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Elucidating the unique neuropathological response to blast exposure remains a 
barrier towards the development of diagnostic approaches for those with blast-
induced traumatic brain injury (bTBI). Quantification of biomarker concentrations 
in the blood post-injury is typically used to inform brain injury severity. However, 
injury progression and associated changes in biomarker concentrations are sensitive 
to parameters such as the blast overpressure (BOP) magnitude and frequency of 
blast exposure. Through this work, a blast-dose biomarker kinetics (BxK) platform 
was developed and validated for Aβ42 as a promising predictor of injury post-
blast. Blast-dose responses accounting for BOP magnitude and frequency were 
integrated into a mathematical model accounting for whole-body Aβ peptide 
kinetics. Validation of the developed model was performed through comparison 
with acute monomer levels in the blood serum of 15 service members exposed to 
repeated low-level blast while undergoing three-day weapons training. Amyloid 
precursor protein (APP) synthesis was assumed to be proportional to blast magnitude 
and additive effects within a window of recovery were applied to account for 
cumulative exposure. Aβ42 concentrations in the blood serum were predicted 
within 6.5 ± 5.2% on average, demonstrating model feasibility and biomarker 
sensitivity to blast. Outcomes discuss how modulation of patient-specific factors 
(age, weight, genetic factors, years of exposure, sleep) and pathophysiological 
factors (BBB permeability, amyloidogenic pathology, neuroinflammation) can 
reveal potential sources of variability in experimental data and be incorporated 
into the blast-dose BxK platform in future iterations. Advancements in model 
complexity accounting for sex-specific factors, weapon system, stress levels, risk 
of symptom onset, and pharmacological treatment strategies are anticipated to 
improve model calibration. Utilization of this blast-dose BxK model to identify 
drivers of pathophysiological mechanisms and predict chronic outcomes has the 
potential to transform bTBI diagnostic, prognostic, and therapeutic strategies.
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1 Introduction

Blast-induced traumatic brain injuries (bTBI) and their associated subclinical effects are 
highly variable and a clear diagnostic platform has yet to be developed, leaving affected military 
personnel susceptible to increased neurocognitive, behavioral, and functional deficits (1–5). A 
Generalized Blast Exposure Value (GBEV) was developed by Modica et al. (6) to establish a blast 
exposure threshold where the probability of developing blast-related symptomology in military 
Veterans was found to be dependent on the number of overpressure exposures, weapon type, 
timeframe between first and last exposure, and repetitive daily frequency. Blood proteomics and 
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metabolomics were then correlated with GBEV, which was intended to 
facilitate the development of interventions for service members (7). 
Unfortunately, GBEV does not account for blast overpressure (BOP) 
magnitude or the time between exposures, which are critical metrics 
towards understanding how low-level vs. high-level and single vs. 
repeated blast exposures contribute to chronic symptomology, 
particularly during military training exercises (4, 8–10).

Increased susceptibility to prolonged recovery following repeated 
impact injury was proposed to be  a function of the window of 
vulnerability (11). The window of vulnerability becomes breached when 
the new injury occurs prior to the resolution of the pathophysiological 
recovery from the first injury. Development of an injury model 
parameterized to account for the recovery phase and associated window 
of vulnerability following blast could improve predictive pathophysiology.

The National Institute of Neurological Disorders and Stroke 
(NINDS) recently proposed multidimensional classifications of 
traumatic brain injury (TBI) severity accounting for clinical presentation, 
protein biomarkers, anatomical features, and biopsychosocial-ecological 
factors (12, 13). This new clinical, biomarkers, and imaging with 
modifiers (CBI-M) framework was developed to enable more effective 
TBI management (14). Among the CBI-M, clinical predictors of TBI 
pathophysiology can currently be estimated through quantification of 
blood biomarker concentrations (15–17). Although the mechanism of 
injury is different from impact TBI, blood biomarker concentrations 
have been shown to significantly change following blast, indicating that 
this method may have strong prognostic and diagnostic capabilities for 
bTBI applications (18, 19). Determination of the effects of repeated blast 
exposure on biomarker kinetics, particularly within the window of 
vulnerability, is a necessary step towards identifying bTBI thresholds 
and establishing protocols to prevent prolonged cognitive deficits, even 
following exposure to low-level blasts during training exercises.

Evidence of amyloidogenic processes have been observed in 
patients with TBI shortly after injury via quantification of amyloid-β 
peptide 40 (Aβ40) and amyloid-β peptide 42 (Aβ42) monomers in the 
peripheral blood (20, 21). Aβ peptides are produced from cleavage of 
amyloid precursor protein (APP) found in high concentrations within 
the neuronal cytoplasm and at synaptic terminals. Following exposure 
to low-level blast, Aβ40 and Aβ42 were both elevated, associated with 
symptomology at acute and chronic timepoints. However, Aβ42 has 
been shown to have greater sensitivity compared to Aβ40 as a 
biomarker for bTBI (21–25). Therefore, the purpose of this study was 
to develop a model capable of predicting brain biomarker kinetics of 
Aβ42 following blast exposure.

Aβ42 release kinetics were previously simulated for single versus 
repeated blast exposure cases corresponding to degree of synaptic 
damage where results showed approximate windows for biomarker 
collection between 2 and 5 days (26). Prediction and validation of Aβ42 
biomarker dynamics based on previous experimental and computational 
findings in this proof-of-concept study aims to inform how blast 
mechanics influence pathophysiology where we intend to expand upon 
future models to improve diagnostic and prognostic capabilities.

2 Materials and methods

Blast-dose biomarker kinetics (BxK) model development can 
be divided into four main segments (Figure 1). A system of first-order 
ordinary differential equations (ODEs) was parameterized to describe 

magnitudes and durations of cellular mechanical damage (milliseconds 
to seconds) and associated phasic biological responses (minutes to 
hours). Mechanical damage was conceptualized as the phase in which 
external forces alter baseline solid or fluid mechanics, sometimes 
referred to as the primary injury. Phasic biological responses 
correspond to biochemical processes resulting from the initial injury, 
which can also be defined as secondary injury cascades (27). Parameter 
estimation and model formulation was adapted from previous models 
describing synaptic mechanobiology and biomarker responses (26). 
Blast-dose responses accounting for BOP magnitude and frequency 
were then integrated into a mathematical model accounting for whole-
body Aβ peptide kinetics. Next, validation of the model was performed 
through comparison of predicted and measured serum Aβ42 
concentrations following blast exposure in 15 soldiers. Lastly, the 
developed BxK model discusses avenues for model calibration to 
improve predictive capabilities, establishing a framework that could 
be expanded for other biomarkers.

2.1 Modeling blast-dose and biological 
response

During blast exposure, complex cellular environments are subjected 
to high strain rates. Animal, surrogate, and computational models typically 
approximate tissue biomechanics as a function of BOP magnitude (28–33). 
Thus, mechanical energy deposition and subsequent mechanical damage 
( MR ) were assumed to be  diffuse throughout the whole brain and 
proportional to the magnitude of the BOP. The associated recovery rate 
was represented as a linear kinetic term (Equation 1):

 
( )M

M
d

dR R
dt t

α λ= − −
 

(1)

MR  is the mechanical damage to brain microstructures, α is the 
damage decay rate, dt  is the characteristic time for the impulse duration 
of mechanical damage, and λ represents the residual damage. The 
model assigns an injury threshold, which drives MR . In this study, the 
non-dimensional injury threshold was set to 4, proportional to 
overpressures of 4 psi where pressures exceeding this threshold were 
linked to low-level blast pathophysiology (4, 34, 35). However, this 
threshold can be  easily adjusted within the framework to 
be proportional to alternative input parameters (i.e., positive phase 
impulse, cumulative impulse, intensity, etc.). The time to peak 
mechanical damage was assumed to be on the order of 500 ms. While 
dynamic loading due to blast overpressures or impact typically occurs 
on the order of 1–50 ms, shear waves may last hundreds of milliseconds 
post blast (36, 37). Below the assigned injury threshold, the residual 
mechanical damage (λ) was assumed to approach zero, simulating full 
recovery (Figure 2A). On the other hand, above the injury threshold, 
residual damage approaches a constant proportional to the blast 
magnitude (λ ~ BOP), simulating chronic damage (Figure 2B).

Molecular responses to tissue damage within the brain can 
be parameterized through multiple phases. The initial or hyperacute 
response is typically defined by molecular changes occurring within 
the first seconds to hours following injury. Subsequent phases include 
acute (<24 h), subacute (1 day–3 weeks), and chronic (>3 weeks), 
although exact time frames are widely disputed (38, 39). In this work, 
hyperacute ( )1BR  and acute 2( BR ) phase biological responses were 
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defined as functions of the mechanical damage, MR , imposed by the 
blast according to Equations 2, 3):
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where 1,in outk k , and 2outk  are constants controlling the rate of 
change of neurobiological responses and 0MR  is the basal mechanical 
repair (assumed 0MR  = 1). Representative hyperacute and acute 
responses to single and repeated blast exposure are shown in Figure 2 
to demonstrate how mechanical damage drives the cascade of 
biological responses. If the repeated blast occurs within the recovery 
phase, the mechanical damage and biological responses were assumed 
to be additive (Figure 2C), accumulating any residual damage at the 
onset of a repeated blast exposure.

2.2 Integration with BxK model

Amyloid precursor protein (APP) is typically metabolized 
through the non-amyloidogenic pathway at the plasma membrane 
where soluble p3 peptides are effectively cleared from the body (40). 
However, when APP is cleaved through the amyloidogenic pathway, 
toxic peptides Aβ40 and Aβ42 aggregate from monomers into dimers, 
trimers, oligomers, and protofibrils and fibrils develop into Aβ plaques 
(41). Aβ monomers are formed through the following steps in the 
amyloidogenic pathway (Figure 3A): (1) APP is cleaved by beta-site 
APP cleaving enzyme 1 (BACE1) at the cell membrane, generating 
sAPPβ and C99. BACE1 may then be  cleaved to form a soluble 

FIGURE 2

Modeling mechanical damage (RM ) and multi-phase biological responses ( 1RB  and 2RB ) to blast exposure. (A) Biological responses to a blast 
magnitude below the injury threshold normalize to zero, representing full recovery. Time to peak RM  was ~500 ms. (B) Biological responses to a blast 
magnitude above the injury threshold no longer normalize to zero, representing residual injury proportional to BOP magnitude. Figure annotations 
adapted from Blennow et al. (11). (C) If a repeated blast occurs within the recovery phase, the response was assumed to be additive.

FIGURE 1

Schematic of model development approach: (1) model, (2) 
integration, (3) validation, and (4) calibration.
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fragment (sBACE1). (2) C99 is enzymatically broken down by 
γ-secretase (γS) into Aβ peptides and APP intracellular domain 
(AICD). Aβ40 and Aβ42 are highly lipophilic and have a propensity 
for aggregation. They are distinguished by their peptide length of 
either 40 or 42 amino acids depending on where they were cleaved 
and are released into the interstitial fluid (ISF).

Change in APP level following exposure to overpressures 
between 5 and 12 psi was positively correlated to the overpressure 
magnitude, indicating that blast disrupts APP metabolism (42, 
43). Provided that both Aβ40 and Aβ42 were shown to be elevated 
in the peripheral blood following exposure to low-level blast 
(21–24), we assumed that under blast conditions, APP was more 
likely to be cleaved through the amyloidogenic pathway, resulting 
in increased production of Aβ peptides at the neuronal cell 
membrane and subsequent release into the ISF surrounding the 
synapse. To account for this assumption, the rate of APP synthesis 

( APPk ) was increased proportional to the biological response 
phase post-blast (Equation 4):

 ( ) ( )0 1APP BAPPk k x R= +  (4)

where x was a constant determined during model calibration.
Given the complexity of factors influencing biomarker 

concentrations post-blast, a BxK model was developed to best predict 
Aβ concentrations in the blood serum. A physiologically based 
pharmacokinetic (PBPK) model, originally developed in 
Bloomingdale et al. (44) to model antibodies targeting the central 
nervous system, was adapted in this study. PBPK models have 
advantages over typical compartment models where systems of 
equations account for detailed physiological processes, such as Aβ 
generation and transport mechanisms. Aβ transport was simulated by 

FIGURE 3

Integration of blast-dose response model with Aβ biomarker kinetics. (A) The blast-dose biological responses ( )RB  drive APP synthesis in the 
amyloidogenic pathway, affecting Aβ monomer concentrations in the interstitial fluid (ISF). (B) Aβ peptide flux between tissue and blood was defined to 
include receptor-mediator endocytosis and bi-directional transport. (C) Biomarker concentrations in the serum were predicted using a PBPK model 
adapted from Bloomingdale et al. (44), incorporating exchange between brain, whole body tissue, lymph, and blood compartments.
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adapting the typical vascular-endothelial-interstitial barrier model 
described by Chang et al. (45) where IgG antibodies in the vasculature 
were modeled to bind to FcRn, enter the vascular endothelial cells via 
fluid-phase endocytosis, and be  taken up by endo-lysosomes for 
partial degradation and release into both the vasculature and 
interstitium. In this work, Aβ peptide transport was adjusted to 
account for receptor-mediated endocytosis of Aβ and bi-directional 
fluid transport across barriers (Figure  3B) (46). Aβ transport is 
facilitated by various influx and efflux transporters. Low-density 
lipoprotein receptor-related protein 1 (LRP1) and P-glycoprotein 
(P-gP) transporters control the Aβ efflux from interstitium to 
vasculature, while the receptor for advanced glycation end-products 
(RAGE) transporter controls the Aβ influx from vascular to interstitial 
space (46–48). Additionally, compartment models were further 
expanded to account for exchange between the brain, perivascular 
space, glymphatics, peripheral tissues, plasma, and lymph (Figure 3C). 
Reaction mechanisms were formulated as mass balance equations 
between compartments where the tissue flow rates (Q), lymphatic flow 
rates (L) and exchange flux rates (F) describe mass transport. 
Amyloidogenic reaction mechanisms (Figure  3A), PBPK reaction 
mechanisms (Supplementary Table S1), parameter constant 
assumptions, and initial conditions (Supplementary Table S2) were 
used to generate and solve complex systems of ODEs using the CoBi 
(CFDRC Computational Biology tools) ODE-Gen module. Model 
simulation was then performed using CoBi software (49).

2.3 Validation

Biomarker concentrations in the blood serum of male 
Soldiers (n = 15) were collected over the course of a three-day 
0.50-caliber sniper rifle training in a study by Thangavelu et al. 
(24). The investigators have adhered to the policies for protection 
of human subjects as prescribed in AR 70–25. Serum was 
collected 2.1–3.16 h prior to weapons training (2.48 h on average) 
where it was assumed that weapons training lasted a total of 6 h 
each day. Post-training serum was collected 0.48–2.90 h after 
training (1.40 h on average). A weapons training timeline was 
generated based on this information (Figure 4A).

Soldiers were exposed to 4–50 shots fired per day while 
instrumented with sensors in a location on their body that 
approximated individualized incident overpressure exposures 
throughout training. Average BOP magnitude per day, as provided 
in the experimental dataset, was input into our blast-dose model 
to recreate the patient-specific MR  and BR  (Figure 4B). The effect 
of the hyperacute biological response ( 1BR ) on blood serum Aβ42 
concentrations was analyzed throughout this study.

Predicted serum biomarker concentrations were normalized to 
the subject-specific pre-training concentration on day one of weapons 
training. Relative percent error was calculated between the time-
course profile of model Aβ42 concentrations in the serum and the 
reported subject-specific Aβ42 concentrations before and after each 
training day (six data points per subject). A two-tailed Wilcoxon 
paired t-test was used to statistically compare accuracy of model 
predictions at the beginning of each training day versus the end of 
each training day where p < 0.05 was considered significant. The effect 
of age and duration of service on model accuracy was also assessed 
using linear regression analysis.

3 Results

3.1 Model performance

The relative percent error of the model at each time point was 
calculated and reported for all patients in Table 1 as a measure of 
model accuracy. Since all model predictions were normalized to the 
baseline serum levels on day one, the relative percent error at Day 1: 
Pre-Training was zero in all cases and was not included in the 
analysis. Representative comparisons from model outputs from four 
blast scenarios are provided for discussion (Figure  4C). Outputs 
from all 15 subject-specific scenarios are shown in 
Supplementary Figure S1. Qualitatively, it is evident that post-
training experimental data points (pink) most closely align with the 
predicted model compared to the pre-training experimental data 
points (green).

The predicted change in serum Aβ42 concentrations over time 
resulted in a mean error of 6.5 ± 5.2%, demonstrating high 
accuracy of the blast-dose BxK model. Post-training predictions 
over the three-day training were significantly better than 
pre-training predictions (p < 0.01) (Figure  5). Further, 80% of 
pre-training data points were over-approximated. Regression 
coefficients comparing subject age or duration of service and 
degree of model pre-training predictions were less than 0.1, 
indicating that alternative factors are likely driving variability in 
subject pre-training Aβ42 levels.

3.2 Calibration

Increased APP synthesis proportional to the blast magnitude 
resulted in an increase in Aβ monomer concentrations in the serum. 
Calibration of the model established x = 1.5 in Equation 4, which was 
applied for all subjects in this study. However, future iterations of the 
blast-dose BxK model may be  optimized to determine a person-
specific x based on factors such as age, duration of service, sex, etc. A 
more in-depth discussion of future calibration and model capabilities 
is provided in the Discussion section.

4 Discussion

The blast-dose–response BxK model predicted serum Aβ42 
concentrations as a function of BOP magnitude within 6.5% error on 
average. A hyperacute biological response was applied to APP synthesis 
and time-course profiles within the acute phase of injury were validated 
based on experimental data. Over-approximation of pre-training 
concentrations contributed to the greatest percent error within the 
model. Experimental data showed that biomarker concentrations 
returned to baseline by day two or even decreased (24), which is 
consistent with preclinical results at 24 h following blast (43). De Gasperi 
et al. found that despite increased APP production following blast, Aβ42 
was still decreased at 24 h (43). The physiological explanation for this 
decrease remains unclear. However, factors affecting model variability 
could be due to limitations in the model assumptions. In particular, the 
assumed rate of neurobiological response or basal repair may 
be sub-optimal. Acute responses to blast exposure leading to amyloid 
suppression should be investigated/incorporated into the model.
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4.1 Limitations

4.1.1 APP synthesis assumptions
The BxK model simulated response to blast based on the 

assumption that blast drives APP synthesis within brain tissue. This 

led to increased Aβ42 concentrations due to enzymatic cleavage. 
However, the source of increased Aβ peptides in serum after blast 
remains unclear. Increased levels of Aβ42 may also occur due to (1) 
increased cleavage/clearance by platelet activation in the whole 
blood leading to an increase in Aβ42 in the serum following blast, 

FIGURE 4

(A) Weapons training timeline based on assumptions from Thangavelu et al. (24). (B) Blast-dose + biological response curves for four subject-specific 
cases. (C) Blast-Dose BxK model serum Aβ42 concentrations compared to experimental serum data for four subjects.
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and/or (2) increased enzymatic cleavage/clearance through the 
blood brain barrier (BBB) from blast-related damage (sourced 
either from the blood or from the brain tissue) (50–54). 
Mechanistic studies can be employed using these models to test 
these hypotheses.

The rate of APP synthesis in the peripheral tissues was assumed 
to be 10% of initial APP synthesis in the brain ( ( )0APPk  defined in 
Eq.  4). This was based on the assumption that >90% of APP 
concentrations brain are platelet-derived (54). However, model APP 
synthesis rates and concentrations of brain tissue-derived, platelet-
derived, and peripheral tissue-derived APP (from the pancreas, 
kidney, spleen, heart, liver, lung, intestines, skin, and salivary and 
thyroid glands) should be calibrated in greater detail prior to making 
any mechanistic conclusions of how blast may be  contributing to 
changes in Aβ concentrations (47, 54, 55).

4.1.2 Validation
The number of subjects used to validate this model (n = 15) was 

sufficient to demonstrate model feasibility and application. 
Nevertheless, validation of this model using larger subject populations 
is necessary to make any mechanistic conclusions of how blast may 
be contributing to changes in Aβ concentrations.

Using the model framework, modulation of fluid exchange 
between the cerebrospinal fluid (CSF), ISF, BBB, and lymphatic 
systems to improve model fit within the first 24 h post-injury could 
be one way to illuminate the potential factors affecting Aβ42 kinetics. 
Additional factors, such as stress levels or sleep, could have also 
influenced clearance of these biomarkers. Therefore, improved model 
predictions of inter-day recovery likely require incorporation of more 
person-specific factors. The current blast-dose BxK model predictions 

TABLE 1 Relative percent errors of the predicted serum Aβ42 concentrations in the blast-dose BxK model compared to experimental data at each time 
point during the three-day weapons training. Person-specific information from Thangavelu et al. (24).

Person-specific information Serum Aβ42 relative % error

Subject ID Age Duration of 
service (years)

Day 1: post-
training

Day 2: pre-
training

Day 2: post-
training

Day 3: pre-
training

Day 3: post-
training

1 33 11 0.9 20.2 1.3 13.4 7.0

3 34 10 −1.7 12.3 −4.2 0.2 −0.4

4 46 19 −11.7 11.8 −5.0 1.7 −6.6

6 50 22 2.0 20.0 1.9 9.7 8.3

7 47 26 −5.2 2.5 7.4 6.7 −3.5

8 43 18 0.2 9.5 1.7 8.0 3.1

9 35 8 −3.2 5.8 −4.2 8.6 −1.0

11 43 9 −6.3 15.6 −0.8 11.9 0.5

12 37 12 −7.2 −2.3 2.5 7.1 −3.4

14 52 10 −6.2 17.3 −0.4 10.3 7.9

16 46 19 −16.2 14.4 −6.0 −11.8 −1.2

17 45 15 −7.7 −4.3 −0.5 −0.2 −4.0

18 36 8 −6.8 17.1 −5.6 0.0 −1.8

19 42 12 3.1 17.3 4.3 13.8 8.6

20 46 19 −12.1 3.1 −7.4 −6.3 −2.9

FIGURE 5

Absolute percent error of average pre-training and post-training 
model predictions for each person. Pre-training model predictions 
had significantly greater percent error compared to experimental 
data than post-training model predictions (**p < 0.01). Statistics were 
calculated using a two-tailed Wilcoxon paired t-test. Results are 
displayed as Mean ± SD.
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demonstrate feasibility; however, the following person-specific and 
pathophysiological factors can be readily incorporated to improve 
predictive capabilities.

4.2 Person-specific factors

4.2.1 Age
Aβ42 concentrations are known to vary with age. Healthy subjects 

aged 35–65 had significantly higher Aβ42 plasma levels than subjects 
less than 35 (56). This gradual increase in baseline concentrations with 
age was incorporated into our model, however, we were most interested 
in predicting the relative acute change in concentration of monomers 
within this study. As the effect of bTBI on the Aβ42 production with age 
remains unknown, future applications of this model may account for 
chronic changes in monomer concentration, amyloid suppression 
processes, and/or age-specific amyloidogenic pathology contributing to 
dimerization, oligomerization, and eventually plaque formation.

4.2.2 Body weight
Cardiac output, hematocrit, whole blood volume, serum volume, 

clearance, bioavailability, and flow rates are typically variables either 
calculated from body weight or normalized to body weight, which 
should be tailored to the individual. In the validation dataset, the body 
weights were unreported, which could contribute to variability in the 
predicted model. Incorporation of experimental datasets reporting 
body weight may allow for improved predictive modeling.

4.2.3 Genetic risks
Humans expressing the apolipoprotein E4 (APOE4) genotype are 

known to have an increased genetic risk of developing Aβ pathology 
over time (57, 58). Presentation of APOE4 can also increase 
neuroinflammation and reduce Aβ clearance through the BBB (57). 
The current study focuses on predicting the change in Aβ42 monomer 
concentrations corresponding to blast magnitude and frequency. 
However, antibody complexes and macrophage-based clearance for 
larger plaques are also incorporated into the model framework (59). 
Therefore, if the patient genotype is known, the assumption that 
APOE4 carriers have decreased macrophage-based clearance 
compared to noncarriers may be applied to the blast-dose BxK model 
to examine the potential effects following blast injury.

4.2.4 Years of exposure
Aβ42 levels were previously correlated with years of service (23). 

On the other hand, experimental data from Thangavelu et al. (24) did 
not show any association with duration of service. Blast exposure 
history assessment instruments, such as GBEV, may provide a more 
complete measure accounting for potential underlying pathology 
from chronic exposure (6). For instance, military personnel receive a 
score based on responses to questions asking about exposure in terms 
of years over lifetime, months per year, days per month, explosions per 
day, and frequency of multi-day exposures. One way that GBEV could 
be incorporated into the blast-dose BxK model could be as a predictor 
of the residual damage, proportional to λ in Equation 1. Calibration 
of the model using GBEV, or a comparable measure of blast exposure 
history, would better inform subject-specific injury thresholds and 
recovery periods for Aβ42 along with other biomarkers if any are 
shown to be sensitive to blast exposure.

4.2.5 Sleep
Aβ deposition and glymphatic clearance can be  significantly 

influenced by sleep cycles. Sleep duration, quality, and intraday 
variability are common sleep measures associated with Aβ pathology 
(60, 61). Aβ accumulation occurs when there is decreased clearance 
of Aβ through the glymphatic system (62, 63). The deviation between 
model prediction of Aβ42 and measured levels on the morning 
following blast may be explained through further investigation of 
amyloid levels in the brain and serum associated with sleep–wake 
cycles, diurnal patterns, or rest phases. Therefore, incorporation of the 
glymphatic system and altered glymphatic flux based on patient-
specific sleep patterns should be  incorporated in future 
model iterations.

4.3 Pathophysiological factors

4.3.1 BBB permeability
Neurons, astrocytes, and the BBB are tightly coupled such that 

when blast loading and associated high strain rates are experienced 
throughout the brain, damage to the neuronal and astrocytic 
membranes contributes to the release of intracellular proteins into the 
interstitial space. Increased permeability of the BBB occurs following 
blast where the temporal changes in permeability were also found to 
be dependent on BOP magnitude (52, 64, 65). Large proteins, typically 
not found in high concentrations in the blood, are able to diffuse into 
the bloodstream through enlarged spaces at the tight junctions 
between endothelial cells of the BBB, caused by untethering of 
adhesion molecules under loading (16, 66). The sensitivity of Aβ42 in 
the serum, particularly at low blast exposures, may be related to its 
small size. Therefore, the concentration of larger neuronal- or 
astrocyte-specific proteins detected in the blood can indicate the 
extent of diffuse cellular damage. Current blast-dose BxK model 
framework can account for BBB permeability between ISF and brain 
vascular compartments by parameterizing flux across the BBB as a 
function of blast-dose.

4.3.2 Amyloidogenic pathology
The amyloidogenic pathway is comprised of APP, BACE1, 

sBACE1, γS, sAPPβ, C99, AICD, and Aβ peptides (Figure 3). The 
assumption that blast drives an increase in APP synthesis was effective 
at directly predicting Aβ42 concentrations in the serum. However, 
there is a need for more experimental data to determine whether 
BACE1 or γS activity increases with blast proportional to 
APP. Parametric simulations predicting the effect of changes in these 
pathway components on serum Aβ concentrations may provide 
valuable insight to potential therapeutic avenues for bTBI.

4.3.3 Neuroinflammation
The purpose of this study was to validate monomer concentrations 

of Aβ42 in the serum, however, the blast-dose BxK model directly 
integrates with additional functions accounting for the Aβ aggregation 
cascade, antibody binding to Aβ targets, generation of antibody:Aβ 
complexes, activation of microglia and perivascular macrophages, and 
their effects on clearance. Simulations predicting likelihood of Aβ 
plaque formation following blast and modulation of clearance 
mechanisms could enable investigation of blast pathophysiology and 
its association as a risk factor for neurodegenerative diseases. 
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Furthermore, given that activation of microglia is a common 
mechanism of secondary injury contributing to neuroinflammation 
following blast (67, 68), it is likely that calibration of these parameters 
based on BOP or impulse in future iterations would improve 
predictions of acute clearance.

4.4 Future considerations

4.4.1 Alternative injury predictors
In this study, BOP magnitude was input and assumed to 

be directly related to the degree of mechanical damage, which was 
found to reasonably predict Aβ42 levels. However, alternative 
predictors of injury severity may have improved associations with 
alterations in biomarker levels over time. In Thangavelu et al. (24), a 
measure of the subject-specific summed impulse over the three-day 
training course was found to directly correlate with Day 3: Post-
Training Aβ42 levels (correlation coefficient = 1, p < 0.0001). 
Therefore, we  originally hypothesized that inputting the average 
impulse x total shots fired over the course of each training day would 
be a better predictor of Aβ42 levels than BOP magnitude. However, 
model predictions had a greater percent error based on this measure 
compared to BOP magnitude. Nevertheless, it is possible that 
measures of blast intensity, daily summed impulses, durations, rates 
of change of pressure, etc. could have improved predictive capabilities 
for Aβ42 and may even be biomarker-specific.

4.4.2 Sex
The experimental data used to validate our model was based on 

data collected from all males. Thus, model outputs were based on 
physiological parameters from a 70 kg male. Sex-dependent PBPK 
models may be  implemented to consider the influence of sex 
hormones on Aβ42 pathology following blast (69). While there 
remains no evidence to support sex-specific differences in Aβ42 
biomarker concentrations following blast, sex-specific differences have 
been shown to be a factor in neurodegenerative disease progression 
(70). Incorporation of sex-dependent responses into the blast-dose 
BxK model using the PBPK framework would improve personalized 
diagnostics and inform potential treatment strategies that may 
be affected by sex-specific physiology.

4.4.3 Weapon system
Validation of the model was performed for a single weapon system 

(0.50-caliber sniper rifle). However, numerous weapon systems 
(explosive breaching, mortar, artillery, machine guns, sniper rifles, 
shoulder launched munitions, etc.) generate overpressures capable of 
contributing to bTBI pathology. Each weapon system generates 
signature overpressures, which can be replicated, accounting for the 
blast loads on military personnel (71). For instance, CoBi-Blast tools 
effectively generated the weapon signature for 0.50 caliber sniper rifle 
training scenarios (72). As a wider range of weapon systems are 
modeled, incorporation of weapon signature-specific blast-dose 
profiles could improve model sensitivity and allow for modulation of 
the effect of weapons systems on injury pathophysiology.

4.4.4 Stress
Military personnel are exposed to a variety of chronic operational 

stressors (lack of sleep, altitude, nutrition, temperature, social 

displacement, etc.), which can predispose individuals to elevated stress 
levels prior to injury (73). Additionally, 42% of service members were 
found to have abnormal hormone levels following blast exposure 
where untreated post-traumatic hypopituitarism can be associated 
with numerous cognitive deficiencies, such as post-traumatic stress 
disorder, and compound bTBI pathology (74). These pre-stress 
conditions may significantly influence biomarker sensitivity post-
blast. Specifically, elevated cortisol levels relative to Aβ42 can 
significantly increase fibril formation and propagate amyloidogenic 
pathology (75). Biomarker interactions with stress-specific hormones 
may be required in future iterations to account for these molecular 
dynamics, likely affecting long-term deficits.

4.4.5 Mechanobiology
Changes in blood biomarker concentrations as a result of bTBI 

stems from diffuse cellular damage across multiple cell types 
(endothelial, astrocytes, neurons, oligodendrocytes, etc.) and 
subdomains within each cell (synapse, dendritic spines, axon, BBB, 
astrocyte end feet, etc.). Future development of this model framework 
aims to better account for multifarious cellular damage. For example, 
it was assumed that increased APP synthesis led to increased 
production of Aβ peptides at the neuronal cell membrane and 
subsequent release into the ISF surrounding the synapse. However, 
there are cases where APP synthesis can lead to axonal swelling and 
release of peptides along the axon in addition to the synapse (76). 
Onset of axonal swelling may be proportional to BOP magnitude, 
allowing for accumulation of APP and subsequent release of Aβ42 
prior to being released from the synapse. The current model also 
assumes generation of APP from basal levels, but future models could 
incorporate levels of cumulative APP deposits along the axon, 
depending on BOP thresholds and windows of vulnerability.

4.4.6 Additional biomarkers
The generation of multi-phasic biological responses for a given 

blast scenario in this work supports model development for additional 
biomarkers. Aβ42 was selected in this study due to its sensitivity to 
BOP magnitude and impulse, however, additional experimental data 
was provided in Thangavelu et al. where GFAP, Nf-L, and Aβ40 also 
demonstrated utility as biomarkers following blast (24). Based on the 
available experimental data, additional biomarker-specific models 
may be  developed and validated, accounting for pathway-specific 
generation and mechanobiology-specific release.

4.4.7 Non-invasive biofluid diagnostics
Blood-based biomarker collection can be invasive, expensive, and 

limited to specialty clinical settings. Recently, it was reported that 
non-invasive collection of biomarkers for TBI may be feasible via the 
collection of saliva, specifically salivary microRNA (77). Therefore, 
adaptation of the developed model to account for a salivary 
compartment may extend the functionality of this tool to assess 
sensitivity of non-invasive biomarker responses post-blast and 
improve mechanistic understanding of alternative non-invasive 
diagnostic strategies.

4.4.8 Symptomology
The developed model framework may be able to predict associations 

with reported symptomology. Aβ42 was previously associated with 
reports of ear ringing and memory problems (23). However, alternative 
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datasets have shown a lack of association of serum biomarker levels with 
patient symptomology. Self-reported symptomology associated with 
Aβ42 serum concentrations were recorded in Thangavelu et al., reporting 
symptoms related to the onset of pain, anxiety and depression, sensory, 
motor, or cognitive deficits (24). Given larger datasets with stronger 
associations to serum biomarker concentrations and symptoms, future 
developments of this blast-dose BxK model may be adapted to predict 
patient-specific likelihood of symptom onset.

4.4.9 Prognosis
Current model predictions are only validated for repeated 

low-level blasts up to a three-day time point. Validation and 
calibration of the model based on larger datasets encompassing 
longer time frames is necessary to achieve full model utility. 
We propose that determination of the subject-specific injury risk 
or optimal time frame for clinical assessment could be possible 
given the known weapon training scenario. Ideally, this predictive 
tool may be  used to inform safe practices in weapons training 
scenarios to avoid poor prognostic outcomes.

4.4.10 Brain region
Mechanical energy deposition and subsequent mechanical 

damage were assumed to be diffuse throughout the whole brain. 
While this is not a bad assumption, molecular responses occur 
disproportionally throughout different brain regions following 
blast. The significant metabolic demand of the hippocampus, 
cortex, and cerebellum leave these regions susceptible. Further 
refinement of the developed model accounting for brain region-
specific mechanisms could improve chronic predictions and aid 
in the identification of therapeutic targets within these 
vulnerable regions.

4.4.11 Non-brain tissues
This BxK model considers all non-brain tissues as a single 

compartment, which limits resolution accounting for mechanistic 
effects specific to major organ systems, such as the kidney, liver, or 
spleen (important for Aβ42 elimination) (55) or lungs (important in 
polytrauma blast injury models) (78). Expansion of this PBPK model 
into high-resolution peripheral compartments, based on parameters 
established in German et al. (79), could support mechanistic analysis 
of how non-brain tissues contribute to changes in biomarker 
concentrations following blast exposure.

5 Conclusion

The blast-dose BxK model developed in this study demonstrates 
feasibility in predicting Aβ42 kinetics as a function of BOP. Current 
capabilities of this model allow for mechanistic investigation into 
factors driving changes in biomarker levels following blast exposure, 
which is critical for identification and implementation of safeguards for 
soldiers and civilians. Further expansion of the current framework is 
anticipated to improve biomarker predictions by accounting for 
additional variables (weapon system, person-specific factors, BBB 
permeability, etc.). Outcomes from this study highlight an avenue 
towards elucidating bTBI mechanisms, identifying sensitive biomarkers 
and diagnostics, and developing effective treatment strategies.
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