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Background: High expression of Ki-67 in meningioma is significantly associated 
with higher histological grade and worse prognosis. The non-invasive and 
dynamic assessment of Ki-67 expression levels in meningiomas is of significant 
clinical importance and is urgently required. This study aimed to develop a 
predictive model for the Ki-67 index in meningioma based on preoperative 
magnetic resonance imaging (MRI).

Methods: This study included 196 patients from one center (internal cohort) 
and 92 patients from another center (external validation cohort). Meningioma 
had to have been pathologically confirmed for inclusion. The Ki-67 index was 
classified as high (Ki-67 ≥ 5%) and low (Ki-67 < 5%). The internal cohort was 
randomly assigned to training and validation sets at a 7:3 ratio. Radiomics 
features were selected from contrast-enhanced T1-weighted MRI using the 
least-absolute shrinkage and selection operator and random forest methods. 
Then, we  constructed a predictive model based on the identified semantic 
and radiomics features, aiming to distinguish high and low Ki-67 expression. 
The model’s performance was evaluated through internal cross-validation and 
validated in the external cohort.

Results: Among the clinical features, peritumoral edema (p = 0.001) and 
heterogeneous enhancement (p = 0.001) were independent predictors of the 
Ki-67 index in meningiomas. The radiomics model using a combined 8 mm 
volume of interest demonstrated optimal performance in the training (area 
under the receiver operating characteristic curve [AUC] = 0.883) and validation 
(AUC = 0.811) sets. A nomogram integrating clinical and radiomic features was 
constructed, achieving an AUC of 0.904 and enhancing the model’s predictive 
accuracy for high Ki-67 expression.

Conclusion: This study developed clinical-radiomic models to non-invasively 
predict Ki-67 expression in meningioma and provided a novel preoperative 
strategy for assessing tumor proliferation.
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1 Introduction

Meningioma, rank as the second most common primary tumor 
of the central nervous system, accounting for approximately 39.7% 
of all intracranial tumors (1–3). Growth patterns differ among the 
different meningioma subtypes. Benign meningiomas have a five-
year survival rate of 85.5% because of their slow growth. However, 
even after complete surgical resection, the five-year recurrence rate 
of benign meningiomas ranges from 7 to 25%, demonstrating a 
potential conversion to a high-grade subtype (2, 4). The resection 
status and histological grade significantly influence the 
management and prognosis of meningioma (5). The Ki-67 index is 
a critical biomarker of tumor proliferation in meningioma. Higher 
Ki-67 expression levels have been firmly established as a prognostic 
risk factor associated with unfavorable outcomes and increased 
risk of recurrence in affected individuals (6). Consequently, 
understanding the Ki-67 expression index in patients with 
meningioma is essential for managing risk stratification and 
clinical decision-making (7, 8).

In meningioma, the Ki-67 index is predominantly assessed in 
postoperative specimens using the immunohistochemical (IHC) 
technique. However, it’s invasive nature and reliance on 
retrospective tissue sampling restrict its clinical utility for 
preoperative therapeutic planning and longitudinal progression 
monitoring. Many patients with meningioma require long-term 
follow-up, and since Ki-67 expression is a valuable prognostic 
marker, a tailored follow-up strategy is necessary to balance 
patient well-being with effective disease management, as 
traditional imaging methods struggle to assess tumor proliferation 
accurately (9). As a result, there is still an urgent clinical need for 
a readily accessible method for assessing the Ki-67 index. Previous 
studies indicate that preoperative magnetic resonance imaging 
(MRI) features, such as tumor heterogeneity on enhanced T1 
images, apparent diffusion coefficient images, irregular tumor 
shape, and peritumoral brain edema, are valuable for evaluating 
the grade and histopathological characteristics of meningiomas 
(10–13). Radiomics incorporates automated calculation methods 
into precise quantitative analysis techniques, and applies them to 
imaging diagnosis, establishing classification models through 
analysis and screening (14). It streamlines the diagnostic process, 
minimizes the necessity for invasive procedures, and accelerates 
treatment planning. As radiomics technology evolves, its 
application in predicting the pathological grade and clinical 
prognosis of brain tumors has gained increasing recognition (12, 
15). A focused systematic review and meta-analysis evaluated the 
performance of MRI-derived radiomics models for predicting 
Ki-67 status, demonstrating the growing interest and promising 
results in this area. These studies provide a foundation for our 
research, which leverages a multiregional radiomics approach 
based on MRI to preoperatively predict Ki-67 expression in 
meningiomas (16).

This study aimed to derive radiomics features from the 
peritumoral and intratumoral regions, providing valuable insights into 
predicting the Ki-67 expression status of patients with meningioma. 
To achieve this aim, we  developed and validated a model that 
integrated clinical semantic features with radiomics features using 
machine learning algorithms, intending to non-invasively predict the 
Ki-67 expression status of these patients.

2 Materials and methods

2.1 Patients

This study initially enrolled 296 patients from the Fifth Affiliated 
Hospital of Wenzhou Medical University (Center 1) and 151 from the 
Sixth Affiliated Hospital of Wenzhou Medical University (Center 2) 
between November 2009 and May 2023. The meningioma diagnoses 
were confirmed through surgical pathology. The inclusion criteria were 
as follows: (1) patients who underwent MRI plain and enhanced scans 
1 month before surgery, with complete clinical data; (2) patients who 
had not received radiotherapy or any other treatment before the MRI 
scan and had no history of head surgery; (3) patients with confirmed 
postoperative pathology and a determined Ki-67 index. The exclusion 
criteria were as follows: (1) patients with incomplete clinical data or 
poor MRI image quality; (2) patients lacking Ki-67 proliferation index 
results; (3) patients who had undergone radiation therapy and 
chemotherapy. Ultimately, 288 patients (196 from Center 1 and 92 
from Center 2) were included in this study. The data from Center 1 
were used for model development, while the data from Center 2 were 
used for external validation. Lesions from Center 1 were randomly 
assigned into training (n = 136) and validation (n = 60) sets at a ratio 
of 7:3. The detailed patient enrollment process is outlined in Figure 1. 
All study protocols and procedures were conducted in compliance with 
the Declaration of Helsinki. The requirement for informed consent 
from patients was waived due to the retrospective nature of this study.

2.2 MRI protocol

Preoperative MRI examinations were performed at two hospitals. 
At Center 1, MRI examinations were performed on a 3 T scanner 
(Magnetom Skyra; Siemens Healthineers, Erlangen, Germany). The 
imaging protocols included the following sequences: T1-weighted 
imaging (T1WI; repetition time [TR]/echo time [TE] = 2,540/9.4 ms, 
matrix size = 384 × 269), T2-weighted imaging (T2WI; TR/
TE = 3,700/100 ms, matrix size = 448 × 311), fluid-attenuated 
inversion recovery (FLAIR; TR/TE = 7,000/86 ms, matrix 
size = 384 × 230), and contrast-enhanced T1WI (CE-T1WI; TR/
TE = 149/3.4 ms, matrix size = 480 × 381). All images were taken with 
a field of view (FOV) of 230 × 230 mm, a slice thickness of 4 mm, and 
no interslice gaps. Contrast-enhanced MRI scans were performed 
following a bolus dose of 0.2 mL/kg of a contrast agent.

At Center 2, MRI examinations were performed using a 3 T scanner 
(Discovery 750; GE Healthcare, Chicago, IL, United States). The detailed 
protocol included the following sequences: T1WI (TR/TE = 2,200/11 ms, 
matrix = 320 × 256), T2WI (TR/TE = 3,900/87 ms, matrix = 512 × 384), 
FLAIR (TR/TE = 6,800/113 ms, matrix = 384 × 256), and CE-T1WI 
(TR/TE = 294/3.6 ms, matrix = 384 × 256). All images were taken with 
a FOV of 230–240 × 230–240 mm, a slice thickness of 5 mm, and a gap 
of 0.5 mm. The CE-T1WI images were acquired after a bolus dose of 
0.2 mL/kg of a contrast agent.

2.3 Data collection

The patients’ baseline clinical data were collected, including sex, 
age, headache history, history of epilepsy, history of malignancy, 
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diabetes mellitus, hypertension, history of allergies, history of alcohol 
abuse, and history of tobacco addiction, along with their laboratory 
test results, including leucocyte, neutrophil, lymphocyte, and 
monocyte counts; plasma fibrinogen level; and serum albumin level. 
Two attending physicians with 5 and 11 years of neuroimaging 
diagnostic experience were assigned to analyze the images using a 
post-processing workstation. Their evaluations primarily focused on 
tumor location, morphology, peritumoral edema, necrosis, and 
enhancement characteristics. In cases where they disagreed on the 
interpretation results, consensus was achieved through 
collaborative consultation.

2.4 Pathological analysis

The surgical tissue samples were initially fixed in a 10% 
formaldehyde solution, then dehydrated and embedded in paraffin for 
IHC staining of Ki-67. Under microscopic examination, cells 
exhibiting dark brown granules within their nuclei were identified as 
Ki-67+. The Ki-67 index was determined by calculating the percentage 
of Ki-67 + cells relative to the total cell count. A Ki-67 index of <5% 
was classified as low expression, and a Ki-67 index of ≥5% was 
classified as high expression (11, 12, 17).

2.5 Image segmentation and feature 
extraction

Delineation of the tumor volume of interest (VOI) and 
segmentation for radiomics feature extraction were conducted using 
the Radcloud platform. Before extracting features, all images were 
resampled to a uniform voxel size of 1 × 1 × 1 mm3 using B-Spline 

interpolation, ensuring consistent slice thickness and preserving 
rotational symmetry. Additionally, to address differences in pixel 
brightness between two distinct MRI machines, the intensity of gray 
levels in all image datasets was normalized to a range of 0–255 after 
removing pixels with anomalous values. The normalization pipeline 
involves applying N4 bias field correction to address intensity 
inhomogeneities followed by Z-score normalization to standardize the 
data scale and mitigate feature variations caused by intensity 
differences. CE-T1WI images were used for delineation, carefully 
excluding non-brain tissues such as the skull. Image normalization was 
conducted before feature selection to minimize grayscale variability 
and individual differences. Initially, an attending physician with 5 
years of neuroimaging diagnostic experience manually traced the 
tumor boundaries layer-by-layer to define the intratumoral VOI. The 
peritumoral VOI was generated using automated software, expanding 
at intervals of 2, 4, 6, 8, and 10 mm from the tumor outline. After 
delineation, another attending physician with 11 years of neuroimaging 
diagnostic experience reviewed the VOIs. In cases of inconsistency, the 
two physicians reached a consensus through discussion. Both were 
blinded to patient groupings. The extracted radiomic features included 
first-order statistics, morphological features, and texture features. 
First-order statistics quantitatively describe the intensity distribution 
of voxels within MRI images. Morphological features represent three-
dimensional aspects, reflecting the shape and size of the lesion. Texture 
features assess heterogeneity within the VOI.

2.6 Feature filtering and machine learning 
classifier building

Radiomics features were screened using variance threshold, 
SelectKBest method, and least absolute shrinkage and selection 

FIGURE 1

Flowchart of the patient selection criteria.
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operator (LASSO) logistic regression. A threshold of 0.8 was set, and 
features with variance below this value were excluded. Using the 
SelectKBest method, features with a p-value < 0.05 were retained. The 
LASSO algorithm was used for cross-verification, identifying the 
optimal radiomics features characterized by non-zero regression 
coefficients. A series of distinct models were constructed using a 
Random Forest (RF) classifier: (1) a clinical semantic model; (2) a 
tumoral radiomics model; (3) five peritumoral radiomics models at 
incremental distances of 2, 4, 6, 8, and 10 mm from the tumor outline; 
(4) five combined radiomics models integrating intratumoral features 
with five widths of peritumoral features; and (5) a comprehensive 
model that merged clinical semantic and radiomics features. Clinical 
features with a p-value <0.05 in the univariate analyses were included 
in the multivariate logistic regression to screen for clinical risk factors 
and establish clinical models. Ultimately, a comprehensive model 
integrating clinical risk factors and the best radiomic features was 
constructed, and a nomogram was developed. An overview of the 
clinical and radiomic feature analyses is provided in Figure 2.

The Rad-score signature was generated using a Random Forest 
(RF) classifier to combine the radiomics features into a single 
signature. The RF classifier was trained using the filtered radiomics 
features and the corresponding patient outcomes (high or low Ki-67 
expression). The resulting Rad-score signature was then used as an 
input feature in the nomogram model.

2.7 Statistical analysis

All statistical analyses were conducted using Python (version 
3.7.6) and the R (version 4.3.1) statistical software. The 
Kolmogorov–Smirnov test was used to assess the normality of 

continuous variables. Student’s t-test was used to compare normally 
distributed continuous variables, the Mann–Whitney U test was 
used to compare non-normally distributed continuous variables, 
and the chi-square test was used to compare categorical variables. 
The R packages used in this study included “glmnet” (for LASSO 
regression), “rms” (for logistic regression analysis and calibration 
curves), “rmda” (for decision curve analysis [DCA]), and 
“PredictABEL” (for calculating the net reclassification improvement 
[NRI] and integrated discrimination improvement [IDI]). Receiver 
operating characteristic (ROC) analysis was conducted using 
MedCalc, and the DeLong test was used to compare the differences 
in the area under the ROC curve (AUC) between models. All tests 
were two-tailed, and a p < 0.05 was considered statistically  
significant.

3 Results

3.1 Patient characteristics and clinical 
model construction

The clinical and radiological characteristics of the enrolled 
patients are summarized in Table 1. The training set comprised 136 
patients and the validation set comprised 60 patients. In both the 
training and validation sets, the sex distribution, histories of chronic 
conditions (e.g., malignancy, diabetes, and hypertension), and 
laboratory research indices did not vary substantially between the 
high and low Ki-67 expression groups. However, in both cohorts, 
patients with peritumoral edema and those with heterogeneous 
enhancement were significantly more common in the high Ki-67 
expression group (all p < 0.05).

FIGURE 2

Study workflow.
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TABLE 1 The clinical and radiological characteristics of the enrolled patients.

Characteristic Internal training set p value Internal validation set p value External validation set p value

Ki-67 < 5% 
(n = 93)

Ki-67 ≥ 5% 
(n = 43)

Ki-67 < 5% 
(n = 41)

Ki-67 ≥ 5% 
(n = 19)

Ki-67 < 5% 
(n = 57)

Ki-67 ≥ 5% 
(n = 35)

Age (year, mean ± SD) 55.30 ± 9.24 60.14 ± 10.64 0.008 52.44 ± 8.69 58.79 ± 13.44 0.032 59.18 ± 9.10 57.77 ± 8.75 0.468

Gender 0.130 0.839 0.170

  Male 21 (22.6) 15 (34.9) 14 (34.1) 7 (36.8) 15 (26.3) 14 (40.0)

  Female 72 (77.4) 28 (65.1) 27 (65.9) 12 (63.2) 42 (73.7) 21 (60.0)

History of Headache 0.566 0.872 0.597

  Negative 58 (62.4) 29 (67.4) 25 (61.0) 12 (63.2) 42 (73.7) 24 (68.6)

  Positive 35 (37.6) 14 (32.6) 16 (39.0) 7 (36.8) 15 (26.3) 11 (31.4)

History of epilepsy 0.243 0.663 0.864

  Negative 83 (89.2) 41 (95.3) 35 (85.4) 17 (89.5) 55 (96.5) 34 (97.1)

  Positive 10 (10.8) 2 (4.7) 6 (14.6) 2 (10.5) 2 (3.5) 1 (2.9)

History of malignancy 0.530 0.492 0.615

  Negative 86 (92.5) 41 (95.3) 40 (97.6) 19 (100.0) 55 (96.5) 33 (94.3)

  Positive 7 (7.5) 2 (4.7) 1 (2.4) 0 (0.0) 2 (3.5) 2 (5.7)

History of diabetes 0.511 0.558 0.255

  Negative 89 (95.7) 40 (93.0) 37 (90.2) 18 (94.7) 53 (93.0) 30 (85.7)

  Positive 4 (4.3) 3 (7.0) 4 (9.8) 1 (5.3) 4 (7.0) 5 (14.3)

History of hypertension 0.263 0.303 0.710

  Negative 65 (69.9) 34 (79.1) 27 (65.9) 15 (78.9) 38 (66.7) 22 (62.9)

  Positive 28 (30.1) 9 (20.9) 14 (34.1) 4 (21.1) 19 (33.3) 13 (37.1)

History of allergic 0.164 0.139 0.864

  Negative 91 (97.8) 40 (93.0) 41 (100.0) 18 (94.7) 55 (96.5) 34 (97.1)

  Positive 2 (2.2) 3 (7.0) 0 (0.0) 1 (5.3) 2 (3.5) 1 (2.9)

Alcohol abuse 0.859 0.079 0.466

  Negative 88 (94.6) 41 (95.3) 35 (85.4) 19 (100.0) 53 (93.0) 31 (88.6)

  Positive 5 (5.4) 2 (4.7) 6 (14.6) 0 (0.0) 4 (7.0) 4 (11.4)

Cigarette addict 0.383 0.150 0.716

  Negative 81 (87.1) 35 (81.4) 33 (80.5) 18 (94.7) 32 (56.1) 21 (60.0)

  Positive 12 (12.9) 8 (18.6) 8 (19.5) 1 (5.3) 25 (43.9) 14 (40.0)

(Continued)
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TABLE 1 (Continued)

Characteristic Internal training set p value Internal validation set p value External validation set p value

Ki-67 < 5% 
(n = 93)

Ki-67 ≥ 5% 
(n = 43)

Ki-67 < 5% 
(n = 41)

Ki-67 ≥ 5% 
(n = 19)

Ki-67 < 5% 
(n = 57)

Ki-67 ≥ 5% 
(n = 35)

Tumor morphology 0.030 0.432 0.636

  Regular 71 (76.3) 25 (58.1) 28 (68.3) 11 (57.9) 37 (64.9) 21 (60.0)

  Irregular 22 (23.7) 18 (41.9) 13 (31.7) 8 (42.1) 20 (35.1) 14 (40.0)

Peritumoral edema 0.001 0.017 0.002

  Negative 62 (66.7) 19 (44.2) 32 (78.0) 9 (47.4) 45 (78.9) 16 (45.7)

  Positive 31 (33.3) 24 (55.8) 9 (22.0) 10 (52.6) 12 (21.1) 19 (54.3)

Necrosis 0.012 0.498 0.299

  Negative 87 (93.5) 34 (79.1) 37 (90.2) 16 (84.2) 34 (59.6) 17 (48.6)

  Positive 6 (6.5) 9 (20.9) 4 (9.8) 3 (15.8) 23 (40.4) 18 (51.4)

Enhancement 0.001 <0.001 0.001

  Uniform 72 (77.4) 21 (48.8) 32 (78.0) 5 (26.3) 48 (84.2) 18 (51.4)

  Heterogeneous 21 (22.6) 22 (51.2) 9 (22.0) 14 (73.7) 9 (15.8) 17 (48.6)

Tumor location 0.504 0.784 0.546

  Convexity 55 (59.1) 29 (67.4) 28 (68.3) 13 (68.4) 37 (64.9) 26 (74.3)

  Skull base 37 (39.8) 13 (30.2) 12 (29.3) 6 (31.6) 9 (15.8) 8 (22.9)

  Ventricle 1 (1.1) 1 (2.3) 1 (2.4) 0 (0.0) 1 (1.8) 1 (2.9)

Leucocyte count 6.49 ± 2.62 6.42 ± 3.37 0.891 7.39 ± 3.46 7.78 ± 4.15 0.709 8.172.67 7.92 ± 4.21 0.468

Neutrophil count 4.16 ± 2.60 4.25 ± 3.35 0.855 5.15 ± 3.40 5.58 ± 3.92 0.669 4.85 ± 2.41 4.52 ± 4.34 0.641

Lymphocyte count 1.76 ± 0.58 1.61 ± 0.53 0.168 1.59 ± 0.48 1.60 ± 0.55 0.976 1.61 ± 0.49 1.56 ± 0.48 0.581

Monocyte count 0.40 ± 0.17 0.37 ± 0.15 0.356 0.50 ± 0.27 0.46 ± 0.23 0.537 0.44 ± 0.22 0.43 ± 0.14 0.733

Plasma fibrinogen 2.91 ± 0.83 3.07 ± 0.84 0.320 3.47 ± 0.93 3.39 ± 0.75 0.748 3.28 ± 1.01 3.16 ± 0.91 0.544

Serum-albumin 40.66 ± 3.94 38.92 ± 3.48 0.014 40.44 ± 3.45 39.70 ± 3.93 0.462 35.98 ± 9.10 57.77 ± 8.75 0.067

P represents the difference in each clinicopathological variable between the high and low Ki-67 expression groups. The chi-square test was used to compare the difference in categorical variables (all variables except age), while a Student’s t-test was used to compare the 
difference in age.
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16 clinical features and 5 radiological features were utilized to 
construct the clinical model. Among the clinical parameters, 
peritumoral edema (odds ratio [OR] = 3.733, 95% confidence interval 
[CI] = 1.744–7.991, p = 0.001) and heterogeneous enhancement 
(OR = 3.592, 95% CI = 11.662–7.762, p = 0.001) were identified as 
significant predictors of high Ki-67 expression (Table 2). These results 
suggested that patients presenting with these radiological features 
were more likely to have a higher Ki-67 index.

3.2 Model construction

The ROC curves for the tumoral and peritumoral radiomics 
models are shown in Figure 3, illustrating the diagnostic performance 
of the model in distinguishing patients with high and low Ki-67 
expression. Multivariate logistic analysis showed that peritumoral 
edema, heterogeneous enhancement, and 8 mm-based radiomics 
signature were independent predictors of high Ki-67 expression. These 
predictors were incorporated into a comprehensive model that merged 
clinical semantic and radiomics features. The radiomics signature was 
derived from the combined-8 mm (the whole tumor plus 8 mm 
peritumoral area) model, which demonstrated superior performance 
compared to other peritumoral widths (2, 4, 6, 10 mm). Then, these 
independent predictors were incorporated into a model and presented 
as a nomogram. The calibration curves and DCA for the diagnostic 
nomogram are shown in Figure 4. These analyses thoroughly assessed 
the model’s predictive performance and diagnostic accuracy.

3.3 Comparison of performance among 
VOIs

In total, 1,688 radiomic features were extracted from each tumor 
and its surrounding tissues. The VOIs included intratumoral and 
peritumoral VOIs expanding 2, 4, 6, 8, and 10 mm from the tumor 
outline and their combinations. The ROC curve was used to evaluate 
the sensitivity and specificity of the nomogram (Figure 4). Among the 
radiomic-based predictive models for Ki-67 expression, the one based 
on combined-8 mm radiomic features demonstrated superior 
diagnostic performance (Tables 3, 4). This model was derived from 
features selected using LASSO and classified using a random forest 
algorithm (Figure 5). In the training set, its AUC, accuracy, sensitivity, 
and specificity for high Ki-67 expression were 0.883, 77.05, 90.7, and 
72.04%, respectively. However, they were generally lower in the 
validation set (AUC = 0.820, accuracy = 80.73%, sensitivity = 63.16%, 
and specificity = 90.68%). After extensive analysis, combined-8 mm 
was determined to be  the most predictive radiomic model, 
demonstrating its potential for clinical application in diagnosing  
meningiomas.

3.4 The diagnostic performance of the 
prediction models

In the ROC analysis, the radiomics-based model outperformed 
the clinical parameter-based model for predicting Ki-67 expression in 

TABLE 2 Univariate and multivariate analyses for predicting Ki-67 expression.

Features Univariate logistic p Multivariate logistic p

OR (95% CI) OR (95% CI)

Age 1.052 (1.012–1.094) 0.010

Gender 1.837 (0.831–4.061) 0.133

History of Headache 0.800 (0.373–1.717) 0.567

History of epilepsy 0.405 (0.085–1.934) 0.257

History of malignancy 0.599 (0.119–3.013) 0.534

History of diabetes 1.669 (0.357–7.806) 0.515

History of hypertension 0.615 (0.261–1.449) 0.266

History of allergic 3.412 (0.549–21.219) 0.188

Alcohol abuse 0.858 (0.160–4.612) 0.859

Cigarette addict 1.543 (0.580–4.105) 0.385

Tumor morphology 2.324 (1.074–5.028) 0.032

Peritumoral edema 3.733 (1.744–7.991) 0.001 2.943 (1.329–6.516) 0.008

Necrosis 3.838 (1.269–11.605) 0.017

Enhancement 3.592 (11.662–7.762) 0.001 2.722 (1.211–6.120) 0.015

Tumor location 0.765 (0.374–1.562) 0.462

Leucocyte count 0.991 (0.871–1.127) 0.890

Neutrophil count 1.012 (0.893–1.147) 0.854

Lymphocyte count 0.626 (0.321–1.220) 0.169

Monocyte count 0.312 (0.026–3.714) 0.357

Plasma fibrinogen 1.243 (0.810–1.907) 0.320

Serum-albumin 0.885 (0.800–0.980) 0.018

OR, odds ratio; CI, Confidence interval.
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both the training and validation sets. The clinical-radiomic model 
merged clinical predictors (peritumoral edema, heterogeneous 
enhancement) with the combined-8 mm radiomics features. Optimal 

predictive accuracy was achieved when the clinical and radiomic 
models were integrated, resulting in a clinical-radiomic model. In the 
training set, the integrated model had an AUC of 0.904, accuracy of 

FIGURE 3

The ROC curves for the tumoral and peritumoral radiomics model. ROC curves in the (A) internal training set, (B) internal validation set, and (C) external 
validation set.

FIGURE 4

The ROC, calibration, and DCA curves. ROC curves in the (A) internal training set, (B) internal validation set, and (C) the external validation set. 
Calibration curves in the (D) internal training set, (E) internal validation set, and (F) external validation set. The prediction results were consistent with 
the diagonal line, indicating the accurate prediction results. The DCA curves for the diagnostic nomogram in the (G) internal training set, (H) internal 
validation set, and (I) external validation set.
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TABLE 3 Predictive model performance for Ki-67 expression in the intratumoral and peritumoral VOI.

Model Training set Internal validation set External validation set

AUC (95% CI) SEN (%) SPE (%) ACC (%) AUC (95% CI) SEN (%) SPE (%) ACC (%) AUC (95% CI) SEN (%) SPE (%) ACC (%)

Whole-Tumor 0.809 (0.761–0.857) 88.37 61.29 67.87 0.756 (0.700–0.812) 63.16 85.37 76.82 0.735 (0.673–0.797) 74.38 75.21 74.89

BTI-2 mm 0.768 (0.716–0.820) 97.67 49.46 58.61 0.727 (0.665–0.789) 68.42 75.61 73.17 0.637 (0.559–0.715) 77.14 59.65 65.28

BTI-4 mm 0.817 (0.771–0.863) 93.02 62.37 69.62 0.763 (0.711–0.815) 68.42 80.49 76.23 0.750 (0.694–0.806) 78.49 75.44 76.57

BTI-6 mm 0.785 (0.735–0.835) 67.44 81.87 76.68 0.749 (0.693–0.805) 57.89 87.80 75.45 0.654 (0.584–0.724) 71.43 66.67 68.40

BTI-8 mm 0.843 (0.801–0.885) 93.03 67.74 74.11 0.787 (0.739–0.835) 73.68 78.05 76.61 0.707 (0.649–0.765) 79.98 63.16 68.65

BTI-10 mm 0.756 (0.700–0.812) 67.44 74.19 71.91 0.675 (0.605–0.745) 94.74 43.90 52.89 0.673 (0.607–0.739) 65.71 75.44 71.42

AUC, area under the curve.

TABLE 4 Predictive model performance of the clinical, combined VOI, and clinical-radiomic models.

Model Training set Internal validation set External validation set

AUC (95% CI) SEN 
(%)

SPE 
(%)

ACC (%) AUC (95% CI) SEN 
(%)

SPE 
(%)

ACC (%) AUC (95% CI) SEN 
(%)

SPE 
(%)

ACC (%)

Clinical model 0.714 (0.648–0.780) 72.09 65.59 67.51 0.777 (0.715–0.839) 84.21 73.17 76.34 0.620 (0.535–0.705) 60.02 64.91 62.96

Combine-2 mm 0.809 (0.761–0.857) 74.42 76.34 75.72 0.779 (0.719–0.839) 73.68 80.49 78.20 0.682 (0.606–0.758) 85.71 52.63 61.69

Combine-4 mm 0.875 (0.839–0.911) 88.37 70.97 75.68 0.770 (0.706–0.834) 63.17 87.80 78.15 0.751 (0.689–0.813) 82.86 61.40 68.11

Combine-6 mm 0.806 (0.754–0.858) 79.07 75.27 76.43 0.792 (0.734–0.850) 68.42 85.37 79.16 0.701 (0.629–0.773) 74.29 66.67 69.38

Combine-8 mm 0.883 (0.851–0.915) 90.70 72.04 77.05 0.820 (0.770–0.870) 63.16 92.68 80.73 0.786 (0.734–0.838) 82.86 75.16 77.91

Combine-10 mm 0.830 (0.772–0.888) 88.37 68.82 74.00 0.743 (0.671–0.815) 73.68 75.61 74.99 0.766 (0.700–0.832) 88.54 63.16 70.89

Nomogram 0.904 (0.876–0.932) 83.72 84.95 84.56 0.877 (0.843–0.911) 84.21 82.93 83.33 0.837 (0.793–0.881) 88.57 71.31 77.02

AUC, area under the curve.
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84.56%, sensitivity of 83.72%, and specificity of 84.95%. In the 
validation set, its performance was slightly lower but still robust, with 
an AUC of 0.877, accuracy of 83.33%, sensitivity of 84.21%, and 
specificity of 82.93%. Furthermore, in the external validation set, it 
maintained a high level of performance, with an AUC of 0.837, 
accuracy of 77.02%, sensitivity of 88.57%, and specificity of 71.31% 
(Table 4). These results indicate that the diagnostic model has better 
discrimination ability than the single radiomics-based and clinical 
parameter-based models. Additionally, the calibration curve for the 
nomogram, used for preoperative prediction of high Ki-67 expression 
in patients with meningioma, was highly concordant with actual 
outcomes, indicating that this prediction model has good reliability 
for preoperatively assessing Ki-67 expression.

3.5 Evaluation of the diagnostic nomogram 
through DCA

DCA was used to evaluate the diagnostic performance of the 
diagnostic nomogram and each single predictor model (Figure 6). The 
decision curve indicates the net benefit of patients when the 
intervention is performed under various threshold probabilities. The 
net benefit of the diagnostic nomogram model was the highest when 
the prediction model threshold probabilities were 0.21 ~ 0.66 (training 
set) and 0.58 ~ 1.09 (validation set), followed by the single radiomics-
based model. Notably, the diagnostic nomogram model consistently 
provided a greater net benefit than the single predictor models, 
including the radiomics-based model. The example flowchart of 
prediction is shown in Supplementary Figure  1. The DCA and 
flowchart provided insights into the diagnostic performance of the 
prediction model.

4 Discussion

Our study revealed that meningioma with an elevated Ki-67 
index was associated with an increased risk of peritumoral edema 

and heterogeneous enhancement, which are recognized indicators 
of brain invasion. We also demonstrated that VOI radiomics models 
based on CE-T1WI images, including intra- and peri-tumoral 
regions, can improve the accuracy in predicting Ki-67 expression 
levels in meningiomas. Then, we  assessed the predictive 
performance of radiomics models with different VOI ranges for the 
peritumoral region. Among the examined radiomics feature ranges, 
the 8 mm was identified as the optimal peritumoral region. Then, 
we developed a combined clinical-radiomics model, integrating 
radiomics features from the intratumoral and 8 mm peritumoral 
regions. This integrated model demonstrated superior predictive 
efficacy. Ultimately, we developed an integrated clinico-radiomic 
model incorporating peritumoral edema, enhancement pattern, 
and tumor-peritumoral 8 mm radiomic features. This integrated 
model outperformed the individual radiomic and clinical models 
in terms of AUC, accuracy, and predictive efficacy for Ki-67 
expression. The DCA and flowchart provide valuable insights into 
the diagnostic performance of the prediction model, enabling 
clinicians to make well-informed decisions regarding patient 
management strategies.

The Ki-67 expression is considered an indicator of the biological 
behavior of meningioma (18). Preoperative evaluation of Ki-67 
expression can provide valuable supplementary information for 
clinical decision-making (19, 20). Systematic reviews have 
underscored the significance of accurately predicting Ki-67 status 
using radiological methods. For instance, a systematic review by 
Helal et  al. (21) synthesized evidence on the accuracy and 
prognostic value of radiological predictions of Ki-67  in 
meningiomas, highlighting their potential to inform treatment 
strategies. Similarly, Broomand Lomer et al. (16) conducted a meta-
analysis specifically on MRI-derived radiomics models, 
demonstrating their effectiveness in predicting Ki-67 index status. 
A higher Ki-67 index is generally associated with a more aggressive 
tumor phenotype and potentially poorer outcomes. Therefore, these 
findings suggest that patients presenting with these radiological 
features may require more intensive monitoring and treatment. 
However, since the Ki-67 assessment is susceptible to tumor 

FIGURE 5

LASSO regression was used for feature selection. (A) LASSO coefficient selection: The optimal value of λ and the corresponding coefficients were 
identified using the coefficient plot. (B) LASSO variable trajectories: The feature importance plot was used to identify the most important features and 
the optimal value of λ.

https://doi.org/10.3389/fneur.2025.1554539
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Luo et al. 10.3389/fneur.2025.1554539

Frontiers in Neurology 11 frontiersin.org

heterogeneity, it is essential to evaluate the entire specimen, not 
only the core biopsy (22, 23).

MRI-based radiomics models have been reported to predict 
Ki-67 expression levels in meningiomas. Khanna et al. (12) predicted 
high Ki-67 expression in World Health Organization grade 
I meningioma using features extracted from multiple MRI sequences, 
with an AUC of 0.84 in their testing set. In Zhao’s study (11), the AUC 
for predicting the Ki-67 index in meningiomas was 0.837  in the 
internal validation set and 0.700 in the external validation set. These 
studies suggest that radiomics feature-based models can effectively 
predict both the grade of meningioma and the Ki-67 index. Both 
studies were based on intratumoral models. Recent advancements in 
MRI-based radiomics has demonstrated potential in preoperative 
prediction of meningioma Ki-67 expression. Li et al. (24) created 
machine learning models using multiparametric MRI to evaluate 
meningioma malignancy by WHO grading and prediction of Ki-67 
index with AUCs of 0.92 and 0.87 in multicenter validation. Their 
study recognized the complementarity of clinical features and 
radiomics in stratification of tumor aggressiveness. Based on this, 
Duan et  al. (25) developed a deep transfer learning radiomics 
nomogram that integrates multiparametric MRI features to make 
predictions of Ki-67 proliferation status with an AUC of 0.84  in 
external validation and highlights the technical advantages of 
combining domain-adaptive deep learning with traditional radiomics. 
Ouyang et  al. (26) further advanced this field by constructing a 
contrast-enhanced MRI radiomics nomogram for Ki-67 prediction 
in two independent centers (AUC: 0.86), i.e., determining the clinical 
utility of texture features of arterial and venous phase images. While 
these studies together emphasize the diagnostic value of MRI 
radiomics in meningioma proliferation assessment, they are primarily 

founded on single-region tumor analysis. Previous research has 
indicated that peritumoral radiomics features offer greater insight 
into tumor heterogeneity. Our research builds upon previous studies 
by incorporating both intratumoral and peritumoral radiomics 
features into our predictive model. By integrating radiomics 
characteristics from the tumor core and its periphery, we  aim to 
provide a comprehensive and encompassing assessment of the 
meningioma grade and Ki-67 index.

However, the peritumoral range for the VOI used in past 
radiological studies remains controversial. One study extracted 
imaging characteristics from various interfaces, including tumors and 
the brain (at distances of 1, 2, 3, 4, and 5 mm), establishing models 
that demonstrated superior generalization performance compared to 
current methods (27). Another study analyzed MRI radiomic features 
from intratumoral and peritumoral regions (at 5, 10, 15, and 20 mm 
distances) in a cohort of 92 patients with glioma. It found that models 
based on features from the 10 and 20 mm ranges were more effective 
at predicting Ki-67 levels and the expression of tumor protein p53 
(TP53) (28). A further study involving 719 patients with meningioma 
revealed that including 4 mm peritumoral MRI radiomic features in 
the intratumoral model significantly improved diagnostic performance 
for meningioma invasion (29).

Evidently, a consistent criterion for the peritumoral boundary 
remains ambiguous. Therefore, we developed multiple VOI radiomics 
models with different peritumoral ranges to explore the distinct 
regions of highly aggressive meningioma. Considering that the actual 
tumor boundary extends beyond the image, we  established five 
distinct peritumoral VOI ranges, extending the intratumoral VOI by 
2, 4, 6, 8, and 10 mm. The VOI delineation methods for tumor and 
peritumoral regions with variable margins are illustrated in 

FIGURE 6

Diagnostic nomogram. The nomogram was constructed from peritumoral edema and contrast enhancement.
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Supplementary Figure 2. Our results showed that the AUC for the 
8 mm peritumoral region was 0.843 in the training set and 0.787 in 
the validation set. This region was identified as the most effective VOI, 
designating the 8 mm peritumoral area as the optimal selection. The 
radiomics model based on the 8 mm VOI encompassed the most 
predictive radiomics features.

Combining radiomics features from various categories resulted in 
the most robust predictive performance. While interpreting the 
complex relationship between pathophysiological processes and 
tumor structural features is challenging, tumors with greater structural 
heterogeneity are often more aggressive. Increased heterogeneity in 
meningiomas indicates a higher probability of infiltration into 
adjacent tissues. Greater heterogeneity is manifested in MRI as 
increased grayscale inhomogeneity and elevated image complexity. 
These features may indicate aggressive tumor behavior, such as 
breaching the tumor capsule and invading surrounding non-neoplastic 
tissues, which leads to increased intra- and peri-tumoral heterogeneity 
and reflects the underlying oncobiological and heterogeneity 
characteristics (30).

Integrating intratumoral and peritumoral radiological features 
offers superior advantages over relying exclusively on single-tumor 
radiomics, emphasizing the importance of combining intratumoral 
and peritumoral characteristics to enhance clinical insights (31). 
Further analysis revealed that the combined intratumoral and 
peritumoral 8 mm model achieved an AUC of 0.883  in the 
validation set, outperforming both the intratumoral model 
(AUC = 0.809) and the peritumoral 8 mm model (AUC = 0.843). 
This finding is consistent with Beig et al. (32), who demonstrated 
that lung adenocarcinomas and granulomas could be  more 
effectively differentiated by combining radiomics features from 
within and around pulmonary nodules. With an AUC of 0.80, this 
integrated approach outperformed the single internal nodule 
model (AUC = 0.75), further emphasizing the importance of the 
peritumoral microenvironment in oncological research. These 
results highlight the need to consider the entire tumor 
environment for more accurate diagnostic and prognostic  
evaluations.

Regarding clinical factors, previous studies have demonstrated 
that characteristics such as tumor volume, tumor margin, and tumor-
brain interface correlate with Ki-67 expression in meningioma (33), 
which is consistent with our findings. Pathological grade is a crucial 
prognostic factor in meningiomas (34), and there is a close correlation 
between grade and Ki-67 expression. High-grade pathology implies 
higher recurrence and worse prognosis. Existing studies have 
confirmed a significant correlation between Ki-67 expression and the 
invasion of pial/cortical and arachnoidal structures (35), and the Ki-67 
proliferation index also serves as a predictor of recurrence timing (36). 
Our clinical model demonstrated only moderate predictive 
performance, suggesting that basic clinicopathological factors alone 
may not be sufficient.

Meticulous segmentation enables a thorough examination of the 
heterogeneity across multiple radiographic VOIs. Furthermore, there 
is an increased focus on the predictive value of Ki-67 expression in 
meningiomas, recognizing its established role as a proliferation 
marker closely associated with tumor aggressiveness and recurrence 
potential. By targeting this critical biomarker, the goal is not only 
identifying the optimal peritumoral VOI but also refining risk 
stratification strategies for patients. This dual focus highlights the 

contribution of our study in advancing both the scientific 
understanding and clinical management of meningioma.

Nonetheless, our study had several limitations. Firstly, its 
retrospective design and small sample size limited its power, highlighting 
the need for prospective studies with large sample sizes to verify our 
findings. Secondly, specific indicators of the tumor microenvironment, 
such as radiological features of immune cells, were not included in the 
developed model. Their inclusion could have provided a more 
comprehensive understanding of the relationship between radiological 
features and the peritumoral microenvironment. One of the major 
limitations of our research is the inhomogeneity of WHO grade data 
throughout the cohort. WHO grading data were not consistently 
available for all cases in our dataset. The WHO grading system represents 
a valuable pathological parameter with a well-documented association 
with Ki-67 expression, and its omission can restrict the generalizability 
and interpretability of our results. Future research including WHO grade 
data will be necessary for a more thorough assessment of the association 
between imaging characteristics and tumor biology.

5 Conclusion

In summary, this study developed innovative clinical-radiomic 
models to predict Ki-67 expression in meningiomas before surgery. 
By integrating radiomic features with clinical data, these models offer 
a novel non-invasive strategy for assessing tumor status, potentially 
enhancing the accuracy of preoperative evaluations and aiding in 
developing personalized treatment plans for patients 
with meningioma.
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