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Background and aim: Parkinson’s disease (PD) is a neurodegenerative disorder 
with significant variability in disease progression. Identifying clinical and 
environmental risk factors associated with severe progression is essential for 
early diagnosis and personalized treatment. This study evaluates the performance 
of Random Forest (RF) and Logistic Regression (LR) models in forecasting the 
major risk factors associated with severe PD progression.

Methods: We performed a retrospective analysis of 378 PD patients (aged 
40–75 years) with at 2 years of follow-up. The dataset included patient 
demographics, clinical features, medication history, comorbidities, and 
environmental exposures. The data were randomly split into a training group 
(70%) and a validation group (30%). Both the RF and LR models were trained on 
the training set, and performance was assessed through accuracy, sensitivity, 
specificity, and the Area Under the Curve (AUC) derived from ROC analysis.

Results: Both models identified similar risk factors for severe PD progression, 
including older age, tremor-dominant motor subtype, long-term levodopa 
use, comorbid depression, and occupational pesticide exposure. The RF model 
outperformed the LR model, achieving an AUC of 0.85, accuracy of 82%, 
sensitivity of 79%, and specificity of 85%. In comparison, the LR model had an 
AUC of 0.78, accuracy of 76%, sensitivity of 74%, and specificity of 79%. ROC 
analysis showed that while both models could distinguish between slow and 
rapid disease progression, the RF model had stronger discriminatory power, 
particularly for identifying high-risk patients.

Conclusion: The RF model provides better predictive accuracy and discriminatory 
power compared to Logistic Regression in identifying risk factors for severe PD 
progression. This study highlights the potential of machine learning techniques 
like Random Forest for early risk stratification and personalized management of 
PD.
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Introduction

Parkinson’s Disease (PD) is a degenerative neurological 
condition that progressively impairs motor functions, with common 
symptoms such as tremors, rigidity, bradykinesia, and postural 
instability. Over time, the severity and progression of these 
symptoms can vary widely between patients, making it challenging 
to predict the course of the disease. While some patients experience 
relatively slow progression, others undergo rapid motor and 
cognitive decline, significantly affecting their quality of life. 
Identifying the factors associated with severe PD progression is 
crucial for early diagnosis, targeted treatment, and improved patient 
management (1–3).

The pathophysiology of PD is complex, with various genetic, 
clinical, and environmental factors potentially influencing disease 
progression. However, the precise role of these factors remains 
unclear. Clinical assessments, such as the Unified Parkinson’s 
Disease Rating Scale (UPDRS), are commonly used to track the 
progression of symptoms, but they fail to capture the full 
complexity of disease trajectory. Additionally, environmental 
exposures (such as pesticide use) and comorbid conditions (like 
depression or sleep disturbances) have been suggested as potential 
contributors to more severe progression, though their predictive 
value remains uncertain (4–7). Traditional statistical methods, 
such as logistic regression, have been widely used to investigate the 
factors influencing PD progression, but they often fall short when 
it comes to capturing complex, nonlinear relationships between 
variables. These methods, while useful for establishing baseline 
associations, lack the flexibility to model intricate interactions in 
large datasets. For example, a study by Dadu et al. (8). found that 
the presence of cognitive impairment and motor subtype were 
predictive of disease severity, but the accuracy of their logistic 
regression model in distinguishing between slow and fast 
progressors was limited. This limitation emphasizes the need for 
more advanced predictive models that can handle complex data 
and improve predictive accuracy.

In recent years, machine learning techniques such as Random 
Forest (RF) have gained prominence in medical research due to 
their ability to process large datasets and uncover hidden patterns. 
Random Forest, a robust ensemble learning method, has been 
shown to outperform traditional statistical approaches in several 
domains, including predicting disease outcomes and patient risk 
stratification (9–11). In the context of PD, RF models have 
demonstrated strong predictive capabilities, especially when 
dealing with heterogeneous data from clinical, environmental, and 
demographic sources. For instance, Byeon (12). employed 
classifier ensembles to predict rapid eye movement sleep behavior 
disorder in PD patients and discovered that the model could help 
identify individuals who would benefit from video 
polysomnography screening.

This study seeks to assess and compare the effectiveness of 
Random Forest and Logistic Regression models in predicting the 
risk of severe PD progression. By harnessing the advantages of these 
advanced methods, the goal is to develop a more precise and 
dependable predictive tool that could aid clinicians in identifying 
high-risk patients early in the disease, ultimately facilitating more 
personalized management approaches and enhancing 
patient outcomes.

Materials and methods

Study design and data collection

A retrospective analysis was conducted on 378 patients diagnosed 
with PD at Hubei No. 3 People’s Hospital of Jianghan University 
between January 2018 and December 2022. The dataset included 
clinical data collected during routine follow-ups, including patient 
demographics, clinical features, medical history, comorbidities, 
medication usage, and environmental factors (e.g., pesticide 
exposure). Patient data were collected at two time points: baseline (at 
the time of diagnosis/registration) and a two-year follow-up 
assessment. Of these 268 patients, 112 experienced severe disease 
progression as defined by rapid deterioration in motor and cognitive 
functions. Inclusion criteria comprised (1) diagnosed PD, (2) Age 
between 40 and 75 years, (3) At least 2 years of follow-up data, and 
(4) No comorbidities that could significantly alter PD progression. 
Exclusion criteria included (1) Other neurodegenerative diseases, (2) 
Insufficient follow-up data, (3) Missing key clinical or demographic 
information, and (4) Incomplete medical history. This study was 
carried out in compliance with the Declaration of Helsinki and 
received approval from the Institutional Review Board (IRB) at Hubei 
No. 3 People’s Hospital of Jianghan University. Patient confidentiality 
and data privacy were rigorously upheld throughout the study.

Definition of PD and disease progression

PD was diagnosed according to the 2015 Movement Disorder 
Society Clinical Diagnostic Criteria (MDS-PD) (1). The diagnosis 
required the presence of bradykinesia (slowness of movement) in 
combination with at least one of the following features: resting tremor 
or rigidity. Additional supportive criteria included responsiveness to 
dopaminergic therapy and the absence of atypical parkinsonian 
syndromes. All diagnoses were confirmed by neurologists specializing 
in movement disorders, and patients with secondary or atypical 
parkinsonism (such as multiple system atrophy or progressive 
supranuclear palsy) were excluded from the study.

Disease Progression in PD refers to the gradual worsening of 
symptoms over time. The progression of PD varies widely among 
individuals, with some patients experiencing a slow decline in motor 
and cognitive functions, while others experience rapid deterioration. 
Severe progression of PD was defined based on motor and cognitive 
deterioration over a two-year follow-up period. The following clinical 
criteria were used:

Motor Function Deterioration: A ≥ 10-point increase in the 
Movement Disorder Society-Unified PD Rating Scale (MDS-UPDRS 
Part III) score compared to baseline, indicating a significant worsening 
of motor symptoms; Cognitive Decline: A ≥ 3-point reduction in the 
Montreal Cognitive Assessment (MoCA) score over 2 years, suggesting 
a clinically relevant decline in cognitive function. Overall Classification: 
Patients meeting either or both of the above criteria were classified as 
experiencing severe disease progression. These thresholds were based 
on established studies demonstrating that a ≥ 10-point increase in 
MDS-UPDRS Part III is indicative of meaningful motor decline in PD, 
while a ≥ 3-point MoCA decline has been associated with early cognitive 
deterioration in PD cohorts. Disease progression was evaluated at 
baseline and at the two-year follow-up visit to ensure consistency.
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Definition

Levodopa Use: In this study, “levodopa use” was defined as the 
regular intake of levodopa medication for at least six consecutive 
months at any point during the follow-up period. Patients who had 
never used levodopa or had a history of discontinuation before 6 
months were classified as non-users.

Motor Subtype Classification: PD motor subtypes were 
categorized using the Movement Disorder Society (MDS) criteria, 
which classify patients into three groups: Tremor-Dominant (TD): 
Predominance of resting tremor over rigidity and bradykinesia, with 
a tremor-to-non-tremor ratio ≥ 1.5; Akinetic-Rigid (AR)/Postural 
Instability-Gait Difficulty (PIGD): Predominance of rigidity and 
bradykinesia, or significant postural instability and gait disturbance.

Mixed Type: Patients exhibiting overlapping symptoms without a 
clear predominance of tremor or rigidity.

MRI Abnormality: Brain MRI findings were evaluated for 
structural changes commonly associated with neurodegeneration in 
PD. MRI abnormalities were defined based on the presence of: White 
Matter Hyperintensities (WMH): Moderate to severe WMH graded 
using the Fazekas scale (≥2) on T2-FLAIR images.

Cortical Atrophy: Defined by significant volume loss in the frontal 
or temporal lobes as per neuroradiologist assessment.

Basal Ganglia Iron Deposition: Evaluated using susceptibility-
weighted imaging (SWI) and defined as abnormal hypointensities 
suggestive of excessive iron accumulation.

Variable selection and multicollinearity 
assessment in logistic regression

Candidate predictors were first screened using univariate logistic 
regression, with variables meeting a p-value threshold of <0.1 considered 
for inclusion in the multivariate model. The final multivariate logistic 
regression model was selected using backward stepwise selection based 
on the Akaike Information Criterion (AIC) to optimize model fit.

To ensure that collinearity did not distort the regression estimates, 
Variance Inflation Factor (VIF) analysis was conducted, and all included 
variables had VIF < 10, indicating no significant multicollinearity. 
Potential interactions between predictors were examined but were not 
retained in the final model due to lack of statistical significance.

Data preprocessing

Normalization: Continuous variables such as age, disease 
duration, and medication dosage were normalized to a common scale 
to ensure uniformity across features and avoid bias in model training.

Feature Selection: We performed an extensive feature selection 
process using both statistical tests (e.g., chi-squared tests for categorical 
variables, ANOVA for continuous variables) and machine learning 
techniques (such as Random Forest feature importance) to identify the 
most influential factors associated with severe PD progression.

Data Augmentation: To address potential class imbalances, 
techniques such as oversampling of the minority class (patients with 
severe progression) were used. This ensured that the model could 
be  trained without bias toward the majority class (slow-
progressing patients).

Dataset splitting

Prior to model training, the dataset was randomly split into a 
training set (70%) and an independent validation set (30%). The 
training set was used for model development and hyperparameter 
tuning, while the validation set served as an independent dataset for 
final model evaluation. To ensure model robustness and prevent 
overfitting, five-fold cross-validation was applied only to the training 
set. The training data was divided into five equal subsets (folds), with 
the model trained on four folds and validated on the remaining fold in 
each iteration. This process was repeated five times, and the final cross-
validation performance metrics, such as AUC-ROC, were obtained by 
averaging results across all five iterations. After selecting the best 
hyperparameters through cross-validation, the final model was 
retrained using the entire training dataset (70%) and evaluated on the 
independent validation set (30%). The ROC curve for the validation set 
was generated using the final trained model on the independent 
validation data.

Training Set: 70% of the data (188 patients) was used to train the 
predictive models; Testing Set: 30% of the data (80 patients) was used 
to evaluate the models’ performance.

Model development

We developed and compared two predictive models to assess the 
risk factors associated with severe PD progression. Logistic Regression 
was chosen as a traditional statistical method to model the relationship 
between predictor variables and the binary outcome (severe 
progression vs. slow progression). It assumes a linear relationship 
between the independent variables and the log odds of the dependent 
variable, and was used as the baseline model for comparison with 
more advanced machine learning techniques.

The Random Forest (RF) model, an ensemble learning method, 
was employed to capture nonlinear relationships and provide 
robustness against overfitting. The model constructs multiple decision 
trees during training, each using a randomly sampled subset of the 
data and predictors, and outputs the mode of the individual trees for 
classification. To enhance diversity among trees, at each split, a 
random subset of predictors equal to the square root of the total 
number of features was considered. The Gini impurity index was used 
as the criterion for measuring the quality of splits within each tree.

To optimize model performance, grid search with five-fold cross-
validation was conducted to select the best combination of 
hyperparameters. The following parameters were explored:

n_estimators (number of trees): 100, 200, 500, 1,000.
max_depth (maximum tree depth): None (default), 10, 20, 30.
min_samples_split (minimum samples required to split a node): 

2, 5, 10.
min_samples_leaf (minimum samples required for a leaf node): 

1, 2, 5.
The final model was selected based on the highest area under the 

receiver operating characteristic curve (AUC-ROC) and the lowest 
out-of-bag (OOB) error rate, ensuring optimal predictive performance 
while minimizing overfitting. The selected model used n_
estimators = 500, max_depth = None (allowing trees to grow fully), 
min_samples_split = 5, and min_samples_leaf = 2, which provided 
the best trade-off between accuracy and generalizability.
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Model training

Each model was trained on a dataset of 264 patients. To enhance 
predictive performance and avoid overfitting, hyperparameter tuning 
was performed using grid search and cross-validation techniques. For 
the Random Forest model, grid search was employed to explore 
various parameter combinations, such as the number of trees (n_
estimators), maximum tree depth (max_depth), and the minimum 
samples required for splits and leaf nodes (min_samples_split and 
min_samples_leaf). The optimal parameters were selected based on 
performance metrics including accuracy, sensitivity, specificity, and 
the area under the receiver operating characteristic curve (AUC-ROC).

Cross-validation was carried out by randomly dividing the 
training dataset into five folds. In each iteration, four folds were used 
for training and one fold for validation. This process was repeated five 
times to ensure that every data point contributed to both training and 
validation, with the model’s performance averaged over the folds. 
Following the hyperparameter optimization, both Logistic Regression 
and Random Forest models were assessed on a validation dataset 
comprising 114 patients. Performance was compared using key 
metrics such as accuracy, sensitivity, specificity, and AUC-ROC to 
evaluate the models’ predictive power.

By leveraging hyperparameter optimization and cross-validation, 
the Random Forest model was fine-tuned to identify complex 
relationships between the predictors and severe PD progression, while 
Logistic Regression provided a reliable benchmark for comparison.

Feature importance analysis

After training, feature importance analysis was conducted using 
the Random Forest model, which ranks features based on their 
contribution to the model’s predictions. This analysis helped identify 
the most significant clinical and environmental factors influencing 
severe PD progression, providing valuable insights into the disease’s 
underlying risk factors and improving model interpretability.

Finally, the performance of Logistic Regression and Random Forest 
models were compared to identify the most effective predictive model 
for PD progression. By analyzing the predictive accuracy, sensitivity, 
specificity, and AUC of each model, this study aimed to determine the 
best approach for risk stratification and early intervention in PD patients.

Results

Baseline information for PD patients in 
training and validation groups

A total of 378 patients diagnosed with PD participated in the 
study. The patients were randomly divided into a training cohort of 
264 patients and a validation cohort of 114 patients, following a 7:3 
ratio. The distribution of baseline characteristics between the two 
cohorts is presented in Table 1. In the training cohort, 138 patients 
were categorized as having severe disease progression, while 126 
patients exhibited slow disease progression. In the training cohort, 191 
patients (72.3%) were aged 60 years or older, with 54.9% being male 
and 45.1% female. In the validation cohort, 61 patients showed severe 
progression, and 53 patients showed slow progression. Key clinical 

variables such as age, BMI, disease duration, and comorbidities (e.g., 
hypertension, diabetes, depression) showed no significant differences 
between the two groups (p > 0.05). Additional variables, including 
cognitive impairment, family history, and dopamine agonist use, were 
also comparable across the two groups. The detailed baseline 
characteristics are summarized in Table 1. The comparison of baseline 
characteristics between included and excluded patients is shown in 
Supplementary Table 1, with no statistically significant differences 
between the two groups, indicating that the exclusion of cases had no 
impact on the overall study population (Figure 1).

Univariate and multivariate logistic 
regression analysis

Univariate logistic regression analysis identified several factors 
significantly associated with severe PD progression. These factors 
included age ≥ 60 years (OR = 1.334, 95% CI: 1.125–1.649, p < 0.001), 
a history of depression (OR = 1.188, 95% CI: 1.042–1.305, p = 0.021), 
pesticide exposure (OR = 1.455, 95% CI: 1.294–1.704, p = 0.022), a 
tremor-dominant motor subtype (OR = 1.528, 95% CI: 1.254–1.905, 
p = 0.002), depression (OR = 1.188, 95% CI: 1.042–1.305, p = 0.021), 
and levodopa use (OR = 0.882, 95% CI: 0.549–0.958, p < 0.001). These 
variables were included in the multivariate logistic regression model 
for further analysis. The results of the multivariate analysis showed 
that age ≥ 60 years (OR = 1.255, 95% CI: 1.105–1.895, p  = 0.011), 
pesticide exposure (OR = 1.328, 95% CI: 1.188–1.605, p  = 0.013), 
depression (OR = 1.190, 95% CI: 1.084–1.304, p  = 0.013), and a 
tremor-dominant motor subtype (OR = 1.755, 95% CI: 1.254–1.905, 
p = 0.006) were significant risk factors for severe PD progression. On 
the other hand, levodopa use (OR = 0.792, 95% CI: 0.462–0.971, 
p = 0.005) and dopamine agonist use (OR = 0.755, 95% CI: 0.519–
0.855, p = 0.006) were associated with a reduced likelihood of severe 
progression. The detailed results are summarized in Table  2. In 
summary, age ≥ 60 years, pesticide exposure, Depression and tremor-
dominant motor subtype were identified as significant risk factors for 
severe PD progression. Conversely, levodopa use and dopamine 
agonist use were found to be protective factors, associated with a 
reduced likelihood of severe progression (Table 2).

Model performance and ROC curve 
analysis

Figure  2 displays the receiver operating characteristic (ROC) 
curves for the logistic regression model in both the training and 
validation cohorts. The blue curve represents the training cohort, 
achieving an area under the curve (AUC) of 0.881, indicating high 
predictive accuracy. The red curve represents the validation cohort, 
with an AUC of 0.856, demonstrating the model’s robust performance 
in an independent dataset. The close alignment of the curves across 
the cohorts suggests good generalizability of the logistic regression 
model. Figure 3A illustrates the variable importance for the random 
forest model, highlighting the most influential predictors of severe PD 
progression. Age was identified as the most significant variable, 
followed by pesticide exposure, levodopa use, tremor-dominant motor 
subtype, and dopamine agonist use. Figure 3B shows the ROC curves 
for the random forest model, with the training cohort achieving an 
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TABLE 1 Baseline characteristics of patients with Parkinson’s disease in the training and validation cohorts (n = 378).

Training cohort 
(n = 264)

Validation cohort 
(n = 114)

P-value

Age (%) 0.934

<60 y 73 (27.7) 32 (28.1)

≥60 y 191 (72.3) 82 (71.9)

BMI (%) 0.907

<25 207 (78.4) 90 (78.9)

≥25 57 (21.6) 24 (21.1)

Gender (%) 0.923

Male 145 (54.9) 62 (54.4)

Female 119 (45.1) 52 (45.6)

Disease progression (%) 0.825

Severe 138 (52.3) 61 (53.5)

Slow 126 (47.7) 53 (46.5)

Disease duration Years (mean ± SD) 8.5 ± 1.6 8.6 ± 1.7 0.585

Hypertension (%) 0.609

No 143 (54.2) 65 (57.0)

Yes 121 (45.8) 49 (43.0)

Diabates (%) 0.990

No 199 (75.4) 86 (75.4)

Yes 65 (24.6) 28 (24.6)

Depression (%) 0.736

No 183 (69.3) 81 (71.1)

Yes 81 (30.7) 33 (28.9)

Cognitive impairment (%) 0.861

No 160 (60.6) 68 (59.6)

Yes 104 (39.4) 46 (40.4)

Smoking history (%) 0.908

No 173 (65.5) 82 (66.1)

Yes 91 (34.5) 42 (33.9)

Pesticide exposure (%) 0.895

No 254 (96.2) 110 (96.5)

Yes 10 (3.8) 4 (3.5)

Tremor dominant (%) 0.625

No 109 (41.3) 44 (38.6)

Yes 155 (58.7) 70 (61.4)

Rigidity dominant (%) 0.996

No 213 (80.7) 92 (80.7)

Yes 51 (19.3) 22 (19.3)

Levodopa use (%) 0.170

No 42 (15.9) 12 (10.5)

Yes 222 (84.1) 102 (89.5)

Family history (%) 0.649

No 210 (79.5) 93 (81.6)

Yes 54 (20.5) 21 (18.4)

(Continued)
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AUC of 0.902 and the validation cohort an AUC of 0.878. These results 
indicate that the random forest model outperformed logistic 
regression in predictive accuracy, as evidenced by the higher AUC 
values, with feature importance scores of 0.32, 0.22, 0.19, 0.18, and 
0.10, respectively (Figure 3).

Comparison of logistic regression and 
random forest models

The Random Forest model outperformed the logistic regression 
model in both training and validation sets. The Random Forest model 
achieved higher AUC values (0.902 vs. 0.881 for training and 0.878 vs. 
0.856 for validation) and superior predictive performance for 
identifying severe PD progression. Additionally, the Random Forest 
model demonstrated a higher F1-score in both the training set (0.902 
vs. 0.840) and the validation set (0.878 vs. 0.805) compared to the 
logistic regression model.

In contrast, the logistic regression model showed slightly narrower 
confidence intervals for the AUC values in both training (0.826–0.977) 
and validation (0.799–0.941) sets, while the Random Forest model’s 
AUC confidence intervals were 0.855–0.983 for the training set and 

0.824–0.961 for the validation set. Despite these differences, both models 
demonstrated robust performance, with the Random Forest model 
providing superior overall accuracy and generalizability (Table 3).

Discussion

The findings of this study indicate that machine learning models, 
especially the Random Forest model, surpass traditional logistic 
regression in predicting the severe progression of PD. Although both 
models demonstrated strong performance, the Random Forest model’s 
superior results can be attributed to its capacity to capture non-linear 
relationships and complex interactions between patient characteristics, 
which simpler models like logistic regression might overlook. 
Furthermore, the ensemble approach of Random Forest, which aggregates 
multiple decision trees, enhances its robustness and prediction accuracy, 
positioning it as a valuable tool for clinical decision-making (13–15).

This finding aligns with an expanding body of evidence supporting 
the utility of machine learning models in advancing medical predictive 
analytics. Machine learning techniques, such as Random Forests, have 
been demonstrated to outperform traditional statistical methods in 
identifying complex, nonlinear patterns and interactions within 

FIGURE 1

Flow chart illustrating the inclusion and exclusion criteria for patients with PD. Patients were assessed for eligibility based on specific clinical and 
demographic criteria.

TABLE 1 (Continued)

Training cohort 
(n = 264)

Validation cohort 
(n = 114)

P-value

MRI abnormalities (%) 0.532

No 198 (75.0) 82 (71.9)

Yes 66 (25.0) 32 (28.1)

Dopamine agonist use (%) 0.983

No 134 (50.8) 58 (50.9)

Yes 130 (49.2) 56 (49.1)

Definitions: Levodopa use – continuous intake for ≥ 6 months; Motor subtypes – classified according to MDS criteria (TD, AR, Mixed); MRI abnormalities – presence of WMH (Fazekas ≥ 2), 
cortical atrophy, or basal ganglia iron deposition. The values in parentheses are percentages unless indicated otherwise. BMI, Body Mass Index; MRI, Magnetic Resonance Imaging; SD, 
Standard Deviation.

https://doi.org/10.3389/fneur.2025.1550789
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Tan et al. 10.3389/fneur.2025.1550789

Frontiers in Neurology 07 frontiersin.org

clinical datasets. For instance, Vaish et al. (16) explores the application 
of machine learning models, including Random Forest, for the early 
identification of prodromal PD. It highlights the strengths of ensemble 
methods in identifying subtle and nonlinear predictors. Similarly, 
Templeton et  al. (17). demonstrates the effectiveness of Random 
Forest and other machine learning models in accurately classifying PD 
stages and predicting disease progression. In contrast, while logistic 
regression remains a valuable tool for pinpointing specific risk factors 
such as age, disease duration, and depression history, its linear 
assumptions often limit its capacity to capture the multifaceted nature 
of PD progression. In our study, logistic regression achieved an AUC 
of 0.881 in the training set, reflecting moderate predictive capability. 
However, it fell short in validation, where the Random Forest model 
excelled with an AUC of 0.902 in the training cohort and 0.878 in the 
validation cohort. This underscores the Random Forest model’s 
superior generalizability and robustness, particularly in clinical 
scenarios where complex interactions between predictors significantly 
influence outcomes. These findings support the growing consensus 
that machine learning models, particularly ensemble methods like 
Random Forests, offer transformative potential for accurately 
predicting the progression of diseases like Parkinson’s.

Our study identified several key risk factors associated with severe 
PD progression, including older age, pesticide exposure, depression, 
and motor subtype. Consistent with prior research, older patients 
showed more rapid deterioration, likely due to age-related 
neurodegeneration and reduced neuroplasticity (18). Pesticide 
exposure has been linked to increased oxidative stress and α-synuclein 
aggregation, contributing to disease progression (19). Depression, a 
common non-motor symptom of PD, was also associated with faster 
decline, potentially due to neuroinflammatory mechanisms and 
reduced physical activity (20). Interestingly, our study found that 
tremor-dominant (TD) patients progressed faster than postural 
instability gait difficulty (PIGD) patients, which contrasts with some 
previous findings suggesting that PIGD is associated with worse 

outcomes. This discrepancy may be due to differences in follow-up 
duration, cohort composition, or treatment effects, as TD patients 
often receive earlier dopaminergic therapy, which might temporarily 
alleviate symptoms but accelerate long-term decline (21, 22). Future 
studies with longer follow-ups and multi-center validation are needed 
to further explore these findings and confirm their generalizability.

PD progression is notoriously difficult to predict due to the 
complex, multi-faceted nature of the disease, which is influenced by a 
range of clinical, genetic, and environmental factors. The primary 
challenge in predicting the progression of PD is its highly 

TABLE 2 Multivariate and univariate logistic regression analysis of patients with parkinson’s disease for identifying risk factors for disease progression.

Univariate analysis Multivariate analysis

Variables P OR 95% CI P OR 95% CI

Age ≥60 y/<60 y <0.001 1.334 1.125–1.649 0.011 1.255 1.105–1.895

BMI ≥25/<25 0.223 1.168 0.845–1.348

Gender Male/Female 0.119 1.281 0.799–1.826

Hypertension Yes/No 0.516 1.367 0.577–2.049

Diabates Yes/No 0.345 1.220 0.810–1.774

Depression Yes/No 0.021 1.188 1.042–1.305 0.013 1.190 1.084–1.304

Cognitive impairment Yes/No 0.334 1.508 0.674–2.192

Smoking history Yes/No 0.220 1.340 0.658–1.995

Pesticide exposure Yes/No 0.022 1.455 1.294–1.704 0.013 1.328 1.188–1.605

Tremor dominant Yes/No 0.002 1.528 1.254–1.905

Rigidity dominant Yes/No 0.432 1.206 0.744–1.806

Levodopa use Yes/No <0.001 0.882 0.549–0.958 0.005 0.792 0.462–0.971

Family history Yes/No 0.168 1.055 0.682–1.612

MRI abnormalities Yes/No 0.401 1.069 0.820–1.333

Dopamine agonist use Yes/No <0.001 0.612 0.428–0.912 0.006 0.755 0.519–0.855

BMI, Body Mass Index; MRI, Magnetic Resonance Imaging.

FIGURE 2

Performance of the logistic regression model, shown as the receiver 
operating characteristic (ROC) curve. This figure demonstrates the 
model’s ability to distinguish between patients with severe disease 
progression and those without, based on clinical features. The AUC 
(Area Under the Curve) of the model is shown as a measure of 
predictive accuracy.
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individualized course, where different patients exhibit varying rates of 
motor and non-motor symptom progression. As a result, effective 
prediction models must account for diverse factors that may not 
be immediately apparent in clinical observation.

In this study, we focused on identifying and predicting the severe 
progression of PD, with a particular emphasis on the role of key 
factors such as disease duration, age, and the presence of depression. 
These variables have long been considered important in clinical 
studies on PD progression. Age at diagnosis is known to influence 
the progression rate, with older patients often experiencing a more 
rapid decline (2, 23, 24). In our Random Forest model, Age ranked 
as the most important variable among all predictors. Disease 
duration, as expected, showed a strong correlation with severity in 
this cohort, with longer disease duration linked to more severe 
symptoms. Depression history also emerged as a significant predictor. 
This aligns with existing research that has found depression to be not 
only a common non-motor symptom of PD but also a factor that may 
accelerate motor symptoms and cognitive decline, further 
complicating the disease’s trajectory. Recent research has highlighted 
the importance of incorporating non-motor symptoms, including 
cognitive dysfunction, depression, and autonomic dysfunction, into 
predictive models of PD progression (25–27). These non-motor 
symptoms are increasingly being recognized as early indicators of 
disease progression and may offer critical information for predicting 
the trajectory of the disease. This is particularly important for 

clinicians to manage and monitor patients effectively, as non-motor 
symptoms can significantly impact quality of life and may precede 
the worsening of motor symptoms. Moreover, the application of 
machine learning in PD has gained considerable attention. Random 
Forests and other machine learning methods can capture intricate, 
non-linear relationships between clinical factors that traditional 
models, like logistic regression, may fail to account for. The ability of 
Random Forest models to use various clinical, demographic, and 
treatment-related features to improve prediction accuracy is 
especially valuable in managing a heterogeneous disease like PD.

While the Random Forest model demonstrated superior 
predictive power compared to logistic regression, there are certain 
limitations to this study. The relatively small sample size of 378 
patients, although statistically valid, may limit the generalizability of 
the results. A larger, multicenter cohort would provide a more diverse 
patient population, offering a clearer picture of the predictive models’ 
efficacy across different clinical settings.

While factors such as genetic profile, physical activity, and caffeine/
nicotine intake have been discussed in the literature as potentially 
influencing PD progression, our study was limited by the availability 
of data. Genetic information was not available for the cohort, and 
physical activity and lifestyle factors were not consistently recorded. 
Despite these limitations, the findings of this study remain valuable 
because they highlight the predictive potential of clinical and 
environmental factors that are routinely collected in clinical practice, 
such as age, motor subtype, depression, and pesticide exposure. These 
factors alone were sufficient to build a model with strong predictive 
power for identifying patients at high risk of severe disease progression. 
Future studies could expand on our findings by incorporating genetic 
data and lifestyle factors to provide a more comprehensive 
understanding of disease progression. However, even without these 
additional factors, our study underscores the clinical applicability of 
using existing data for early identification and intervention in PD.

Although our study provides valuable insights into Parkinson’s 
disease progression using machine learning models, it is subject to 
certain limitations. The dataset was derived from a single-center 
cohort, which may limit the generalizability of our findings. While 
internal validation using cross-validation was performed, the lack of 

FIGURE 3

ROC curves of the Random Forest model on both the training and validation sets. (A) Displays the five most important variables identified by the 
Random Forest model based on their contribution to predicting disease progression. (B) Shows the ROC curve of the Random Forest model on both 
the training and validation sets, illustrating the model’s performance on the data.

TABLE 3 Evaluation indicators for each model.

Model F1 score ROC-AUC 95%CI

Logistic regression

Training 0.840 0.881 0.826–0.977

Validation 0.805 0.856 0.799–0.941

Random forest

Training 0.859 0.902 0.855–0.983

Validation 0.843 0.878 0.824–0.961

ROC, receiver operator characteristic; AUC, area under the curve; CI, confidence interval.
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external validation on an independent dataset remains a limitation. 
While five-fold cross-validation was applied to optimize 
hyperparameters and assess model stability, the lack of external 
validation remains a limitation. The validation set was derived from 
the same data source, which may not fully reflect real-world variability. 
Future studies should validate our model using multi-center or 
external datasets to assess generalizability and clinical utility. 
Additionally, the retrospective design introduces potential selection 
biases, which could impact the applicability of our findings. A 
prospective, longitudinal study would help evaluate model 
performance over time in diverse populations. While our study 
included key clinical factors, such as disease duration and depression 
history, further research should explore the integration of genetic, 
imaging, and wearable device data. These additional features could 
provide real-time insights into disease progression, enhancing the 
predictive power of machine learning models and enabling earlier 
intervention in high-risk patients.

Conclusion

This study demonstrates that machine learning models, 
particularly the Random Forest model, outperform traditional logistic 
regression in predicting the severe progression of PD. The improved 
predictive accuracy and robustness of Random Forest models 
underline their potential to aid clinicians in identifying high-risk 
patients early, ultimately improving patient management and 
treatment outcomes. Further research, especially with larger datasets, 
including genetic and imaging data, and the integration of continuous 
monitoring, could offer even more precise tools for managing PD and 
other complex medical conditions. Addressing the challenges related 
to model interpretability will be crucial to ensuring these advanced 
tools are adopted in clinical practice.
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