomical links to 

this association in older adults with 

amnestic Mild Cognitive Impairment 

(aMCI) and mild AD

Memory deficit was associated with increased fall risk in older 

people with aMCI and mild AD (p < 0.001). The atrophy of the 

medial temporal, frontal, and parietal lobes might mediate the 

association.

Wang et al. (137) 2022 Cohort studies Assessment of brain function in patients 

with cognitive impairment based on 

fNIRS and gait analysis

There was no significant difference in only task between the 

cognitively impaired group and the cognitively healthy group; 

however, during the dual-task, compared with the results of task 

1, there was a significant difference between the ROI area 

(t = 2.025, p = 0.048) and the gait of the dual-task (p < 0.05).

Collyer et al. (15) 2022 Cohort studies Dual decline in cognition and gait speed 

with risk of dementia in older adults

Dual decline in gait speed and cognition was associated with an 

increased risk of dementia, with dual memory decliners showing 

the most significant risk (HR, 24.9; 95% CI, 16.5–37.6).

Bommarito et al. 

(138)

2022 A cross-sectional 

pilot study

The biological substrate of the Motoric 

Cognitive Risk (MCR) syndrome

MCR, especially in its motor component, is associated with 

lateral ventricular enlargement and microstructural damage of 

the sCR (p = 0.059) but not to amyloid (p = 0.550) or tau deposits 

(p = 0.582) or global white matter macroscopically detectable 

damage (p = 0.749).

Skillback et al. (73) 2022 A longitudinal 

study

Slowing gait speed preceded cognitive 

decline and correlated with brain 

amyloidosis.

Gait speed (B = 0.15, p = 0.024) decline precedes cognitive 

decline, is linked to Alzheimer’s pathology (B = 2.75, p = 0.067), 

and might be used for early detection of increased risk for 

dementia development.

(Continued)
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decreased walking speed, were more likely to experience clinically 
verifiable cognitive decline (15). Gait is a strong predictor of future 
cognitive impairment and dementia in older adults (15, 44, 45). 
Motor Cognitive Risk Syndrome (MCR) (46) refers to a syndrome 
that can predict dementia risk based on slow gait and subjective 
cognitive decline in older adults. Studies have shown that older 
adults with both gait speed decline and cognitive decline are at a 
higher risk of developing dementia (15, 45). Cross-sectionally, 
studies have identified partial associations between gait and 
cognition in normal aging and specific neurodegenerative diseases 
(e.g., Parkinson’s disease, Alzheimer’s disease), supported by 
neuroimaging studies (47, 48). For example, a comprehensive gait 
measurement study found that gait domains such as pace/turning 
and variability were strongly associated with attention and executive 
function (40). Another study showed that gait variability 39, 
particularly stride length variability, was strongly associated with 
executive and global cognitive function in community-dwelling 
older adults. These findings underscore the potential of gait analysis 
as a non-invasive biomarker for the early detection of 
cognitive decline.

Machine learning algorithms, particularly graph neural 
networks (GNNs), have shown significant potential in analyzing 
gait data for the diagnosis of Alzheimer’s disease (AD). These 
advanced techniques can process complex, non-Euclidean data and 
capture subtle patterns that traditional methods might miss (49). 

For example, GNNs have been used to analyze gait data by 
constructing graphs that represent the relationships between 
different gait parameters, such as stride length and step time 
variability (49). One notable application is the use of attention-
based spatial–temporal graph convolutional networks (AST-GCN) 
(50), which can effectively capture the dynamic relationships 
between spatial and temporal features in gait data. This approach 
has been shown to improve the accuracy of AD diagnosis by 
identifying unique gait patterns associated with cognitive decline 
(51). Machine learning models, especially GNNs, can achieve 
higher diagnostic accuracy by leveraging complex patterns in gait 
data (52). These algorithms can automatically identify relevant 
features from raw gait data, reducing the need for manual feature 
engineering (53). Machine learning models can handle large 
datasets, making them suitable for analyzing extensive gait data 
from diverse populations (49). However, many machine learning 
models, including GNNs, operate as “black boxes,” making it 
difficult to interpret the reasoning behind their predictions (53). 
This lack of transparency can be problematic in clinical settings 
where interpretability is crucial (54). Effective training of these 
models requires large, high-quality datasets, which may not always 
be available (49). Additionally, the generalizability of these models 
to different environments or populations can be  limited (55). 
Implementing and optimizing machine learning models, especially 
GNNs, require specialized technical expertise (54).

TABLE 1 (Continued)

References Duration 
(years)

Research 
type

research purposes Research results

Suzuki et al. (139) 2023 A clinical trial A new balance capability index as a 

screening tool for mild cognitive 

impairment.

The new balance capability indicator, termed the visual 

dependency index of postural stability (VPS), was highly 

associated with cognitive impairment assessed by the Montreal 

Cognitive Assessment (MoCA). The area under the receiver 

operating characteristic (ROC) curve was more than 0.8, 

demonstrating high sensitivity and specificity (~80 and 60%, 

respectively).

Li et al. (45) 2023 Cohort studies Temporal sequence between cognitive 

function and gait speed

There is a longitudinal bidirectional association between usual 

gait speed and both global cognitive function (β = 0.117, 95% CI 

0.082–0.152; p < 0.001) and specific domains of mental intactness 

(β = 0.082, 95% CI 0.047–0.118; p < 0.001) and episodic memory 

(β = 0.102, 95%CI 0.067–0.137; p < 0.001) among Chinese older 

adults. Baseline global cognition is likely to have a stronger 

association with subsequent gait speed than the reverse pathway 

(χ12 = 6.50, P for difference = 0.01).

Lin et al. (23) 2024 A cross-sectional 

study

The integration of eye-tracking, gait, and 

corresponding dual-task analysis can 

distinguish cognitive impairment (CI) 

patients from controls.

A model based on dual-task gait, smooth pursuit, prosaccade, 

and anti-saccade achieved the best area under the receiver 

operating characteristics curve (AUC) of 0.987 for CI detection. 

In contrast, combined with phosphorylated tau 181 (p-tau181), 

the model discriminated mild cognitive impairment from 

controls with an AUC of 0.824.

Tuena et al. (140) 2024 Cohort studies The prediction of future aMCI AD 

diagnosis by gait disorders and gait-

related neuropsychological 

manifestations assessed by machine 

learning (ML)

The SVM algorithm achieved the best performance. The 

optimized training set performance attained an accuracy of 0.67 

(sensitivity = 0.72; specificity = 0.60), improving to 0.70 on the 

test set (sensitivity = 0.79; specificity = 0.52). The ML model 

could quickly identify individuals at higher risk of AD.
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4 Discussion

4.1 Independent gait traits are linked to 
specific cognitive processes

Independent gait features are associated with discrete cognitive 
functions, and numerous studies have shown that the gait domain is 
inextricably related to the cognitive domain in AD. For example, in 
elderly patients with mild to moderate dementia, slowing gait speed 
is an early and specific change (56). The evidence for step speed as a 
predictor of whole-brain cognitive status is strong and effective in 
predicting declines in executive functioning (57) and processing 
speed; however, a direct predictive relationship between step speed 
and memory loss was not found. High gait variability may be  a 
sensitive marker of prefrontal cortical control dysfunction during 
walking in patients with moderate AD and individuals with executive 
dysfunction (58). Gait asymmetry is one of the least studied variables, 
and current research suggests that it is not significantly associated 
with cognitive functioning (59). Several studies also failed to find any 
correlation between gait asymmetry and cognitive functioning (46). 
Several studies have identified an association between gait rhythm 
and memory decline (15). Still, there is no conclusive evidence on 
whether rhythm can be used as a predictor of whole-brain cognitive 
decline (60). Another study sees gait rhythm as a risk factor for 
dementia onset (16, 60). In patients with impaired cognitive function, 
the hippocampus may mediate the association between cognitive 
function and gait parameters and is strongly associated with cognitive 
decline (61).

Cognition is most closely related to gait speed among all the 
measured gait features. Due to its utility and reliable measurement 
characteristics (45), gait speed is commonly employed as an indicator 
of gait. The gait model encompasses 16 parameters, among which gait 
speed is the least specific yet most sensitive indicator. The 
deterioration in general gait is reflected, but the underlying reasons 
are not. Given that gait speed is the “final expression” of gait. 
Therefore, the association between gait speed and cognition may 
be more pronounced for this overall measure, providing a basis for 
understanding the broader relationship between gait and cognition 
and a platform for more specific inquiry. However, given the 
complexity of gait, which constitutes a multifaceted construct 
comprising numerous discrete attributes, a solitary outcome cannot 
adequately represent it. While gait speed exhibits pathological 
sensitivity, it cannot differentiate or mirror subtle and selective 
neuropathological alterations in gait (15). Conversely, gait variability 
offers an alternative measure of unstable strides and has garnered 
considerable attention in recent literature. Although gait speed and 
variability changes are not mutually exclusive, they provide different 
information. For example, gait variability (cross-step fluctuations in 
gait) is a more sensitive predictor of falls than gait speed in some 
neurodegenerative disorders and identifies AD (62).

In AD research, the link between gait and cognitive function has 
received much attention (63). The cognitive domain most closely 
associated with gait is executive function (64), primarily governed by 
centers in the frontal lobe, subcortical structures, thalamus, anterior 
cingulate gyrus, and basal ganglia. Pathological (65) and imaging 
studies (66) imply that the prefrontal cortex (PFC) is a central site of 
executive attention that triggers purposeful behaviors integral to daily 
life. During movement, the PFC drives executive attention processes 

that regulate gait (67, 68). Notably, gait speed in AD patients is closely 
related to the structure of specific brain regions (26). Studies have 
shown that gait speed is mainly associated with gray matter volume 
in the posterior temporal–parietal-occipital brain regions, including 
the lingual gyrus, fusiform gyrus, middle occipital lobe, post-central 
gyrus, precuneus, inferior temporal gyrus, and superior temporal 
gyrus (69). These regions are mainly responsible for essential 
functions such as visual perception, language, semantic memory 
processing, and multimodal sensory integration. Further studies 
found a significant correlation between slower gait speed in AD 
patients and smaller gray matter volume (GMV) in the medial 
temporal lobe and motor brain regions (70). This suggests that, in 
addition to executive function-related brain regions, structural 
changes in hindbrain regions also play an essential role in gait 
abnormalities in AD patients. While executive attention declines to 
some extent during normal aging (71), deficits in executive function 
are more pronounced in AD (58). The decline in PFC function leads 
to slower gait speeds and insufficient stride length (72). Therefore, a 
comprehensive understanding of the neural mechanisms underlying 
gait abnormalities in AD patients requires careful consideration of 
structural changes in executive function-related brain regions as well 
as hindbrain regions.

These findings provide important insights for clinical practice. 
First, gait analysis can be used as a potential screening tool for early 
detection of Alzheimer’s disease (AD) and its associated cognitive 
impairments (1). For example, parameters such as gait speed (73) and 
gait variability (1, 38) have high accuracy in distinguishing cognitively 
normal individuals from cognitively impaired patients, especially 
under dual-task conditions (74) [e.g., naming animal task (75)], 
where gait speed and gait variability (1) can more sensitively identify 
cognitively impaired patients. In addition, gait variability (73) has 
high specificity in identifying individuals with AD, making it 
potentially useful in clinical settings. Second, gait-based interventions 
may help improve cognitive function and slow disease progression. 
Studies have shown that multielement exercise (76) (e.g., aerobic 
training, muscle strength training, and gait training) can improve 
walking speed and stride length in patients with mild cognitive 
impairment (MCI). In addition, dual-task training, progressive 
strength, and functional training (75) can improve walking speed in 
patients with comorbid cognitive and motor impairments (76). 
Although large-sample clinical trials are needed to validate the 
interventional effects of these training on MCI progression, these 
preliminary findings suggest that gait interventions may become a 
promising nonpharmacological treatment that can help improve 
cognitive function and quality of life for patients.

4.2 Pathology and neural networks of 
gait-cognition associations

The association pattern between individual gait characteristics 
and distinct cognitive functions varies across different pathologies, 
and this specificity will enhance our understanding of their underlying 
common pathology and shared neural circuitry and facilitate the 
identification of temporal changes in these patterns. This specificity 
will also aid in identifying patterns of change at each time. 
Understanding potential correlations between gait and cognition is 
made possible by current knowledge of disease pathophysiology. For 
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example, AD patients most commonly present with memory loss, 
mainly due to amyloid deposition in the entorhinal cortex and 
hippocampus (77), and a correlation has been found between 
hippocampal atrophy and gait changes, primarily reflected in slower 
speed and smaller step length (78). Some studies have revealed that 
elderly individuals experiencing declines in both gait speed and 
mental function predominantly demonstrate reductions in volume 
within the cerebellum, parietal lobe, thalamus, precuneal cortex, and 
superior frontal cortex (79); One study found a significant correlation 
between gait speed and Aβ (measured by amyloid PET) in the caudate 
nucleus, occipital cortex, precuneus, and anterior cingulate gyrus, 
hypothesizing that deposition of cerebral Aβ in these brain regions 
may be  a potential mechanism by which slow gait speed (in the 
context of concomitant subjective cognitive deficits) is a strong 
predictor of future cognitive status (57, 80, 81). The exact mechanism 
is unclear, and both Aβ and tau may exert neurotoxic effects on the 
cognitive-motor network through different pathways at different time 
points in the disease (82). It has also been found that individuals 
carrying the ApoE4 genotype may have lower MMSE scores compared 
to slow walkers. There is an interaction between the ApoE4 genotype 
and slow walkers, which may affect cognitive functioning (83, 84).

That cognition and gait share common neural substrates are also 
supported by several studies, e.g., the neurotransmitter acetylcholine 
has been shown to play an essential role in cognitive function as well 
as gait control and balance (85), and acetylcholine (Ach) has been 
linked to attentional processes in the PFC (86), which is related to gait 
speed (87). Two additional studies (88, 89) that assessed the impact of 
cholinesterase inhibitors on gait performance revealed that donepezil 
and galantamine improved AD patients’ ability to adapt their gait 
patterns to tasks requiring attention and increased gait speed.

The coordination of neuronal networks connecting to the 
prefrontal cortex may be necessary for gait, and there is a reciprocal 
relationship between these two structures (90, 91). Gait is involved in 
two distinct but interacting neural pathways: the motor route and the 
cognitive pathway (92, 93). Both cognitive and motor pathways are 
controlled by brain areas such as frontal lobes, cerebellum, and basal 
ganglia that collectively interact to exert governance and control over 
executive function and intentionality of movements that require 
anticipation and the prediction of movement of others (94). For 
example, prefrontal cognitive and motor pathways require bidirectional 
communication to execute the movement, and gait impairment will 
occur if dysfunction exists in either structure. The prefrontal cognitive 
pathway and motor pathway in Lewy body dementia (LBD) and AD, 
respectively, are affected at different times, which leads to different 
cognitive performance, as well as gait impairment. Due to the 
breakdown of motor networks (such as the basal ganglia and associated 
networks), significant gait impairments appear early in LBD (95, 96). 
It has been found that in Lewy body dementia (LBD) and AD, 
prefrontal cognitive and motor pathways are affected at different stages, 
leading to different cognitive performance and gait impairments (97–
99). In LBD, significant gait impairment occurs early due to dysfunction 
of motor networks (e.g., basal ganglia and related networks) (100, 101).

In contrast, cognitive networks have relatively better control 
over gait, allowing for a more significant shift from motor function 
to cognitive tasks (101). In contrast, in AD, where early pathologic 
changes are predominantly found in the cortex and do not affect 
the basal ganglia until late in the disease, cognitive control of gait 
may diminish earlier, leading to an increased reliance on motor 

networks to facilitate and regulate gait (100). Thus, gait deficits are 
more associated with motor deficits in AD, whereas the relationship 
between gait deficits and prefrontal-mediated cognitive functions 
(e.g., executive functions) is more pronounced in LBD (99, 102).

Future studies should explore the association of neural 
mechanisms between gait and cognitive function, including the 
effects of Aβ and tau proteins (103) on the cognitive-motor network 
and the dynamics of neurotransmitters (104), such as acetylcholine, 
in disease progression. Meanwhile, studies combining multimodal 
biomarkers (103) (e.g., Aβ-PET, tau-PET, cerebrospinal fluid markers, 
and genetic markers) will contribute to a more comprehensive 
understanding of the link between the two and provide new avenues 
for early identification and monitoring of Alzheimer’s disease. In 
addition, the development of graph neural network (GNN)-based 
multimodal data analysis models (105) can better reveal the neural 
network characteristics of gait and cognitive functions and their 
dynamics in the disease. Future large-scale clinical trials are needed 
to validate the long-term effects of gait interventions (e.g., multi-
element exercise and dual-task training) on cognitive function and 
disease progression and to explore their applicability at different 
disease stages. Ultimately, the development of early screening tools 
based on gait characteristics and personalized treatment strategies 
combining biomarkers and neuroimaging will provide new ideas and 
approaches to slow the progression of Alzheimer’s disease.

4.3 Early evaluation of the connection 
between cognition and movement in a 
dual-task paradigm

The ability of the cognitive system to manage movement is 
mirrored in gait under single-task settings. Thus, it is anticipated that 
changes in cognitive functioning will be reflected in changes in gait 
performance. Cognitive regulation of gait is reduced in MCI and early 
stages of dementia patients, but because the motor system compensates 
for cognitive deficits due to aging and pathology, changes in gait are not 
evident in single-task test conditions. This led to the groundbreaking 
study of gait in the dual-task “talk and walk” mode (106). We can 
generally only retain limited information in working memory (WM). 
In dual-task situations, individuals need to walk while performing 
another task that requires attention. Performing two tasks concurrently 
entails brain activity of greater complexity, necessitating coordination 
among cortical areas to manage the interconnected regions needed for 
executing each component task (107). Consequently, both walking and 
cognitive performance may undergo alterations, and they are frequently 
juxtaposed against cognitive or walking benchmarks in single-task 
scenarios to evaluate the modifications that occur (108). A fundamental 
premise of dual-tasking posits that two tasks executed simultaneously 
interfere with one another and vie for cortical resources (109). For 
instance, a decrement in gait speed may be  construed as an 
augmentation in the cortical attentional demand during ambulation 
(107). The dual-task paradigm offers a practical and sensitive way to 
evaluate fall risk and motor-cognitive interactions without being 
neither pricy nor invasive. Dual-task costs discovered in gait evaluations 
may indicate mild brain injury (110) and are associated with attentional 
and executive function efficiency (111). One study comparing changes 
in gait variability between cognitively normal individuals and MCI 
patients in single-task and dual-task modes found no difference 
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between the two in the single-task mode. Still, MCI patients in the 
dual-task mode showed a significant increase in gait variability (112) 
(Figure  2). Based on these findings, patients with mild cognitive 
impairment (MCI) and those in the initial stages of dementia exhibit 
diminished cognitive regulation of their gait performance. These 
disturbances are not noticeable under the single-task test conditions, 
but differences may be noticed under the dual-task condition. A study 
involving 1,038 elderly adults emphasized the sensitivity and predictive 
power of dual-task assessments in individuals with a generally normal 
gait. The results indicated that dual-tasking was a more frequent 
predictor of falls than single-tasking among those walking at speeds of 
95 cm/s or above (112).

Recent advancements in gait analysis and machine learning offer 
promising avenues for the early detection and management of 
Alzheimer’s disease (AD). These findings have significant potential 
clinical implications, particularly in using gait analysis as a screening 
tool and developing gait-based interventions to improve cognitive 
function and slow disease progression.

5 Limitations

To date, selective associations between independent gait and 
cognitive traits have not been comprehensively examined, and most 
studies have focused on temporal–spatial parameters of gait, with 
fewer studies on kinematics, kinetics, surface EMG, etc. Additionally, 
despite the prevalent use of the dual-task paradigm in research to 
explore the associations between gait and cognition, discrepancies 
in findings have been documented, which can be  attributed to 
methodological issues(e.g., various concurrent activities, accounting 
for baseline task demands and multiple approaches to computerized 
dual-task interference analysis) (113, 114). Along with these 
contradictions, the dual-task approach’s underlying cognitive nature 
remains unknown. It does not consider how baseline cognition 
affects gait, making pinpointing specific underlying brain correlates 
challenging. It is important to note that both voice analysis (115) 
and curve walking (116) are expected to be  an affordable, 

easy-to-use, and highly accurate method of detecting early-onset 
dementia and to play an active role in the early identification of mild 
cognitive impairment (MCI), which opens up new ideas and 
potential complementary avenues of research in the field of gait and 
cognition. Suppose there is a selective link between gait and 
cognitive factors. In that case, the selective relationship between 
their intermediate neuropathology and neural networks must 
be  investigated further. Still, current evaluations in pathology 
cohorts are particularly limited. Sample sizes tend to be  minor, 
albeit with some exceptions (28), and more longitudinal studies that 
can draw causal conclusions are needed to elucidate the neural 
mechanisms underlying this association. As only a few research have 
shown that cognition is a predictor of changes in the gait domain, 
the issue of reverse causation must also be considered (15, 117). 
These findings show that locomotion and cognition have a 
complicated relationship, and they support the need for a thorough 
examination of both to understand how they interact and how their 
processes unfold through time.

6 Conclusion

In the future, based on the results of simple and objective gait 
analysis, it may be possible to incorporate kinematic and kinetic 
parameters and surface EMG parameters to investigate further and 
utilize dual-task methods to assess gait, to enhance gait’s ability to 
predict cognitive decline and to combine gait parameters with 
magnetic resonance (MRI), PET-CT, near-infrared techniques 
(fNIRS), electrophysiology (EEG, EMG), and other techniques. 
Analytical comparisons were performed using computer models to 
validate the role of gait as a surrogate biomarker of cognitive decline 
(118). Focusing on body coordination, training graph neural 
networks to learn the pattern differences between different gaits and 
realizing an accurate comparison between the gait of AD patients 
and ordinary people (Figure  3) can not only provide a deeper 
understanding of gait mechanisms but also is expected to provide 
new tool indicators for disease diagnosis and monitoring.

FIGURE 2

Comparison of changes in gait variability between cognitively ordinary people and MCI patients in single-task and dual-task modes reveals (112).
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