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Objective: This study aims to investigate the association of Fc receptor-like 
3 (FCRL3) gene variants with multiple sclerosis (MS) and neuromyelitis optica 
spectrum disorder (NMOSD) in a Chinese population cohort.

Methods: In Stage 1, 154 MS patients, 109 NMOSD patients, and 301 normal 
controls were recruited, Sequenom MassARRAY technology was used for 
genotyping single nucleotide polymorphisms (SNPs). Stage 2 involved an 
independent cohort of 95 MS patients, 139 NMOSD patients, and 226 normal 
controls. Two FCRL3 SNPs (rs7528684 and rs11264799) were determined using 
allele-specific polymerase chain reaction (PCR) with specific primers.

Results: Allele C of rs7528684 emerged as a protective factor for MS. Allele A of 
rs11264799 exhibited no significant effect on MS or NMOSD. A notable disparity 
in rs7528684 genotype distribution was observed between oligoclonal band 
(OCB)-positive and OCB-negative MS patients. Allele C of rs7528684 exhibited 
an association with OCB-positive MS patients.

Conclusion: The findings suggest that the FCRL3 variant (rs7528684) is 
associated with MS rather than NMOSD. FCRL3 might significantly contribute 
to OCB synthesis, while the underlying mechanisms warrant further elucidation.
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1 Introduction

Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) are 
autoimmune inflammatory demyelinating conditions affecting the central nervous system 
(CNS) that primarily afflict young females (1). While the precise pathogenesis of MS and 
NMOSD remains incompletely elucidated, it is associated with a spectrum of genetic and 
environmental risk factors (2, 3). NMOSD often affects only the optic nerve and spinal cord, 
and can involve vision problems in both eyes. In comparison, MS can affect other locations 
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in the CNS but often one eye. Despite these nuances, the similarities 
between NMOSD and MS in symptom and pathology make the 
accurate diagnosis difficult (4). Moreover, their clinical 
manifestations and pathological profiles exhibit considerable 
diversity across different populations, posing challenges in the 
accurate diagnosis.

Supplementary examinations, e.g., cerebrospinal fluid (CSF) 
analysis and imaging play a vital role in definitive diagnosis of 
NMOSD and MS (5). CSF analysis is instrumental in detecting 
intrathecal immunoglobulin synthesis, notably through assessing the 
immunoglobulin G (IgG) index and CSF-specific oligonucleotide 
bands (OCB), providing pivotal insights into central nervous system 
inflammation (6). In contrast to MS, NMOSD exhibits a higher 
prevalence among East Asians and other non-white populations (7, 
8). Most NMOSD patients demonstrate the presence of a serum 
autoantibody specific to the astrocyte water channel protein 
aquaporin-4 (AQP4) (9, 10). Revised NMOSD criteria classify the 
condition into AQP4 antibody-positive (AQP4+) and AQP4 
antibody-negative (AQP4-) subtypes, with AQP4 + patients showing 
a higher propensity for relapses compared to AQP4- individuals (11). 
Despite the unequivocal role of B cells in antibody production, the 
genetic underpinnings of this antibody production largely 
remain elusive.

A recent multi-center genome-wide association study (GWAS) 
identified several novel loci associated with MS, among which the 
HLA DRB1*1501 allele showed the strongest association (12). 
Located in the lq21 region, FCRL3 encodes a Fc receptor-like (FCRL) 
molecule exhibiting significant structural homology with Fc region 
immunoglobulin receptors, implicating its role in various 
autoimmune diseases such as psoriasis, Sjogren’s syndrome, and 
autoimmune thyroid disorders (13–15). While the G allele of 
rs3761959 in FCRL3 was initially identified as a risk factor for MS in 
the primary GWAS phase, subsequent replication across diverse 
ethnic groups yielded inconclusive results, underscoring the influence 
of genetic diversity (12). Previous case–control studies in the Spanish 
population revealed that the C allele of rs7528684, situated in the 
promoter region of FCRL3, acted as a protective factor against MS 
(16, 17). Interestingly, rs7528684 has exhibited strong association 
with rheumatoid arthritis (RA) and anti-cyclic citrullinated peptide 
(CCP) antibody positivity in the Japanese population (18), hinting at 
FCRL3’s potential involvement in antibody production in 
autoimmune diseases. A previous study identified the G allele in the 
−1901A > G polymorphism and the T allele in the -658C > T 
polymorphism as genetic risk factors for NMO in the Chinese 
population. Another study found four SNPs in the FCRL3 gene 
(FCRL3_3C, 5C, 6A, 8G) that may increase the risk of NMO in the 
Han Chinese population (19, 20). However, despite these findings, no 
study to date has investigated the link between FCRL3 variants and 
the presence of antibodies in MS and NMOSD. Moreover, the diverse 
associations of FCRL3 variants with MS susceptibility in prior studies 
highlight the complexity and variability within this genetic context 
(16, 17, 21).

In this study, our objective was to investigate the potential 
association of FCRL3 variants with both MS and NMOSD among 
individuals within the Chinese population. Additionally, we aimed to 
assess the relationship between FCRL3 variants and the presence of 
OCB as well as AQP4 antibody (AQP4-ab).

2 Materials and methods

2.1 Subjects

Table 1 provides an overview of the general clinical characteristics 
of the subjects involved in this study. For Stage 1, we recruited 154 MS 
patients (88 females and 66 males), 109 NMOSD patients (89 females 
and 20 males), and 301 normal controls (141 females and 160 males) 
from the First Affiliated Hospital of Fujian Medical University and 
Huashan Hospital of Fudan University between October 25, 2007, and 
February 4, 2012. Among these individuals, the positive rate of 
oligoclonal bands in MS patients was 58.2%, while the positive rate of 
AQP4 antibody in NMOSD patients was 57.14%.

For Stage 2, a separate cohort consisting of 95 MS patients (53 
females and 42 males), 139 NMOSD patients (117 females and 22 
males), and 226 normal controls (142 females and 84 males) was 
enrolled from the Second Affiliated Hospital of Zhejiang University 
School of Medicine and the First Affiliated Hospital of Fujian Medical 
University between March 6, 2013, and March 31, 2021. In this stage, 
the positive rate of oligoclonal bands in MS patients was 46.0%, 
whereas the positive rate of AQP4 antibody in NMOSD patients 
increased to 80.17%. All participants met the current diagnostic 
criteria for either MS or NMOSD (5, 11).

Detection of AQP4 antibodies was conducted using an indirect 
immunofluorescence assay with a Euroimmun (Germany) kit, 
following the manufacturer’s instructions. Transfected and 
non-transfected AQP4 cells were incubated with diluted serum and 
FITC-labeled goat anti-human IgG successively. A positive result was 
indicated by distinct fluorescence on the surface of AQP4-transfected 
cells, matching the AQP4 expression pattern, with no fluorescence in 
non-transfected cells. Oligoclonal band detection was conducted 
using the isoelectric focusing technique followed by agarose gel 
electrophoresis. Ethical approval for this study was obtained from the 
Ethics Committees of the mentioned research centers, and informed 
consent was obtained from all participants or their guardians.

2.2 Two-stage SNP genotyping

Genomic DNA extraction from peripheral blood mononuclear 
cells was conducted using the QIAamp DNA Blood Minikit (QIAGEN, 
Hilden, Germany) according to the manufacturer’s instruction. All 
participants underwent genotyping utilizing the Sequenom MassArray 
system. Four FCRL3 variants (rs7528684, rs11264799, rs3761959, and 
rs7522061), previously associated with MS (12), were selected from 
the GWAS database.

Stage 1 involved genotyping these four SNPs in 154 MS patients, 
109 NMOSD patients, and 301 controls at the Fudan-Van Andel 
Research Institute (VARI) Center (School of Life Science, Fudan 
University, China). This was carried out using the matrix-assisted laser 
desorption/ionization time of flight mass spectrometry (MALDI-TOF 
MS) platform (MassArray TM, Sequenom Inc., San Diego, CA, USA), 
following a previously established method (22). PCR and extension 
primers were designed using MassArray Assay Design 3.1 software 
(Sequenom, San Diego, CA, USA) (Supplementary Table 1).

Based on Stage 1 results, two SNPs of FCRL3 were chosen for 
replication in Stage 2, encompassing 95 MS patients, 139 NMOSD 
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patients, and 226 normal controls. This replication stage 
employed allele-specific PCR with the designated primers 
(Supplementary Table 2).

2.3 Statistical analysis

The Hardy–Weinberg equilibrium was tested using the 
Chi-squared test. To evaluate differences in allele and genotype 
frequencies between patients and controls, the Chi-squared test or 
Fisher’s exact test was employed. Utilizing a binary logistic regression 
model adjusted for age and gender, odds ratios (ORs) and their 
corresponding 95% confidence intervals (CIs) were estimated.

Linkage disequilibrium (LD) was determined using SHEsis 
software (23) available at http://analysis2.bio-x.cn/SHEsisMain.htm. 
All statistical analyses were conducted using SPSS 23.0 software. 
Statistical significance was set at a p-value less than 0.05.

3 Results

3.1 Genotyping of four SNPs in MS, NMOSD 
and control groups

The four SNPs (rs7528684, rs11264799, rs3761959, and 
rs7522061) within FCRL3 demonstrated Hardy–Weinberg 
equilibrium in both MS/NMOSD cases and controls (p > 0.05) 
(Table 2). Comparing the gene frequency distribution of these four 
SNPs between the MS group and the control group revealed 
significant associations: rs7522061 (p = 0.0003, OR = 0.593), 
rs3761959 (p = 0.0005, OR = 0.601), rs7528684 (p = 0.0007, 
OR = 0.616), rs11264799 (p = 0.189, OR = 0.778). The genomic 
locations of these selected FCRL3 variants were as follows: rs7522061 
located in exon 3, rs3761959 in intron 2, and rs11264799 along with 
rs7528684 in the promoter region (−110 position and −169 position, 
respectively).

We observed that rs7528684, positioned in the promoter of 
FCRL3, exhibited high linkage disequilibrium (LD) compared to the 
other two SNPs (rs7522061 and rs3761959). However, rs11264799, 
another SNP in the promoter region, displayed relatively lower LD 
with the aforementioned three SNPs (mean R2 = 0.41) in the controls 
(Figure  1). Consequently, statistical analyses were focused on 
rs7528684 and rs11264799.

3.2 FCRL3 is associated with MS in the 
Chinese population

In Stage 1 (Table 3), the less frequent occurrence of allele C of 
rs7528684 was noted in both MS and NMOSD patients compared to 
controls (MS vs. controls: p = 0.005, OR = 0.665, 95% CI: 0.501–
0.883; NMOSD vs. controls: p = 0.024, OR = 0.694, 95% CI: 0.505–
0.954). Conversely, allele A of rs11264799 was less common in 
NMOSD (p = 0.020, OR = 0.631, 95% CI: 0.428–0.931) but not in MS 
when compared to controls. After adjusting for age and gender in a 
logistic regression model, allele C of rs7528684 demonstrated 
protective effects for MS in the genotype of dominant model 
(CT + CC vs. TT, p = 0.002, OR = 0.528, 95% CI: 0.352–0.793) but T
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not for NMOSD. Similarly, allele A of rs11264799 acted as a protective 
factor for NMOSD in the dominant model (AG + AA vs. GG, 
p = 0.005, OR = 0.492, 95% CI: 0.300–0.806) but not for MS.

Consequently, rs7528684 and rs11264799 were selected for 
confirmation in Stage 2. In Stage 2 (Table 4), allele C of rs7528684 
remained less prevalent in MS patients compared to controls 
(p = 0.015, OR = 0.647, 95% CI: 0.455–0.920), maintaining its 
protective association in the dominant model (CT + CC vs. TT, 
p = 0.004, OR = 0.466, 95% CI: 0.276–0.788), consistent with Stage 1 

findings. However, no significant association was found between 
NMOSD and controls. Considering both Stage 1 and Stage 2 
collectively (Table  5), the association of rs7528684 strengthened, 
showing a significant protective association with MS (p = 1.93 × 10−4, 
OR = 0.659, 95% CI: 0.529–0.821). Nevertheless, allele A of 
rs11264799 did not exhibit significant differences in either MS or 
NMOSD compared to controls (MS vs. controls: p = 0.102, 
OR = 0.808, 95% CI: 0.625–1.044; NMOSD vs. controls: p = 0.077, 
OR = 0.792, 95% CI: 0.612–1.025).

TABLE 2 Hardy–Weinberg equilibrium of FCRL3 SNPs in MS, NMOSD and NC in Stage 1.

SNP MS (n = 154) NMOSD (n = 109) NC (n = 301)

Genotype/Allele Actual Expected Actual Expected Actual Expected

n (%) n (%) n (%) n (%) n (%) n (%)

rs7522061

AA 66 (42.9) 62 (40.3) 46 (42.2) 44 (40.4) 82 (27.2) 85 (28.3)

GA 64 (41.5) 71 (46.1) 47 (43.1) 51 (46.8) 155 (51.5) 150 (49.8)

GG 24 (15.6) 21 (13.6) 16 (14.7) 14 (12.8) 64 (21.3) 66 (21.9)

A 196 (63.6) 139 (63.8) 319 (53.0)

G 112 (36.4) 79 (36.2) 283 (47.0)

χ2 0.688 0.341 0.167

(p) −0.709 −0.843 −0.92

rs3761959

CC 68 (44.1) 63 (40.9) 47 (43.1) 45 (41.3) 86 (28.6) 88 (29.2)

TC 62 (40.3) 71 (46.1) 46 (42.2) 50 (45.9) 153 (50.8) 150 (49.8)

TT 24 (15.6) 20 (13.0) 16 (14.7) 14 (12.8) 62 (20.6) 63 (21.0)

C 198 (64.3) 140 (64.2) 325 (54.0)

T 110 (35.7) 78 (35.8) 277 (46.0)

χ2 1.163 0.237 0.061

(p) −0.559 −0.888 −0.97

rs11264799

GG 94 (61.0) 93 (60.4) 72 (66.0) 73 (67.0) 162 (53.8) 164 (54.5)

AG 51 (33.1) 53 (34.4) 34 (31.2) 32 (29.4) 120 (39.9) 116 (38.5)

AA 9 (5.9) 8 (5.2) 3 (2.8) 4 (3.6) 19 (6.3) 21 (7.0)

G 239 (77.6) 178 (81.7) 444 (73.8)

A 69 (22.4) 40 (18.3) 158 (26.2)

χ2 0.103 0.21 0.18

(p) −0.95 −0.9 −0.914

rs7528684

TT 68 (44.1) 63 (40.9) 45 (41.3) 44 (40.4) 87 (28.9) 90 (30.0)

CT 62 (40.3) 71 (46.1) 48 (44.0) 50 (45.9) 154 (51.2) 149 (49.4)

CC 24 (15.6) 20 (13.0) 16 (14.7) 15 (13.7) 60 (19.9) 62 (20.6)

T 198 (64.3) 138 (63.3) 328 (54.5)

C 110 (35.7) 80 (36.7) 274 (45.5)

χ2 1.163 0.084 0.166

(p) −0.559 −0.959 −0.92

Hardy–Weinberg equilibrium in each group was carried out by chi-square analysis (df = 2).
MS, multiple sclerosis; NMOSD, neuromyelitis optica spectrum disorder; NC, normal controls; SNP, single nucleotide polymorphism.
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3.3 FCRL3 is associated with the presence 
of OCB in MS

Stratification based on the presence of OCB in CSF among MS 
patients was conducted to further explore the association between 
immune response and genotype. Table 6 displays a significant disparity 
in the genotype distribution of rs7528684 between OCB-positive and 
OCB-negative MS patients (p = 0.001). Notably, the C allele of 
rs7528684 exhibited an association with OCB positivity in MS 
(p = 1.4 × 10−5; OR = 0.37; 95% CI: 0.235 to 0.583). Moreover, this allele 
demonstrated association solely with OCB-positive MS when compared 
to controls (p = 4.1 × 10–7; OR = 0.413; 95% CI: 0.291 to 0.586).

4 Discussion

This investigation delves into the correlation between four FCRL3 
SNPs and MS/NMOSD within the Chinese population. Notably, 
we observed that genotype and allele frequencies of rs7528684 were 
protective against MS, specifically highlighting the protective role of the 
C allele. Confirming our findings, a combined analysis of two distinct 
cohorts further emphasized this association, aligning with prior research 
(17). However, divergent findings in other studies have indicated 
associations of this variant with increased susceptibility to MS (16, 21).

The investigation of OCB positivity in MS, predominantly 
observed in Caucasian populations (85–98%), contrasted with 

FIGURE 1

Linkage disequilibrium analysis of four SNPs in the FCRL3 locus within normal controls.

TABLE 3 Genotype and allele frequencies of rs7528684 and rs11264799 in MS, NMOSD and controls in Stage 1.

SNP/Genotype/
Allele

NC MS NMOSD MS versus NC NMOSD versus NC

p OR (95% CI) p OR (95% CI)

rs7528684

 TT 87 (28.9) 68 (44.1) 45 (41.3)

 CT 154 (51.2) 62 (40.3) 48 (44.0)

 CC 60 (19.9) 24 (15.6) 16 (14.7)

CT + CC vs. TT - - - 0.002a 0.528 (0.352-0.793) 0.058a 0.621 (0.380–1.016)

 T 328 (54.5) 198 (64.3) 138 (63.3)

 C 274 (45.5) 110 (35.7) 80 (36.7) 0.005b 0.665 (0.501–0.883) 0.024b 0.694 (0.505–0.954)

rs11264799

 GG 162 (53.8) 94 (61.0) 72 (66.0)

 AG 120 (39.9) 51 (33.1) 34 (31.2)

 AA 19 (6.3) 9 (5.9) 3 (2.8)

AG + AA vs. GG - - - 0.087a 0.711 (0.477-1.061) 0.005a 0.492 (0.300–0.806)

 G 444 (73.8) 239 (77.6) 178 (81.7)

 A 158 (26.2) 69 (22.4) 40 (18.3) 0.205b 0.811 (0.587–1.121) 0.020b 0.631 (0.428–0.931)

aTwo-sided chi-square test.
bStudent’s test.
OR, odds ratio; CI, confidence interval; MS, multiple sclerosis; NMOSD, neuromyelitis optica; NC, normal controls; SNP, single nucleotide polymorphism.
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lower incidences in Asian cohorts (21–63%) (24–28). Our study’s 
OCB prevalence (54.7%) aligns with previous reports, hinting at 
potential immunogenetic influences on OCB production. Notably, 
the association of DRB1*15 with increased OCB frequency across 
diverse populations, including Japan, Sardinia, Sweden, and Spain, 
has been reported (29). Our findings further suggest an inverse 
association between the C allele of rs7528684 in FCRL3 and the 

presence of OCB in MS patients. These results propose FCRL3 as 
an immunogenetic factor potentially involved in OCB production.

The involvement of FCRL3, primarily expressed in mature B cells 
within lymph nodes, suggests a potential functional role in B cell 
maturation regulation. Its cytoplasmic domain, comprising immune 
receptor tyrosine activating motif (ITAM) and immune receptor 
tyrosine inhibiting motif (ITIM), hints at its influence on B cell signal 

TABLE 4 Genotype and allele frequencies of rs7528684 and rs11264799 in MS, NMOSD and controls in Stage 2.

SNP/Genotype/
Allele

NC MS NMOSD MS versus NC NMOSD versus NC

p OR (95% CI) p OR (95% CI)

rs7528684

 TT 68 (30.1) 44 (46.3) 36 (25.9)

 CT 112 (49.6) 36 (37.9) 77 (55.4)

 CC 46 (20.3) 15 (15.8) 26 (18.7)

CT + CC vs. TT - - - 0.004a 0.466 (0.276-0.788) 0.491a 1.229 (0.684–2.208)

 T 248 (54.9) 124 (65.3) 149 (53.6)

 C 204 (45.1) 66 (34.7) 129 (46.4) 0.015b 0.647 (0.455–0.920) 0.738b 1.503 (0.780–1.420)

rs11264799

 GG 133 (58.8) 64 (67.3) 86 (61.9)

 AG 82 (36.3) 26 (27.4) 43 (30.9)

 AA 11 (4.9) 5 (5.3) 10 (7.2)

AG + AA vs. GG - - - 0.404a 0.796 (0.466-1.360) 0.145a 0.666 (0.386–1.151)

 G 348 (77.0) 154 (81.1) 215 (77.3)

 A 104 (23.0) 36 (18.9) 63 (22.7) 0.255b 0.782 (0.512–1.195) 0.914b 0.981 (0.687–0.1.400)

aTwo-sided chi-square test.
bStudent’s test.
OR, odds ratio; CI, confidence interval; MS, multiple sclerosis; NMOSD, neuromyelitis optica; NC, normal controls; SNP, single nucleotide polymorphism.

TABLE 5 Genotype and allele frequencies of rs7528684 and rs11264799 in MS, NMOSD and controls in two Stages.

SNP/Genotype/
Allele

Stage 1 + Stage 2

NC MS NMOSD MS versus NC NMOSD versus NC

p OR (95% CI) p OR (95% CI)

rs7528684

 TT 155 (29.4) 112 (45.0) 81 (32.7)

 CT 266 (50.5) 98 (39.4) 125 (50.4)

 CC 106 (20.1) 39 (15.6) 42 (16.9)

CT + CC vs. TT - - - 0.001a 0.489 (0.323–0.740) 0.707a 0.914 (0.571–1.463)

 T 576 (54.6) 322 (64.7) 287 (57.9)

 C 478 (45.4) 176 (35.3) 209 (42.1) 1.93 × 10-4b 0.659 (0.529–0.821) 0.235b 0.878 (0.707–1.089)

rs11264799

 GG 295 (56.0) 158 (63.5) 158 (63.7)

 AG 202 (38.3) 77 (30.9) 77 (31.1)

 AA 30 (5.7) 14 (5.6) 13 (5.2)

AG + AA vs. GG - - - 0.593a 0.896 (0.599–1.340) 0.121a 0.699 (0.445–1.099)

 G 792 (75.1) 393 (78.9) 393 (79.2)

 A 262 (24.9) 105 (21.1) 103 (20.8) 0.102b 0.808 (0.625–1.044) 0.077b 0.792 (0.612–0.1.025)

aTwo-sided chi-square test.
bStudent’s test.
MS, multiple sclerosis; NMOSD, neuromyelitis optica spectrum disease; NC, normal controls; NA, not applicable; OR, odds ratio; CI, confidence interval; OCB, oligoclonal bands.
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transduction by either activating or inhibiting cellular pathways (30). 
FCRL3 as a functional molecule within the immune system implies its 
potential role in autoimmune disease pathology, necessitating further 
investigation to elucidate genotype–phenotype correlations. Notably, 
the rs7528684 C allele exhibited a strong inverse association with 
insulinoma-associated antigen 2 (IA2), an anti-islet autoantibody 
linked to Type 1 diabetes (31). Studies have indicated that the C allele 
of rs7528684 could enhance nuclear factor-kappa B (NF-κB) binding 
affinity, subsequently elevating FCRL3 expression (18, 32). Studies 
reveal lower FCRL3 and interleukin-10 (IL-10) levels in MS patients, 
yet both are more elevated during remission than in the acute phase. 
This implies FCRL3 is pivotal for immune protection in MS. It 
activates the SHP-1 and p38 MAPK pathways, boosting IL-10 
secretion and curbing inflammatory factor release (32). FCRL3 
expression in B cells is influenced by stimuli such as 
lipopolysaccharides and CpG, impacting B cell survival, proliferation, 
and antibody production (33). In MS patients, abnormal B cell 
activation is linked to oligoclonal band formation. FCRL3 dysfunction 
may cause excessive B cell activation, driving oligoclonal band 
formation and disease progression (34).

Regarding rs11264799, the initial Stage 1 analysis suggested the A 
allele as a protective factor for NMOSD but not for MS, failing 
confirmation in Stage 2. This outcome contradicts a previous study 
(19), potentially indicating its role in disease susceptibility when 
triggered or in interaction with other disease-specific genetic variants 
or uneven distribution within the population. The observed protective 
effects of rs7528684 and rs11264799 on MS and NMOSD might 
be attributed to disease complexity, intricate genetic responses, and 
disease heterogeneity. These complexities necessitate further 
exploration to comprehend their precise roles in disease pathogenesis 
and their potential as therapeutic targets.

This study presents preliminary evidence suggesting that FCRL3 
polymorphisms may protect against MS, possibly through 
neuroprotective mechanisms associated with this genetic location. 
However, there are several methodological limitations that need to 
be addressed. First, the small sample size may have restricted the 
statistical power of our findings, potentially hindering the 
identification of subtle genetic factors. It is crucial to carry out future 
replication studies involving larger and more diverse cohorts to 
confirm these results. Second, as the concept of Myelin 
Oligodendrocyte Glycoprotein (MOG) antibodies had not been 
established at the time, we did not conduct further subgroup analyses 
in AQP4- patients. Third, prospective cohorts with sex-stratified 
recruitment should be established and subgroup analyses performed 
to uncover potential gender-specific genetic effects, as the retrospective 
design revealed an uneven sex distribution within the case group. This 
raises significant concerns given the well-documented sexual 
dimorphism in MS epidemiology. Furthermore, due to incomplete 
clinical information, we  were unable to examine the correlation 
between oligoclonal-IgG bands and clinical data, preventing us from 
considering all relevant factors that may impact oligoclonal-IgG 
bands. Regarding disease-modifying therapies (DMT), many patients 
were not receiving these treatments as the first oral DMT in China was 
only introduced in 2018 (35). In the future, the correlation between 
Oligoclonal-IgG bands and clinical information, such as age at onset, 
gender, years of disease at specimen collection, EDSS, number of 
recurrences, and the presence or absence of DMT, should be analyzed 
simultaneously. Such efforts could further clarify how T
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FCRL3-modulated immune pathways contribute to the pathogenesis 
of MS, thereby enhancing our understanding of this complex disorder.

Exploring the functional role of FCRL3 variants stands as an 
important and intriguing area further investigation.

5 Conclusion

FCRL3 variants show associations MS and NMOSD within the 
Chinese population, underscoring the need for future studies to 
validate these findings across broader ethnic cohorts. Moreover, 
FCRL3 might serve as a significant contributor to OCB synthesis, 
warranting detailed exploration to unravel the precise underlying 
mechanisms. These findings warrant validation in larger cohorts.
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