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Acute ischemic stroke (AIS), a condition defined by a decrease in cerebral blood

flow, is primarily treated through mechanical thrombectomy (MT) for blockages

in major anterior circulation arteries. Approaches encompass stent retrieval,

suction thrombectomy, or a combination of both. MT is increasingly recognized

for its rapid revascularization, low hemorrhagic transformation (HT) rate, and

extended therapeutic time window. Nonetheless, multiple risk factors lead to

post-MT HT through di�erent mechanisms, resulting in adverse outcomes such

as increased mortality and morbidity. Therefore, assessing the relevant risks

based on predictive models for post-MT HT is necessary. These predictive

models incorporate a series of risk factors and conduct statistical analyses to

generate corresponding assessment scales, which are then used to evaluate

the risk of postoperative bleeding. As this is a rapidly developing field, there is

still controversy over which model is more e�ective than another in improving

clinical e�cacy, and there is a lack of consensus on the comparison of these

data. In this paper, we assess the accuracy of these predictive models using

receiver operating characteristic (ROC) curves and the concordance C-index.

Determining the most accurate predictive model for post-MT HT is crucial

for improving the prediction of patient outcomes and for the development of

tailored treatment plans, thereby enhancing clinical relevance and applicability.

KEYWORDS

acute ischemic stroke, mechanical thrombectomy, hemorrhagic transformation,

symptomatic intracranial hemorrhage, predictive methods

1 Introduction

Stroke is the leading cause of death and disability worldwide (1). Acute ischemic
stroke (AIS) is the predominant type of stroke, constituting more than 80% of all strokes
(2). AIS is characterized by an acute episode marked by the occlusion of arterial vessels
that supply blood to the brain tissue (3). The onset of the disease results in ischemic
blood flow and oxygen deprivation to the brain tissues, manifesting as neurological deficit
symptoms (4). Thrombosis is a common underlying mechanism of AIS, and the blockage
of cerebral blood flow leads to a series of pathophysiological changes (5) and is also a
major cause of morbidity and mortality (6). Effective thrombus management is central to
stroke treatment, and advances in thrombus research are helping to improve the efficacy
of AIS therapy (7). Studies have shown that the process of thrombus formation involves

Frontiers inNeurology 01 frontiersin.org

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2025.1549057
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2025.1549057&domain=pdf&date_stamp=2025-06-25
mailto:xiaopingbuxiao@126.com
mailto:zychenjj@jju.edu.cn
https://doi.org/10.3389/fneur.2025.1549057
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2025.1549057/full
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Wang et al. 10.3389/fneur.2025.1549057

platelet and coagulation factor pathways (8). After endothelial
injury, exposed collagen promotes platelet activation and adhesion
to the vessel wall (8), releasing adenosine diphosphate (forming
platelet thrombi) (9) and thromboxane A2 (further promoting
aggregation) (10). Concurrently, thrombin converts fibrinogen
into fibrin (11), while tissue factor from injured vessels activates
coagulation factors (FVII, FX, FIX, FII), resulting in fibrin
formation (12). In addition, immune mediators are involved, with
neutrophils releasing neutrophil extracellular traps and monocytes
contributing to red blood cell (RBC) recruitment and fibrin
formation (13) (Figure 1). Research shows thrombi have a dense
outer shell of fibrin, vascular hemophilic factor, and platelets,
with an inner core of erythrocytes, fibrin fibers, and platelets
(14). The heterogeneous nature of thrombi is also confirmed
by Senna’s work (15). Thrombus removal via thrombolysis or
mechanical thrombectomy (MT) is limited by factors like time
window and thrombus composition (16). RBC-rich thrombi, with
low viscosity and high RBC/platelet concentrations (17–20), are
more prone to migration (21). Rapidly restoring cerebral blood
flow is critical for focal cerebral ischemia. New experimental
discoveries, such as targeting pyruvate kinase M2 (22) and using
the elastase inhibitor peptide ShSPI (derived from the venom of
Scolopendra hainanum), show promise in improving AIS outcomes
(23). However, these findings have not been validated by large
randomized clinical controlled trials, and therefore thrombolysis
remains the mainstay of current treatments, with MT being more
widely used. Intravenous injection alteplase or tenecteplase within
4.5 h of AIS shows comparable thrombolytic efficacy and improves
3–6 month functional outcomes. However, due to the strict time
window and relatively low recanalization rate, fewer than 5% of AIS
patients currently benefit from this treatment (24–26). Emerging
evidence indicates that endovascular thrombus extraction within
24 h post-AIS onset (3), i.e., MT, can significantly improve the rate
of favorable prognosis and reduce disability. Anterior circulation
large vessel occlusion (aLVO) is an important cause of AIS (27).
Thereby obstructing blood flow to the anterior part of the brain
and precipitating AIS. Numerous randomized clinical trials have
established MT as the standard therapy for AIS due to aLVO,
with a high reperfusion rate of up to 80% and advantages such as
rapid reperfusion, low bleeding conversion rate, and an extended

Abbreviations: AIS, Acute Ischemic Stroke; MT, Mechanical Thrombectomy;

aLVO, Anterior Circulation Large Vessel Occlusion; HT, Hemorrhagic

Transformation; PKM2, Pyruvate Kinase M2; RBC, red blood cell; CT,

Computed Tomography; MRI, Magnetic Resonance Imaging; sICH,

Symptomatic Intracranial Hemorrhage; BP, Blood Pressure; MMP, Matrix

Metalloproteinase; BBB, Blood-Brain Barrier; ASPECTS, Alberta Stroke

Programme Early CT Score; NIHSS, National Institutes of Health Stroke

Scale; TAG, TICI-ASPECTS-Glucose; TICI, Thrombolysis in Cerebral

Infarction; ROC-AUC, The Area Under The Receiver Operating Characteristic

Curve; ECASS, European Cooperative Acute Stroke Study; IER-SICH, Italian

Registry of Endovascular Stroke Treatment in Acute Stroke-Symptomatic

Intracranial Hemorrhage; TAGE, Time-ASPECTS-Glycemia-EVF; EVF, Early

Venous Filling; STBA, Systolic BP-Time-Blood Glucose-ASPECTS; ACTS,

ASPECTS-Collateral Circulation Status-TOAST-Serum Glucose; TOAST, Trial

of Org10172 in Acute Stroke Treatment; CE, Contrast Enhancement; CAGA,

CE-Age-Glucose-Atrial Fibrillation.

treatment time window (28–32). It is gradually becoming more
widely used in clinical treatment.

Timely intervention in AIS involves opening the blocked
blood vessels to salvage the ischemic brain tissue and penumbra.
Prompt and effective recanalization is fundamental for a favorable
prognosis in AIS patients. The optimal outcome of MT on
aLVO is contingent upon rapid revascularization and avoidance
of post-procedural complications (33). MT encompasses stent
thrombectomy, aspiration thrombectomy, and their combined
techniques. The use of balloon catheters can reduce the number
of thrombectomy attempts, prevent distal embolization, and
improve surgical outcomes (34). A stent thrombectomy device
is a self-expanding metal mesh tube inserted percutaneously via
a microcatheter, which encapsulates the thrombus and is then
withdrawn to achieve reperfusion (3, 35, 36). Second-generation
stents, such as Solitaire and Trevo, have become the primary
treatment for acute stroke, offering high thrombus removal
rates and low complication rates (37, 38). However, it requires
a high level of technical proficiency, and the stent retriever
thrombectomy technique carries risks such as endothelial damage
and embolic escape (39). Thrombectomy techniques employ large-
bore catheters to manually remove thrombi using suction pumps
or syringes (35). The COMPASS trial demonstrated that aspiration
thrombectomy yields functional outcomes comparable to stent
thrombectomy after initial thrombus removal, with similar 90-
day follow-up results (40). With the advent of large-bore distal
suction catheters, aspiration may enhance efficacy (41). Although
thrombus extraction can reduce the risk of thrombus escape, it
is relatively less effective for harder or deeper thrombi (42). The
Solumbra technique combines large-bore aspiration catheters with
stent thrombectomy technology. It guides the aspiration catheter
and stent to the thrombus site via a microguidewire, then releases
the stent and connects it to a negative pressure device to enhance
thrombectomy efficacy (43) (Figure 2). While stent-assisted suction
thrombectomy increases the 24-h subarachnoid hemorrhage risk.
Combined therapy has successfully improved recanalization rates
(36). Meta-analyses confirm that combined approaches outperform
stent thrombectomy alone in achieving vascular recanalization (44,
45). Patients with AIS treated with stents or distal suction catheters
may experience damage to the vessel wall and intimal injury, as well
as post-procedural risk of HT, and multiple risk factors are present.
Post-treatment HT refers to HT occurring after MT and is a type
of HT (46). Prospective studies of MT have demonstrated that an
important risk factor for poor prognosis after MT is the occurrence
of HT in the ischemic territory post-thrombectomy (47), which
increases the risk of death and disability.

Patients with AIS undergoing thrombolysis or endovascular
therapy may experience a severe complication known as HT
(48). HT denotes bleeding phenomena caused by restoring
perfusion in the ischemic area following AIS (49). The current
diagnostic criteria for HT include: hemorrhage not evident
on the initial cranial computed tomography (CT) or Magnetic
Resonance Imaging (MRI) following a cerebral infarction, but
subsequent scans reveal intracranial bleeding or hemorrhagic
infarction (50, 51). Postoperative HT must be differentiated from
contrast agent retention, in which hemorrhagic sites may occur
either within or remote from the infarcted area (52, 53). A
failure in promptly managing postoperative complications with
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FIGURE 1

After the endothelial injury, exposed collagen triggers platelet adhesion to the vessel wall. These activated platelets release ADP and TXA2, leading to

platelet aggregation and plug formation. They also release thrombin, which converts fibrinogen to fibrin. The injured vessel introduces tissue factors,

starting a coagulation cascade that activates several coagulation factors and results in fibrin formation. Immune cells like neutrophils and monocytes

play a role, with neutrophils releasing NETs and monocytes aiding in RBC recruitment and fibrin formation. TXA2, thromboxane A2; ADP, adenosine

diphosphate; PAR, protease-activated receptor; GP, glycoprotein; VWF, von Willebrand factor; NET, neutrophil extracellular trap; RBC, red blood cell;

TLR, toll-like receptor; PSGL-1, P-selectin glycoprotein ligand-1. Created with biorender.

HT leads to further brain tissue damage and an increased risk of
adverse outcomes, including disability and death (54). However,
HT is associated with multiple risk factors, including prolonged
thrombolysis or endovascular treatment time, high preoperative
blood pressure (BP) (systolic BP >180 mmHg and diastolic
BP >100 mmHg), hypointense changes on head CT, stroke
severity, and infarct size (55, 56). Additionally, age, hyperglycemia,
prior use of antiplatelet drugs, and atrial fibrillation are also
associated with an increased risk of HT (57). Blood biomarkers,
including matrix metalloproteinase-9 (MMP-9), S100B, activated
C-reactive protein, and genetic factors, have also been linked
to the development of HT. These risk factors contribute to
HT through mechanisms associated with thrombectomy. These
mechanisms include factors inherent to the procedure itself, as
well as the pathological processes inherent to cerebral infarction.
Early thrombus removal, whether via pharmacological agents or
endovascular mechanical devices, can lead to reperfusion injury
and blood-brain barrier (BBB) dysfunction (58, 59). Cerebral
infarction pathology encompasses ischemia-related inflammatory
mechanisms, neurologic impairment, and infarct size (60–62).

These mechanisms may interact and cause more severe damage.
In the inflammatory response, activated immune cells produce
reactive oxygen species and MMPs (MMP-9, MMP-2), culminating
in BBB destruction (63). Reperfusion exacerbates oxidative stress,
leading to excessive production of pro-inflammatory cytokines
and triggering a pathological cascade that causes cerebral
oedema and BBB disruption (64). Neurological dysfunction, a
neuroinflammatory mechanism, may result in acute neuronal
injury or death. Reperfusion injury exacerbates brain damage
and neurological deficits, thereby influencing the occurrence of
HT (65). Inflammatory responses and edema resulting from
massive cerebral infarction increase the risk of HT (66) (Figure 3).
Therefore, early and accurate prediction of postoperative HT
risk is important. Numerous investigations have concentrated on
identifying risk factors for postoperative HT in patients with
AIS for potential intervention. Several scoring scales evaluate
risk factors and can assist in predicting postoperative HT
(Table 1). Themodified Thrombolysis in Cerebral Infarction (TICI)
score is used to assess reperfusion after MT, categorized into
grades 0–3, where grade 0 indicates no reperfusion and grades
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FIGURE 2

Techniques for mechanical thrombectomy. Stent retriever thrombectomy (A), aspiration thrombectomy (B) and combined techniques (C). Stent

retriever thrombectomy uses a stent retriever to reach the occluded vessel, pass through the thrombus, which is fully integrated into the expanding

stent, and then withdraw to remove it. Aspiration uses a large-bore catheter to contact the thrombus and slowly withdraws the catheter to suction

out the thrombus under continuous negative pressure. The combined technique is a combination of stent retrieval and aspiration thrombectomy.

Created with biorender.

2b−3 indicate successful reperfusion (67). Collateral perfusion is
critical for maintaining the ischaemic penumbra, and is classified
using the American Society of Interventional and Therapeutic
Neuroradiology/Interventional Radiology grading system, where
grade 0 indicates no collateral blood flow and grade 4 indicates
rapid blood flow (68). Preoperative infarct core area is positively
correlated with HT occurrence (69). Its area is quantified using
the Alberta Stroke Program Early CT Score (ASPECTS) (70), with
lower scores indicating larger infarct areas. Baseline stroke severity
is assessed using the National Institutes of Health Stroke Scale
(NIHSS) score (71), with higher NIHSS scores associated with
more severe hypoxic environments and BBB dysfunction (66, 72).
Analyzing relevant factors through these methods to predict HT
after MT and assess HT risk is of significant clinical importance
for improving post-MT prognosis (73). A common complication of
HT after surgery is symptomatic intracranial hemorrhage (sICH),
which is associated with worsening neurological deficits (74–76),
reducing the risk-benefit ratio of endovascular therapy. Current
research suggests that the occurrence of sICH is strongly associated
with the risk of adverse functional outcomes and patient death
(77–79). Consequently, clinicians are seeking suitable indicators
to predict sICH following mechanical thrombectomy to enhance
the prognosis of patients with cerebral infarction. Due to the
many risk factors associated with sICH and the limited predictive

value of individual factors for sICH, it is challenging to develop a
comprehensive postoperative sICH prediction method, and there is
no accurate and recognized prediction method in clinical practice.
Therefore, more accurate and simpler sICH predictionmethods are
needed to prevent the occurrence of unfavorable prognosis after
MT and improve the survival rate and quality of life of patients.

2 Prediction of HT in cerebral
infarction with MT

2.1 Existing forecasting methods

In this section, we selected studies with large sample sizes and a
relatively long duration following the generation of the prediction
scores for comparative analyses.

The TICI-ASPECTS-Glucose (TAG) score integrates blood
glucose levels, ASPECTS, and the TICI score into a multivariate
logistic regression analysis model, utilizing the odds ratios (OR)
of the predictor variables to calculate a TAG score that aids in
predicting sICH risk (80) and individual patient risk. The TAG
score classifies sICH risk into three categories: a score of 0–2
for the low-risk group, 3–5 for the intermediate-risk group, and
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FIGURE 3

The mechanism of Hemorrhagic transformation related to thrombectomy includes the mechanism of Hemorrhagic transformation induced by

thrombectomy and the pathological process of cerebral infarction itself. The use of drugs in the early stage of surgery and endovascular mechanical

devices to remove thrombus can lead to reperfusion injury and damage to the blood-brain barrier, while the course of ischemic cerebral infarction

itself includes inflammatory responses, neuronal cell death, and the expansion of the cerebral infarction volume. Di�erent mechanisms can interact

to cause more severe damage, Blood-brain barrier impairment is made worse by ROS, MMP-2, and MMP-9 produced by the inflammatory responses;

large cerebral infarction brought on by an enlarging infarct size results in an inflammatory response and edema; and the cascade response brought

on by reperfusion injury causes edema and aggravates blood-brain barrier impairment. ROS, reactive oxygen species; MMP, matrix metalloproteinase.

TABLE 1 The application of rating scales.

Rating scales mTICI ASITN/SIR ASPECTS NIHSS

Range 0–3 (level 2 includes 2a, 2b, 2c) 0–4 0–10 0–42

Result Grade 0 indicates no perfusion
and grades 2b-3 are defined as
successful reperfusion

Grades of 0–1 indicate poor
collateral circulation and grades of
3–4 indicate good collateral
circulation status

Points of 0 indicate the presence of
severe ischemia, and points of 10
indicate a low likelihood of
vascular occlusion

Points 0–1 tend to be normal,
and 21 or more points indicate a
severe stroke.

Functions For assessment of postoperative
distal flow reperfusion in
occluded vessels

Assessing the status of the
collateral circulation

Quantitative assessment of the
ischemic region of the middle
cerebral artery

Assessing the extent of
neurologic deficits

mTICI: modified thrombolysis in cerebral infarction; ASITN/SIR: American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology; ASPECTS: Alberta

Stroke Programme Early CT Score; NIHSS: National Institutes of Health Stroke Scale.

6–7 for the high-risk group. The inclusion of additional sICH-
related predictors is likely to enhance the model’s robustness
(81). This investigation encompassed a relatively large sample
and externally validated the predictive score. Additionally, the
components of the score are straightforward to assess and apply
in clinical practice. This comparative analysis evaluated the blood

glucose level, ASPECTS, TICI as single factors, and the TAG score
for predicting sICH after MT, utilizing the area under the receiver
operating characteristic curve (ROC-AUC). The findings indicated
that in the derivation cohort, the TAG score ROC-AUC was
0.79, demonstrating higher sensitivity and specificity for predicting
post-MT sICH, whereas the TICI univariate analysis predicted
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postoperative sICH with higher sensitivity, and the TAG score
predicted with higher specificity. This discrepancy can be attributed
to the derivation cohort’s use of the European Cooperative Acute
Stroke Study (ECASS) III definition of sICH (82), differing from
the definition employed in the validation cohort. Consequently, the
TAG score exhibited superior predictive power for sICH after MT
when assessed using the ECASS III criteria. Nevertheless, results
from both cohorts revealed an elevated risk of sICH associated with
an increased TAG score.

The Italian Registry of Endovascular Stroke Treatment in
Acute Stroke-Symptomatic Intracranial Hemorrhage (IER-SICH)
nomogram defines sICH as any type of ICH in which the
NIHSS score increased by ≥4 points from baseline or resulted in
death within 24 h. The initial model incorporated NIHSS score,
time from symptom onset to end of course, age, unsuccessful
revascularization, and Careggi collateral circulation score as
predictors of sICH, subsequent models expanded upon this by the
first model by removing the Careggi collateral circulation score and
adding the ASPECTS score to assess discriminatory performance
using the ROC-AUC (83, 84). The IER-SICH nomogram represents
the inaugural model developed and validated for the prediction
of sICH after MT. The prediction model was developed utilizing
a cohort of patients receiving bridging therapy and validated it
using a cohort of patients undergoing MT (84). However, studies
confirmed that the incidence of sICH in patients receiving bridging
therapy was similar toMT (85). Within the training cohort, the first
model of the IER-SICH nomogram had a ROC-AUC of 0.778 and
the second predictive model had a ROC-AUC of 0.733, indicating
that the first model had better predictive power than the second
model. The Careggi collateral circulation score and the ASPECTS
score correlate significantly, as demonstrated by their correlation
(86). The ASPECTS score enjoys broader application and serves as
an exclusion criterion in randomized controlled MT trials (29, 30).
Similarly, within the test cohort, the first model achieved a ROC-
AUC of 0.709, and the second prediction model achieved a ROC-
AUC of 0.685, which indicated that the training set exhibited
greater predictive accuracy, given that the training group was
comprised of patients receiving bridging therapy. The test cohort
consisted of patients undergoing MT. The study further established
that the incidence of sICH was equivalent in both scenarios.

The ASIAN score utilizes the Heidelberg bleeding Classification
of Hemorrhage (87), and 24 h post-MT, sICH diagnosis required
the presence of new intracranial hemorrhage, associated with an
increase in NIHSS score of >4 points from the pre-deterioration
level or an increase of >2 points in any classification of intracranial
hemorrhage, or in cases of neurologic deterioration necessitating
intubation, endocraniectomy, placement of an external ventricular
drain, or other significant medical or surgical interventions.
The ASIAN score encompasses the ASPECTS score, collateral
circulation status, baseline blood glucose level, number of
embolectomy device passes, and time from symptom onset to
groin puncture as independent predictors of sICH (88), utilized
for predicting sICH post-MT in patients with AIS. An increased
risk of sICH corresponded with higher ASIAN scores. The ASIAN
score was evaluated using a risk model with a C-index and a
calibration curve, which were used to assess the discriminatory and
calibration power of the risk model. In this study, ROC curves were

constructed, and the C-index was used to compare the predictive
accuracy of the TAG score, the IER-SICH nomogram, and the
ASIAN score for the prediction of post-MT sICH in an Asian
population. The results indicated that the ASIAN score exhibited
better discriminatory power than the TAG score and the IER-SICH
nomogram in both the derivation and validation cohorts, and the
prediction of postoperative sICH demonstrated better sensitivity
and specificity. Given that the patient selection criteria in this score
are Chinese, it is more suitable for predicting post-MT sICH in
Asian populations.

2.2 Emerging prediction methods

We have summarized and evaluated risk scores that have been
recently developed, including the incorporation of new predictors,
to select predictive scores that are more applicable to patients.

The Time-ASPECTS-Glycemia-EVF (TAGE) score, which
defines sICH as being any intracranial hemorrhage accompanied
by neurologic deterioration (an increase of ≥4 points in the
NIHSS score from baseline) on imaging 24 h post-MT, with early
venous filling (EVF) included as a predictor. EVF, a potential
imaging biomarker, is readily identifiable on digital subtraction
angiography following successful MT recanalization (89–92), and
serves as a strong predictor of sICH after MT (89, 90). The
TAGE score includes predictors, including a prolonged delay from
onset to successful recanalization, low ASPECTS, hyperglycemia
on admission, and the presence of post-MT EVF, assessed for
calibration with the Hoer-Lemeshow test and discrimination with
ROC-AUC (93). The risk of sICH escalates with increasing TAGE
scores. The ROC-AUC values were 0.832 for the derivation cohort
and 0.801 for the validation cohort, suggesting that the TAGE
score’s discriminatory power was superior in both cohorts, likely
attributed to the substantial sample size of patients successfully
treated with the predictive method of Janvier et al. in the derivation
and validation cohorts. Comparing the TAGE score with the
TAG score, the TAGE score demonstrates superior discrimination,
as it utilizes variables that can be rapidly ascertained under
realistic conditions of acute stroke treatment. However, the TAGE
score’s smaller sample size relative to the TAG score and the
necessity of diagnosing EVF post-therapeutic decision severely
limit its influence on therapeutic decision-making. The TAGE score
represents the inaugural practical tool to incorporate EVF results
into sICH prediction.

The Systolic BP-Time-Blood Glucose-ASPECTS (STBA) score
integrates time from systolic blood pressure on admission, time
from AIS onset to groin puncture, blood glucose, and ASPECTS
score on admission as predictors to create a more feasible
scoring system, predicting an increased risk for sICH with higher
scores (76). The STBA score had a ROC-AUC of 0.858 in
the derivation cohort, and similar sensitivity and specificity to
the TAG score, although the study data source was Chinese
patients, and the sample size was small. The ACTS model,
utilizing ASPECTS, collateral circulation status, Trial of Org10172
in Acute Stroke Treatment (TOAST) classification and serum
glucose, is a rapid and easy-to-implement prediction model for
preoperative evaluation to predict the risk of sICH (94). The
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FIGURE 4

(A) We retrieved predictive scores for hemorrhage transformation after mechanical thrombectomy for acute ischemic stroke for the last 5 years, and

collated and analyzed them by year. (B) We describe the process of constructing the predictive scores. Created with biorender.

score demonstrated robust predictive power with an ROC-AUC
of 0.797 in the derivation cohort and 0.727 in the validation
cohort. However, the study’s inclusion criterion of patients treated
within 6 h of symptom onset limits its scope, and may offer
significant predictive value for the selected patient group, yet
its applicability to the broader AIS population undergoing MT
is uncertain. Chang et al. collected data on aLVO patients with
contrast enhancement (CE) on CT of brain planarization following
MT. Utilizing ASPECTS, they estimated the extent and location
of CE, identifying two predictive factors: CE-ASPECTS and the
distribution location of CE, encompassing the internal capsule
area and the middle cerebral regions. The CE-Age-Glucose-
Atrial Fibrillation (CAGA) score (95) incorporates the four
aforementioned variables. The score employs the discriminatory
power of the ROC-AUC assessment, which, according to ECASS
II, defines sICH as hemorrhage associated with an increase in
NIHSS score of ≥4 points on follow-up brain examination. This
comparative analysis revealed the CAGA score in comparison with
the TAG score, demonstrating that the CAGA score’s ROC-AUC
was 0.853, with high sensitivity and specificity. The CAGA score
represents the inaugural predictive score developed for sICH risk
assessment in patients with CE. However, this score’s study is
limited by a small sample size, and utilizing a test of independence
is inappropriate, as it is susceptible to bias, resulting in potentially
imprecise results.

2.3 Comparison of prediction methods

We categorize these prediction methods into pre-existing
and emerging methods based on their temporal emergence
and describe the process of their construction (Figure 4). In
addition, we have summarized the advantages and disadvantages
of the prediction methods, their clinical application value, and
suggested optimization measures (Table 2). A comparison of the
prediction scores revealed that the sensitivity of the STBA score
is comparable with that of the TAG score, and the specificity is
higher. Consequently, the ROC-AUC for the STBA score is higher,
indicating better discrimination power, although the sample size
is smaller than that of the TAG score. This may be because the
STBA score incorporates more discriminative predictive variables,
such as imaging features and laboratory indicators, which results
in significantly higher specificity compared to the TAG score.
Certain studies constructed ROC curves and utilized the C-index
to evaluate the predictive accuracy of the ASIAN score, TAG score,
and the IER-SICH nomogram. The sample size for TAG scoring
is the smallest, while the IER-SICH histogram has the largest
sample size and a relatively high C-index. Therefore, the IER-
SICH results may be more stable and have greater statistical power.
Its ROC-AUC is the smallest, possibly because the dependent
variables it includes (such as age and blood pressure) have limited
discriminatory power. The ASIAN score had a mid-range sample
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TABLE 2 Comparison of methods for predicting hemorrhagic transformation frommechanical thrombectomy.

Score Items Evaluation indicators Sample advantages Limitations

TAG (80) Glucose ROC-AUC: 0.790
C index: 0.680

578 Predictors are easy to
detect

Lower discriminatory
performance

ASPECTS score

TICI score

IER-SICH (84) NIHSS score ROC-AUC: first model, 0.778
second model, 0.733
C index: 0.710

988 With the largest sample
size, it is the first
predictive model
developed for predicting
HT after MT

The training set selection
criteria were patients
receiving bridging
therapy

Onset-to-end procedure time

Age

Unsuccessful recanalization

Careggi collateral score

ASPECTS score

ASIAN (88) ASPECTS score C index: 0.771 629 More suitable for Asians;
higher Prediction
accuracy than TAG and
IER-SICH

Collecting data
retrospectively may lead
to systematic bias in the
outcomes of a study

Baseline glucose level

Poor collateral circulation

Passes with retriever

Onset-to-groin puncture time

TAGE (93) Time-to-successful reperfusion ROC-AUC: 0.832 402 TAGE score is the first
utility to incorporate EVF
results into sICH
predictors

EVF cannot be detected
until reperfusion is done
and treatment decisions
are made

ASPECTS score

Glucose level

Early venous filling

STBA (76) Systolic BP ROC-AUC: 0.858 268 The strongest
discriminatory
performance

The sample size is
relatively small

Time from onset to groin puncture

Blood glucose

ASPECT score

ACTS (94) Collateral circulation status ROC-AUC: 0.797 433 Higher incidence of sICH;
predictors were available
preoperatively

Strict inclusion criteria:
patients within 6 h of
symptom onsetBaseline ASPECTS

TOAST type

Serum glucose

CAGA (95) CE-ASPECTS ROC-AUC: 0.853 109 The first predictive score
for risk of sICH
occurrence in patients
with CE

The sample size was
relatively small and no
test of independence was
performed

CE locations

Age

Atrial fibrillation

Serum glucose

TAG, TICI-ASPECTS-Glucose; ASPECTS, Alberta Stroke Programme Early CT Score; TICI, Thrombolysis in Cerebral Infarction; ROC-AUC, The Area Under The Receiver Operating

Characteristic Curve; IER-SICH, Italian Registry of Endovascular Stroke Treatment in Acute Stroke-Symptomatic Intracranial Hemorrhage; NIHSS, National Institutes of Health Stroke Scale;

MT, Mechanical Thrombectomy; HT, Hemorrhagic Transformation; sICH, Symptomatic Intracranial Hemorrhage; TAGE, Time-ASPECTS-Glycemia-EVF; EVF, Early Venous Filling; STBA,

Systolic BP-Time-Blood Glucose-ASPECTS; BP, Blood Pressure; ACTS, ASPECTS-Collateral Circulation Status-TOAST-Serum Glucose; TOAST, Trial of Org10172 in Acute Stroke Treatment;

CAGA, CE-Age-Glucose-Atrial Fibrillation; CE, Contrast Enhancement.

size, and the results indicated that it had the highest sensitivity
and specificity, namely, its prediction accuracy was superior to
that of the TAG score and IER-SICH nomogram. In summary, it
can be concluded that the STBA score had the highest ROC-AUC
and the best discriminatory power among the scores. Furthermore,
the ASIAN score exhibited higher sensitivity and specificity and
better predictive accuracy than other scores. The ASIAN score was
developed and validated for Chinese patients and ismore applicable
to the Asian race, which has a higher incidence of sICH. Therefore,

for ASIAN AIS patients, using the ASIAN score to predict the
occurrence of sICH after MT is a more appropriate choice.

3 Evaluation of the clinical utility of
prediction methods

Early and timely consultation of patients with AIS is the best
measure to improve quality of life and save lives (96). However,
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prehospital delays, low numbers of neurointerventionists, limited
resources, patient awareness, health literacy, adherence to stroke
prevention, government policies, insurance reimbursement
systems, and stroke advocacy in professional organizations can
affect timely consultation and lead to a poorer prognosis (97).
Similarly, patients with AIS undergoing MT are prone to adverse
events such as HT, and the use of predictive methods to assess HT
risk can minimize its incidence and improve the prognosis. The
nomogram prediction method constitutes a vital component in
modern medical decision-making, enabling better individualized
disease-related risk assessment, and is widely used in oncology,
surgery, and other areas (98, 99). Risk scores assist patients in
making treatment decisions (100) and improve outcomes in
patients with poor prognoses. Most of the existing methods
for predicting post-MT HT analyze data across various ethnic
groups. When using TAG and IER-SICH scores in non-Western
populations or with small sample sizes, caution should be exercised.
While these scores can serve as preliminary screening tools and
assist in clinical decision-making, they should always be used
in conjunction with other assessment indicators to facilitate
comprehensive decision-making. Specifically for Asians, fewer
predictive methods for post-MT HT exist. For Asian AIS patients,
the ASIAN score demonstrates greater suitability in predicting
post-thrombolysis sICH risk. According to previous studies, the
incidence of post-MTHT is elevated among Asians (78). Therefore,
additional studies collecting data from Asian ethnic groups are
necessary to develop more specific prediction methods to provide
them with more appropriate treatment options. However, only a
limited number of risk-scoring systems have been developed and
utilized specifically for predicting post-MT HT. There are more
risk-scoring models for the assessment of HT after intravenous
thrombolysis; however, it remains uncertain whether these models
are applicable to predicting post-MT HT (101). Owing to the
paucity of data on predictors of HT after MT, particularly sICH, the
findings of relevant studies are inconsistent. These inconsistencies
primarily stem from the lack of external validation, relatively small
sample sizes, and the low incidence of sICH (102, 103). Thus, these
scoring models should be combined with risk stratification tools,
ancillary evaluations, and clinician judgment to guide holistic
patient management. The independent risk factors encompassed
by current methods for predicting post-MT HT represent only a
subset, with other potential risk factors remaining unexplored. It is
imperative to collect more relevant data, optimize the experimental
design, increase the sample size, perform external validation, and
conduct independent analyses for different populations to develop
targeted prediction methods. Furthermore, efforts should be made
to improve clinical applicability, including dynamic monitoring
strategies and model simplification. Early prediction of HT after
MT can provide an assessment of the risk associated with the
disease, enabling physicians to take timely action to prevent further
clinical deterioration and develop optimal treatment strategies
(104, 105), and assist in the acute management of patients by
aiding physicians, patients, and their families in making realistic
prognostic decisions (101). In addition, HT prognostic methods
can provide patients and their families with data to clarify the
risks and benefits of treatment (80). They can also facilitate the
early identification of high-risk HT patients, ensuring they receive
intensive postoperative management, enhanced detection and

treatment of hypertension and hyperglycemia, and the deferral
of early antithrombotic therapy, among other interventions
(84, 106). Post-MT HT is closely related to poor patient prognosis,
leading to short- and long-term functional deterioration, and is a
critical indicator for clinical management (107, 108). The accurate
prediction of HT is crucial for guiding the precise treatment of
AIS (109). When the risk of HT, particularly sICH, is elevated, the
risks associated with HT, as well as the benefits and drawbacks of
MT, must be meticulously assessed (110) to determine therapeutic
strategies aimed at enhancing the safety of MT and improving
patient prognosis (111, 112).

4 Conclusions and outlook

MT is a critical treatment for patients with AIS due to aLVO,
and postoperative HT, particularly sICH poses a significant threat
to patients’ lives. Current methods for predicting HT post-MT are
particularly well-suited for sICH prediction, and among these, the
ASIAN score offers distinct advantages. The efficacy of current
prediction methods is constrained by an incomplete analysis of
risk factors, resulting in significant variability in clinical and
laboratory data across diverse patient populations. By aggregating
heterogeneous data from various groups through meta-analysis, we
can derive comprehensive predictors that are broadly applicable.
Moving forward, we can develop multimodal imaging, integrated
with artificial intelligence and machine learning algorithms, to
create more accurate and reliable predictive models. Furthermore,
a more thorough analysis of reliable and valid independent risk
factors is warranted, encompassing blood indices, DSA indices,
time indices, and biomarkers, as well as genetic factors associated
with bleeding risk. This approach aims to enhance personalized
treatment and management of AIS patients through their proven
validity and reproducibility, thereby improving the prediction of
postoperative HT.
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