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Predictive value of heart rate for 
prognosis in patients with 
cerebral infarction without atrial 
fibrillation comorbidity analyzed 
according to the MIMIC-IV 
database
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Objective: This study focused on the relationship between heart rate and the 
likelihood of death within 28 days in patients with cerebral infarction without the 
comorbidity of atrial fibrillation, using patient data extracted from the MIMIC-IV 
database.

Method: This study involved a retrospective analysis of clinical data from 1,643 
individuals with cerebral infarction who were admitted to the ICU. To investigate 
the role of heart rate in determining patient survival, we  applied a variety of 
statistical techniques such as Cox regression models, survival analysis using 
Kaplan–Meier plots, and spline-based models. In addition, we  performed 
analyses by patient subgroups to identify any potential variables that could 
influence the association between HR and 28-day mortality.

Result: In univariate and multivariate analyses, elevated heart rate was strongly 
associated with higher 28-day mortality, even after adjusting for confounders 
such as age, sex, comorbidities, and clinical scores.(HR:1.01, 95%,CI:1.01 ~ 1.02, 
p  = 0.019) Kaplan–Meier survival analysis showed that patients with heart 
rate > 90 beats/min had a significantly lower probability of survival. Restricted 
cubic spline (RCS) analysis confirmed a nonlinear relationship between heart 
rate and mortality. Subgroup analyses demonstrated an interaction between 
heart rate and factors such as hypertension and mechanical ventilation status.

Conclusion: This study highlights the prognostic significance of heart rate as an 
independent predictor of 28-day mortality in patients with cerebral infarction 
who do not have atrial fibrillation.
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1 Introduction

Cerebral infarction continues to be a major contributor to global death rates and prolonged 
disability, imposing considerable strain on healthcare systems and society as a whole. As the 
population ages and the prevalence of cardiovascular risk factors like hypertension, diabetes, 
and hyperlipidemia increases, its incidence is anticipated to grow worldwide (1). Despite 
advances in acute-phase management and secondary prevention strategies, the prognosis for 
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many patients with cerebral infarction remains poor, is often comorbid 
with cardiovascular disease, and is highly variable depending on 
individual clinical and physiologic factors (2, 36). For instance, studies 
focusing on young and middle-aged cerebral infarction patients have 
identified several independent risk factors for poor prognosis. Among 
the variables being examined are the severity of neurological 
impairment assessed through stroke scales, variations in the MTHFR 
gene, and the condition of elevated blood pressure (3). A one-year 
follow-up study of 323 patients with acute cerebral infarction revealed 
that age, NIHSS score at admission, diabetes, and hypertension are key 
determinants of poor prognosis (4).

Heart rate is a fundamental physiological parameter that reflects the 
rhythmic contractions of the heart per minute. It is regulated by the 
autonomic nervous system through the interaction of sympathetic and 
parasympathetic inputs, maintaining cardiovascular balance (5). In 
addition to being a marker of cardiovascular function, heart rate is also 
an important indicator of systemic pressure, metabolic demand, and 
overall autonomic nervous system balance. Changes in heart rate can 
provide valuable information about an individual’s hemodynamic and 
neurological status, especially during acute illness (6). Heart rate 
variability is significantly reduced in patients with acute cerebral 
infarction, indicating impaired autonomic nervous system regulation (7). 
Reduced heart rate variability is linked to an increased risk of mortality 
and poorer outcomes in individuals experiencing myocardial infarction 
(8). These findings underscore the potential value of heart rate as an 
indicator of disease severity and recovery progression across different 
conditions. Nonetheless, the connection between heart rate and 
prognosis in patients with cerebral infarction is still not well defined. 
Some physiological mechanisms, such as systemic inflammation (9) and 
autonomic dysfunction (10), may link heart rate to the prognosis of 
cerebral infarction. Although some studies suggest that both tachycardia 
and bradycardia may influence mortality and neurological recovery 
(11–13). A retrospective cohort study explored the association between 
mean heart rate and 30-day mortality in ischemic stroke patients with 
atrial fibrillation, who were admitted to the intensive care unit within 
24 h of hospital arrival. The findings revealed a J-shaped correlation 
between mean heart rate and 30-day mortality (14). However, there is a 
lack of strong evidence regarding the connection between heart rate and 
prognosis in patients with cerebral infarction who do not have atrial 
fibrillation, leaving the prognostic value of heart rate in this group unclear.

The purpose of this investigation was to assess the potential 
impact of heart rate on short-term survival outcomes (particularly 
28-day mortality) in patients with cerebral infarction who do not have 
atrial fibrillation. To perform this study, we rely on data extracted from 
the Medical Information Mart for Intensive Care-IV (the MIMIC-IV) 
database, which compiles a wide range of clinical information from 
ICU patients, allowing for a comprehensive evaluation of this 
relationship. By elucidating the prognostic value of heart rate in 
cerebral infarction patients, our findings will provide valuable insights 
for risk stratification and management strategies in clinical practice.

2 Materials and methods

2.1 Data source

The MIMIC-IV database is a publicly available, large-scale 
intensive care unit (ICU) database maintained by the MIT Lab for 

Computational Physiology (15). This collection features anonymized 
health records for individuals who received treatment in the ICU at a 
major medical facility in Boston, Massachusetts, spanning from 2008 
through 2019. The dataset includes detailed information on 
demographics, vital signs, laboratory tests, medications, surgeries, and 
clinical outcomes, enabling strong epidemiological and clinical 
investigations. Author Xinrou Song has successfully completed the 
required training and certification for accessing the MIMIC-IV 
database (Certificate No. 66625234) and was responsible for extracting 
the data used in this study.

2.2 Data extraction, patient grouping, and 
outcome measures

The data for this study were extracted from the MIMIC-IV 
database, which contains de-identified ICU patient information. Data 
extraction was performed using PostgreSQL software, and to ensure 
data consistency and relevance to the acute phase, only data from the 
first 24 h after patient admission were included.

These data points encompassed: biological sex, age group, racial 
background, blood parameters such as hematocrit, hemoglobin, 
platelet count, red cell distribution width (RDW), electrolyte balance 
(e.g., calcium, chloride, sodium), metabolic markers like blood urea 
nitrogen (BUN), creatinine, international normalized ratio (INR), 
prothrombin time (PT), and partial thromboplastin time (PTT) and 
glucose, as well as acid–base balance indicators (anion gap and 
bicarbonate). Furthermore, clinical factors covered heart rate, blood 
pressure (systolic, diastolic, and mean arterial), temperature, and 
specific medical conditions including heart failure, coronary artery 
disease, peripheral artery disease, neurological conditions like 
dementia and paraplegia, pulmonary disorders, liver dysfunction, 
renal impairment, metabolic diseases such as diabetes and 
hyperlipidemia. The study also incorporated clinical assessment tools, 
including SOFA, GCS, which helped in evaluating the severity of 
patient conditions. Laboratory values were recorded as minimum 
values, while vital signs (e.g., heart rate) were recorded as averages. 
The outcome was defined as whether the patient survived or died 
within 28 days of admission. Patients were divided into two groups: 
the 28-day survival group and the 28-day mortality group.

2.3 Exclusion criteria

This study investigated the impact of heart rate on the prognosis 
of stroke patients, using the MIMIC-IV database. Eligibility criteria 
required patients to have been admitted to the ICU for the first time 
and diagnosed with cerebral infarction, based on the ICD-9 and 
ICD-10 criteria.

The following exclusion criteria were applied: The inclusion 
criteria for this study were patients diagnosed with cerebral infarction 
who received ICU treatment in the MIMIC-IV database. Exclusion 
criteria included patients who did not undergo ICU treatment, those 
with multiple ICU admissions, an ICU stay of less than 24 h, duplicate 
admission records, missing heart rate data, and a history of atrial 
fibrillation. Additionally, patients under the age of 18 were excluded 
from the analysis (Figure 1). To reduce potential bias, variables with 
missing data exceeding 15% were excluded from the analysis. For 
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variables with less than 15% missing data, missing values were 
imputed using the random forest method from the missForest R 
package. This approach helped maintain group homogeneity and 
enhanced the reliability of the subsequent analysis.

2.4 Statistical analysis

All analyses were performed using R software (version 4.2), along 
with appropriate data handling and modeling tools. The normality of 
continuous variables was initially assessed using the Shapiro–Wilk 
test. Variables that followed a normal distribution were expressed as 
mean ± standard deviation, and group differences were assessed using 
the independent t-test. For non-normally distributed data, results 
were presented as the median with interquartile range (P25, P75). 
Categorical data were presented as frequencies and percentages. The 
Wilcoxon rank-sum test was used to compare continuous variables 
across groups, while categorical variables were analyzed using the 
Pearson chi-square test.

To explore the relationship between heart rate and risk of death, 
we used a Cox proportional hazards regression model to calculate 
hazard ratios (HR) and 95% confidence intervals (CI). A multivariate 
model was then constructed to account for potential confounders. 
Variables with p-values less than 0.05 on univariate analysis were 
included in the final multivariate model. To assess the relationship 
between heart rate and in-hospital mortality, four separate models 
were constructed.

To identify the most relevant heart rate threshold associated with 
in-hospital mortality, ROC curve analysis was performed, with the 
Youden index used to determine the optimal cutoff value. This 
threshold was then applied to divide patients into two groups: one 

with a low heart rate and the other with a high heart rate. The 
difference in 28-day survival probabilities between the two groups was 
assessed using Kaplan–Meier survival curves, followed by a log-rank 
test. Additionally, non-linear relationships between heart rate and 
mortality risk were explored using restrictive cubic spline (RCS) 
analysis. Subgroup analyses were carried out to evaluate the potential 
moderating effects of gender, age, and comorbidities on the association 
between heart rate and mortality risk. Interaction terms were 
incorporated into the models to assess statistical significance, with 
interaction p-values reported. All statistical tests were two-sided, and 
a p-value of less than 0.05 was considered statistically significant. 
Effect sizes and confidence intervals were provided to emphasize the 
clinical relevance of the findings.

3 Results

3.1 Baseline characteristics of two groups 
of stroke patients

All participants were categorized into survival and death groups. 
Their baseline characteristics are summarized in Table  1. The 
non-survivor group was older (p < 0.001) and had a higher proportion 
of “other” in the racial distribution (p < 0.001). Their white WBC, 
anion gap, BUN, creatinine, glucose, RDW, INR, and PT were elevated 
(p < 0.05) in the mortality group, whereas hematocrit, hemoglobin, 
platelets, and bicarbonate were elevated (p < 0.05) in the surviving 
cohort. Vital signs showed higher heart rate and respiratory rate, lower 
DBP, MBP, and temperature (p < 0.05), higher SOFA score, and lower 
GCS score (p < 0.05) in the deceased cohort. SBP was higher in the 
survivor group (p = 0.023) Comorbidities such as myocardial 

FIGURE 1

Flow-diagram illustrating patient inclusion in the study.
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TABLE 1 Baseline characteristics of all participants according to survival status.

Characteristics Total (n = 1,642) Survival (n = 1,297) Death (n = 345) P

Age 66.00 (54.00, 76.00) 64.00 (53.00, 74.00) 72.00 (61.00, 82.00) <0.001

Gender (years) 0.206

  Female 788 (47.99) 612 (47.19) 176 (51.01)

  Man 854 (52.01) 685 (52.81) 169 (48.99)

Race <0.001

  White 1,024 (62.36) 833 (64.23) 191 (55.36)

  Black 209 (12.73) 172 (13.26) 37 (10.72)

  Others 409 (24.91) 292 (22.51) 117 (33.91)

Laboratory tests

  Hematocrit 34.50 (29.10, 38.80) 35.00 (29.80, 39.30) 32.50 (27.10, 37.10) <0.001

  Hemoglobin (g/L) 11.50 (9.50, 13.00) 11.70 (9.80, 13.10) 10.70 (8.80, 12.10) <0.001

  Platelets (×109/L) 198.50 (151.25, 253.00) 201.00 (156.00, 256.00) 183.00 (128.00, 246.00) <0.001

  WBC (×109/L) 9.30 (7.20, 12.30) 9.00 (7.10, 11.70) 10.70 (7.80, 15.10) <0.001

  Aniongap (mEq/L) 13.00 (12.00, 15.00) 13.00 (12.00, 15.00) 13.00 (12.00, 16.00) 0.032

  Bicarbonate (mEq/L) 22.00 (20.00, 24.00) 22.00 (20.00, 24.00) 21.00 (18.00, 24.00) <0.001

  BUN (mg/dL) 15.00 (11.00, 22.00) 15.00 (10.00, 21.00) 17.00 (13.00, 28.00) <0.001

  Calcium (mEq/L) 8.50 (7.90, 8.90) 8.60 (8.00, 9.00) 8.20 (7.70, 8.60) <0.001

  Chloride (mEq/L) 103.00 (100.00, 106.00) 103.00 (100.00, 106.00) 103.00 (100.00, 107.00) 0.914

  Creatinine (mg/dL) 0.90 (0.70, 1.17) 0.80 (0.70, 1.10) 0.90 (0.70, 1.40) 0.002

  Glucose (mg/dl) 114.00 (96.00, 140.00) 111.00 (95.00, 137.00) 124.00 (103.00, 149.00) <0.001

  RDW (%) 13.80 (13.10, 14.90) 13.70 (13.00, 14.70) 14.20 (13.40, 15.90) <0.001

  Sodium (mEq/L) 138.00 (136.00, 141.00) 138.00 (136.00, 141.00) 138.00 (136.00, 141.00) 0.278

  Potassium (mEq/L) 3.85 (3.50, 4.20) 3.90 (3.50, 4.20) 3.80 (3.40, 4.20) 0.282

  INR 1.10 (1.00, 1.20) 1.10 (1.00, 1.20) 1.10 (1.00, 1.30) <0.001

  PT (s) 12.20 (11.30, 13.30) 12.10 (11.30, 13.10) 12.60 (11.60, 14.40) <0.001

  PTT (s) 27.30 (25.00, 30.50) 27.30 (25.00, 30.40) 27.60 (25.00, 31.50) 0.178

Vital signs

  Heart rate (beats/min) 78.78 (69.92, 89.62) 78.16 (69.23, 88.46) 82.30 (72.41, 94.87) <0.001

  SBP (mmHg) 130.81 (117.36, 145.35) 131.52 (117.81, 145.95) 128.65 (115.72, 143.29) 0.023

  DBP (mmHg) 68.45 (59.97, 78.02) 69.79 (60.50, 79.35) 64.07 (58.42, 72.33) <0.001

  MBP (mmHg) 86.16 (76.80, 94.99) 87.24 (77.50, 96.02) 82.36 (75.44, 90.94) <0.001

  Respiratory rate (beats/min) 18.61 (16.80, 21.08) 18.44 (16.70, 20.74) 19.38 (17.18, 22.61) <0.001

  Temperature (°C) 36.93 (36.72, 37.20) 36.92 (36.73, 37.16) 36.97 (36.70, 37.34) 0.024

  SpO2 (%) 97.24 (96.00, 98.60) 97.11 (95.92, 98.42) 97.81 (96.48, 99.07) <0.001

Score

  SOFA 3.00 (2.00, 5.00) 3.00 (1.00, 5.00) 5.00 (3.00, 8.00) <0.001

  GCS 14.00 (12.00, 15.00) 14.00 (12.00, 15.00) 14.00 (8.00, 15.00) 0.008

Comorbidities, n (%)

  Myocardial infarct 251 (15.29) 183 (14.11) 68 (19.71) 0.010

  Congestive heart failure 283 (17.24) 207 (15.96) 76 (22.03) 0.008

  Peripheral vascular Disease 206 (12.55) 168 (12.95) 38 (11.01) 0.334

  Dementia 55 (3.35) 30 (2.31) 25 (7.25) <0.001

  Chronic pulmonary disease 296 (18.03) 215 (16.58) 81 (23.48) 0.003

  Rheumatic disease 57 (3.47) 40 (3.08) 17 (4.93) 0.096

  Peptic ulcer disease 22 (1.34) 18 (1.39) 4 (1.16) 0.949

(Continued)
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infarction, heart failure, dementia, lung disease, liver disease, renal 
disease and hypertension were more common in the mortality group 
(p < 0.05) (Table 1).

3.2 Univariate cox regression analysis of 
risk factors for mortality in stroke patients

Table  2 summarizes factors significantly associated with 
mortality (p < 0.05). Higher mortality risk was linked to older age, 
‘Others’ race, and comorbidities such as myocardial infarction, 
congestive heart failure, dementia, chronic pulmonary disease, liver 
disease, and hypertension. Laboratory abnormalities included 
elevated WBC, anion gap, BUN, glucose, RDW, INR, and PT, while 
lower hematocrit, hemoglobin, bicarbonate, platelets, and calcium 
were associated with increased risk. Vital sign differences included 
higher heart and resp. rate, SpO2, and lower SBP, DBP, and 
MBP. Additionally, higher SOFA scores and lower GCS scores were 
significantly related to mortality.

3.3 Multivariable cox regression analysis of 
heart rate and mortality in stroke patients

Table 3 presents the Cox regression analysis of the relationship 
between heart rate variability and in-hospital mortality across four 
models. In all models, heart rate was significantly associated with 
in-hospital mortality. In the crude model (Model 1), heart rate showed 
a significant association (p < 0.001), which remained significant after 
adjusting for age and race in Model 2 (p < 0.001). Further adjustments 
for laboratory parameters, vital signs, SOFA, and GCS in Model 3 still 
demonstrated a significant association (p = 0.019). This association 
persisted in Model 4 after additional adjustments for comorbidities, 
including myocardial infarction, congestive heart failure, dementia, 
chronic pulmonary disease, liver disease, and hypertension (p = 0.019).

3.4 The relationship between heart rate 
stratification and 28-day survival rate 
based on Kaplan–Meier survival curves and 
ROC analysis

In the Kaplan–Meier survival curve analysis, heart rate 
stratification (high heart rate vs. low heart rate) was used to assess the 

28-day survival probability. To evaluate the predictive value of heart 
rate for in-hospital mortality in critically ill patients with acute 
cerebral infarction, we plotted the receiver operating characteristic 
(ROC) curve. A heart rate threshold of 89.72 beats per minute 
(sensitivity = 35.36%, specificity = 77.95%) was used to divide 
patients into two groups: low heart rate (≤89.72 bpm, n = 1,234) and 
high heart rate (>89.72 bpm, n = 408).

The Kaplan–Meier survival curve illustrates the association 
between heart rate levels and in-hospital mortality over a 28-day 
follow-up period. Patients were divided into two groups: high heart 
rate and low heart rate. The survival probability was significantly 
lower in the high heart rate group compared to the low heart rate 
group (p < 0.0001). The number at risk decreased consistently over 
time in both groups, with 1,234 and 408 patients at baseline in the 
low and high heart rate groups, respectively. This survival difference 
remained evident throughout the follow-up period, with the high 
heart rate group exhibiting a steeper decline in survival probability 
(Figure 2).

3.5 Non-linear relationship between heart 
rate and mortality risk based on RCS curve 
analysis

After adjusting for key covariates including age, race, hematocrit, 
hemoglobin, platelets, WBC, BUN, glucose, SOFA score, and GCS, 
RCS models were used to explore the linear relationship between heart 
rate and 30-day mortality risk. The analysis showed no significant 
non-linear association (p for non-linearity = 0.428). A positive 
correlation with increased mortality risk was observed when the heart 
rate exceeded 78.78 bpm, with the hazard ratio approaching 1 around 
this threshold (Figure 3).

3.6 Subgroup analysis of the interaction 
between heart rate and risk of death from 
cerebral infarction

The association between heart rate and in-hospital mortality was 
evaluated across various subgroups, including gender, age, myocardial 
infarction, congestive heart failure, dementia, chronic pulmonary 
disease, liver disease, and hypertension. Subgroup analyses 
demonstrated consistent associations between heart rate and 
mortality, with no significant interactions observed in most 

TABLE 1 (Continued)

Characteristics Total (n = 1,642) Survival (n = 1,297) Death (n = 345) P

  Liver disease 118 (7.19) 80 (6.17) 38 (11.01) 0.002

  Diabetes 536 (32.64) 411 (31.69) 125 (36.23) 0.110

  Paraplegia 720 (43.85) 571 (44.02) 149 (43.19) 0.781

  Renal disease 269 (16.38) 200 (15.42) 69 (20.00) 0.041

  Hypertension 537 (32.70) 407 (31.38) 130 (37.68) 0.027

  Hyperlipidemia 687 (41.84) 547 (42.17) 140 (40.58) 0.594

Values are expressed as the median (Interquartile range) or n (%). WBC, white blood cell; BUN, blood urea nitrogen; RDW, Red blood cell volume distribution width; INR, international 
normalized ratio; PT, prothrombin time; PTT, partial thromboplastin time; SBP, systolic blood pressures; DBP, diastolic blood pressures; MBP, mean arterial pressures; SpO2, oxygen saturation; 
SOFA, Sequential Organ Failure Assessment score; GCS, Glasgow coma scale.
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subgroups (all p for interaction >0.05). However, a significant 
interaction was identified in the hypertension subgroup (p for 
interaction = 0.005). Specifically, a significant association between 
heart rate and mortality was observed in patients without 
hypertension (HR: 1.02, 95% CI: 1.01–1.03), while no significant 
association was found in those with hypertension (HR: 0.99, 95% CI: 
0.98–1.01) (Figure 4).

4 Discussion

Cerebral infarction is the most common type of stroke, 
characterized by a sudden interruption of blood flow to brain 
tissue, leading to neuronal damage. Clinical features include 
sudden weakness or numbness, typically on one side of the body, 
difficulty speaking or understanding speech, loss of vision in one 
or both eyes, dizziness, loss of balance, and unexplained severe 
headaches (16). Patients with large vessel occlusion tend to exhibit 
more pronounced infarct expansion during delayed treatment. 
Factors such as higher low perfusion intensity ratios and poorer 
collateral circulation are important predictors of this progression 
(17). Future efforts should focus on raising awareness, screening, 
and timely intervention to mitigate the impact of this 
debilitating disease.

When a cerebral infarction occurs, the blood supply to certain 
areas of the brain is interrupted, leading to hypoxia and neuronal 
death. The primary causes include embolic sources (such as atrial 
fibrillation), large artery atherosclerosis, and small vessel occlusion 
commonly associated with hypertension and diabetes (18, 19). From 
a pathophysiological perspective, cerebral infarction triggers a series 
of cascading events, including excitotoxicity, oxidative stress, 
inflammation, and blood–brain barrier disruption (20–22). Recent 
studies highlight the importance of biomarker identification to 
enhance early diagnosis and prognosis, with the aim of reducing the 
high mortality and disability rates associated with cerebral 
infarction (23).

This study found that higher heart rate was significantly associated 
with increased in-hospital mortality, with patients having heart rates 
>89.72 bpm showing significantly lower 28-day survival rates. 
Mortality risk increased when heart rate exceeded 78.78 bpm. 
Subgroup analysis indicated that heart rate was consistently associated 
with mortality in most subgroups, except for patients with 
hypertension, where no significant association was observed. Previous 
research has shown that patients with acute cerebral infarction who 
present with a higher initial heart rate at the time of hospitalization 
face a significantly greater risk of both all-cause mortality and 
cardiovascular death. This finding aligns with the results of our study, 
which highlights a strong association between heart rate indices and 
the prognosis of cerebral infarction patients. Therefore, monitoring 
and managing heart rate could play a crucial role in assessing 
prognosis and informing clinical decision-making (24, 25).

Heart rate plays a crucial role in predicting the prognosis of 
various diseases, particularly cardiovascular diseases and critical 
illnesses. An elevated resting heart rate is often associated with 
increased mortality and poor prognosis, especially in conditions such 
as heart failure and ischemic diseases (26). Advanced technologies, 
including interpretable machine learning models, have been 
developed to predict the prognosis of critically ill ICU patients by 

integrating heart rate with other physiological variables. For example, 
in ICU mortality prediction models, average heart rate, along with 
factors such as urine output and oxygen saturation, has been identified 
as a key predictive variable (27). In heart failure patients, improved 
heart rate control is associated with better recovery of ejection fraction 
and prognosis, highlighting its predictive significance in treatment 
outcomes (28) In addition, heart rate monitoring is being integrated 
into artificial intelligence and Internet of Things (IoT) platforms for 

TABLE 2 Univariate analysis of hospital mortality.

Characteristics HR (95%CI) P

Age 1.03 (1.02 ~ 1.04) <0.001

Race

  White 1.00 (Reference)

  Black 0.94 (0.66 ~ 1.33) 0.714

  Others 1.65 (1.31 ~ 2.07) <0.001

Myocardial infarct 1.40 (1.07 ~ 1.82) 0.014

Congestive heart failure 1.40 (1.07 ~ 1.82) 0.014

Dementia 2.61 (1.74 ~ 3.92) <0.001

Chronic pulmonary disease 1.44 (1.12 ~ 1.84) 0.004

Liver disease 1.68 (1.20 ~ 2.35) 0.003

Renal disease 1.28 (0.98 ~ 1.66) 0.071

Hypertension 1.29 (1.03 ~ 1.60) 0.023

Hematocrit 0.96 (0.95 ~ 0.98) <0.001

Hemoglobin 0.88 (0.85 ~ 0.92) <0.001

WBC 1.03 (1.02 ~ 1.04) <0.001

Aniongap 1.04 (1.01 ~ 1.08) 0.014

Bicarbonate 0.92 (0.90 ~ 0.95) <0.001

BUN 1.01 (1.01 ~ 1.02) <0.001

Platelets 0.99 (0.99 ~ 0.99) 0.009

Calcium 0.69 (0.61 ~ 0.77) <0.001

Creatinine 1.03 (0.97 ~ 1.10) 0.267

Glucose 1.01 (1.01 ~ 1.01) <0.001

RDW 1.13 (1.08 ~ 1.19) <0.001

INR 1.62 (1.26 ~ 2.09) <0.001

PT 1.04 (1.02 ~ 1.07) <0.001

Heart Rate 1.02 (1.01 ~ 1.02) <0.001

SBP 0.99 (0.99 ~ 0.99) 0.031

DBP 0.97 (0.97 ~ 0.98) <0.001

MBP 0.98 (0.97 ~ 0.99) <0.001

Respiratory rate 1.07 (1.04 ~ 1.09) <0.001

Temperature 1.09 (0.87 ~ 1.35) 0.457

SpO2 1.15 (1.08 ~ 1.22) <0.001

SOFA 1.15 (1.12 ~ 1.18) <0.001

GCS 0.90 (0.87 ~ 0.92) <0.001

HR, Hazard Ratio; CI, Confidence Interval; WBC, white blood cell; BUN, blood urea 
nitrogen; RDW, Red blood cell volume distribution width; INR, international normalized 
ratio; PT, prothrombin time; SBP, systolic blood pressures; DBP, diastolic blood pressures; 
MBP, mean arterial pressures; SpO2, oxygen saturation; SOFA, Sequential Organ Failure 
Assessment score; GCS, Glasgow coma scale.
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continuous tracking, enabling real-time prognostic prediction and 
improving clinical decision-making in intensive care settings (26).

Heart rate significantly influences the prognosis of patients with 
cerebral infarction through various mechanisms. These abnormalities 
can exacerbate stroke-related complications. Autonomic 
dysregulation, characterized by excessive sympathetic nervous system 
activation and weakened parasympathetic modulation, is a key 
mediator in promoting pro-inflammatory states, endothelial 
dysfunction, and coagulopathy. For example, mechanisms that affect 
fibrosis and vascular remodeling, such as those involving SHARPIN 
protein, have been shown to impact stroke and cardiovascular 
outcomes. Reducing the expression of fibrosis-related proteins in 
cardiac tissue can alleviate stroke-related complications, highlighting 
the interplay between brain and heart health (29).

An elevated heart rate can impair the brain’s autoregulatory function 
by disrupting the balance between oxygen delivery and metabolic 
demand, thereby exacerbating ischemic damage in vulnerable brain 
areas. The mechanisms behind this phenomenon include increased 
oxidative stress, inflammation, and vascular dysfunction, which 
collectively lead to intensified neuronal injury. Research highlights that 
oxidative stress and mitochondrial damage are typically triggered by 
ischemia–reperfusion, playing a crucial role in disrupting autoregulatory 
mechanisms. For instance, inhibiting pathways such as JAK2/STAT3 and 
TLR9 can alleviate oxidative stress and improve prognosis by 
maintaining vascular stability (30). In addition, increased sympathetic 
nervous activity (often reflected in higher heart rates) may exacerbate 
ischemic damage by enhancing the release of pro-inflammatory 
cytokines and altering cerebral blood flow regulation. Therapies targeting 
inflammation and mitochondrial pathways, such as nicotinamide and 
ischemic preconditioning, have shown promise in restoring autonomic 
regulation and reducing ischemic injury (31). Monitoring and managing 
heart rate dynamics, including through pharmacological or non-invasive 
interventions such as heart rate variability biofeedback, can provide 
therapeutic benefits in stroke care, improving overall survival and 
functional recover. One study investigated the relationship between heart 
rate variability (HRV), neurological function, and clinical factors with 
mortality and behavioral functional outcomes in patients with ischemic 
stroke. The results suggest that HRV may be associated with 3-month 
behavioral functional outcomes (32).

Non-cardioembolic ischemic stroke is primarily caused by large 
artery atherosclerosis and small vessel occlusion, accounting for 70 to 
85% of all ischemic strokes. We excluded patients with atrial fibrillation 
to specifically study the non-cardioembolic ischemic stroke population. 
Atrial fibrillation is a major cause of cardioembolic stroke and follows a 
distinct pathophysiological mechanism. The treatment strategies for 
cardioembolic and non-cardioembolic strokes differ significantly. 
Including atrial fibrillation patients in a study on ischemic stroke 

prognosis could introduce confounding bias due to differences in 
treatment approaches, thereby compromising the reliability of the study’s 
conclusions. Moreover, the relationship between heart rate and stroke 
prognosis differs in patients with atrial fibrillation. Atrial fibrillation 
patients exhibit greater heart rate variability, and the condition itself can 
lead to hemodynamic instability (33). Excluding patients with atrial 
fibrillation ensures greater homogeneity in the study population, making 
the research conclusions more specific and clinically relevant.

Studies have found that hypertension is one of the most significant 
risk factors for ischemic stroke (34). Hypertension significantly affects 
cerebral blood flow autoregulation and can lead to post-stroke 
hypoperfusion, inflammation, and cognitive impairment through 
mechanisms such as vascular smooth muscle dysfunction, blood–brain 
barrier disruption, and capillary rarefaction (35). Our study 
demonstrates that blood pressure significantly influences the relationship 
between heart rate and prognosis. In patients without hypertension, an 
elevated heart rate is significantly associated with worse outcomes in 
non-cardioembolic ischemic stroke. Based on clinical observations and 
previous research, we hypothesize that β-blockers or calcium channel 
blockers, which are frequently used by hypertensive patients, may 
reduce heart rate, thereby mitigating the adverse effects of heart rate 
elevation. Additionally, hypertension may lead to arterial stiffness and 
decreased vascular compliance, reducing the impact of heart rate on 
cerebral blood flow regulation. In contrast, non-hypertensive individuals 
may rely more on heart rate to maintain hemodynamic stability, making 
them more vulnerable to the detrimental effects of an elevated heart rate. 
Therefore, in ischemic stroke patients without hypertension, closer heart 
rate monitoring and potential heart rate control interventions should 
be considered to improve stroke prognosis.

This study used the MIMIC-IV database, which provides a 
large and diverse dataset that enables reliable analysis of clinical 
factors and prognosis in patients with cerebral infarction. 
However, it is important to recognize that the database has some 
inherent limitations. First, as a retrospective cohort study, the 
results are subject to inherent biases such as selection bias and 
unmeasured confounders. Although statistical adjustments have 
been made to minimize these biases, residual confounders cannot 
be  completely excluded. Second, the MIMIC-IV database 
represents data from a single healthcare system, which may limit 
the generalizability of study results to other populations or 
healthcare settings. Differences in clinical practice, resource 
availability, and patient demographics may affect the external 
validity of study results. Third, the database lacks detailed 
neuroimaging data, such as CT or MRI findings, which are critical 
to accurately assess stroke severity, infarct size, and lesion location. 
The lack of these imaging parameters limits the ability to 
comprehensively assess the relationship between clinical variables 

TABLE 3 Cox hazardous regression of the relationship between heart rate and 28-day mortality.

Categories Model1 Model2 Model3 Model4

HR (95%CI) P HR (95%CI) P HR (95%CI) P HR (95%CI) P

Heart Rate 1.02 (1.01 ~ 1.02) <0.001 1.02 (1.01 ~ 1.03) <0.001 1.01 (1.01 ~ 1.02) 0.019 1.01 (1.01 ~ 1.02) 0.019

HR, Hazard Ratio; CI, Confidence Interval; WBC, white blood cell; BUN, blood urea nitrogen; RDW, Red blood cell volume distribution width; INR, international normalized ratio; PT, 
prothrombin time; SBP, systolic blood pressures; DBP, diastolic blood pressures; MBP, mean arterial pressures; SpO2, oxygen saturation; SOFA, Sequential Organ Failure Assessment score; 
GCS, Glasgow coma scale. Model1: Crude. Model2: Adjust: age, race. Model3: Adjust: age, race, hematocrit, hemoglobin, platelets, WBC, aniongap, bicarbonate, BUN, calcium, glucose, RDW, 
INR, PT, SBP, DBP, MBP, Resp rate, SpO2, SOFA, GCS. Model4: Adjust: age, race, hematocrit, hemoglobin, platelets, WBC, aniongap, bicarbonate, BUN, calcium, glucose, RDW, INR, PT, SBP, 
DBP, MBP, Resp rate, SpO2, Myocardial infarct, Congestive heart failure, Dementia, Chronic pulmonary disease, Liver disease, Hypertension, SOFA, GCS*.
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and stroke prognosis. Finally, despite our efforts to address the 
problem of missing data through multiple interpolation methods, 
the presence of incomplete records and the potential bias 
introduced by estimation techniques remains a concern.

5 Conclusion

In conclusion, this study reveals a positive association 
between elevated heart rate and in-hospital mortality in patients 

FIGURE 2

Kaplan–Meier survival curves: effect of heart rate grouping on the probability of 28-day survival in patients with cerebral infarction.

FIGURE 3

Restricted Cubic Spline (RCS) Curves Analyzing the Relationship Between Heart Rate and Risk of Death. This figure shows the overall and nonlinear 
relationship between heart rate and the risk ratio (HR) of death. The solid red line indicates the risk ratio fitted to the RCS model, and the shaded area 
indicates the 95% confidence interval. The dashed line indicates the reference line for HR = 1.
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with cerebral infarction without atrial fibrillation. Patients with 
heart rates greater than 90 bpm had significantly reduced 28-day 
survival, and this association remained consistent across most 
subgroups except for hypertensive patients. These findings 
suggest that heart rate may serve as an independent prognostic 
indicator of mortality in cerebral infarction patients. If further 
validated, this association could provide a rationale for 
developing therapeutic strategies targeting heart rate to improve 
clinical prognosis in this population.
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