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Although electroencephalogram (EEG) is widely used to monitor brain activity in 
epilepsy, limitations related to the accessibility and reproducibility of measurements 
may restrict its everyday use. Conversely, wearable methods, easily accessible, 
such as electrocardiogram (ECG), represent an alternative for indirectly monitoring 
brain activity through cardiac cycles. A computational model was developed based 
on statistical cycles and neural networks to measure changes in the morphology 
of ECG waves. The advantage of this approach over heart rate variability analysis 
is the detection of brain activity before changes in heart rate occur. In addition, 
using variance, skewness, and kurtosis centered on the median allowed us to 
achieve 100% sensitivity, specificity, and accuracy in our analyses, even using less 
complex algorithms, due to selecting these optimal characteristics. These findings 
indicate that ECG is a viable, affordable, and effective alternative for estimating 
epileptic brain activity. This approach’s application of machine learning highlights 
its potential for non-invasive epilepsy monitoring, providing a cost-effective and 
accessible solution, especially for vulnerable populations.
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1 Background

Epilepsy is a neurological disorder that affects approximately 50 million individuals (1) and 
is characterized by recurrent seizures, manifested as sudden and brief episodes of involuntary 
movement due to excessive or synchronous neuronal electrical discharges (2). Most epileptic 
seizures are chronic and effectively controlled with drug therapy (3, 4), although 25% of patients 
become resistant to the use of anticonvulsants (5). Brain activity in epilepsy is generally 
classified into four states according to electroencephalogram (EEG) signals: preictal, ictal, 
interictal, and postictal (6). Epilepsy presents a complex clinical practice, with a significant 
impact on the quality of life of patients (7). Seizures of sudden onset carry risks such as physical 
trauma, loss of consciousness, status epilepticus, and sudden death, in addition to contributing 
to psychological stress and social isolation (8). The cumulative probability of injury in epileptic 
patients was significantly higher (49% at 12 months and 86% at 24 months) compared to 
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controls (39 and 75%; p < 0.0001). However, because 30% of illnesses 
and 24% of accidents were associated with seizures, excluding these 
events revealed similar odds of illness and accidents between the two 
groups (9). The analysis among epileptic patients reveals that 
nonadherence to treatment was associated with a three-fold higher risk 
of mortality compared to adherence, as well as a higher incidence of 
hospitalizations and traffic accidents (10).

Despite technological advances, the diagnosis of epilepsy remains 
essentially clinical, based on the semiological analysis of the signs, 
symptoms, and the patient’s history (11). However, patients’ self-
reported seizures are unreliable (12, 13), and errors in counting can 
lead to inappropriate prescription of anticonvulsant medications, 
either in insufficient or excessive doses (14). The accurate and 
affordable detection of epileptic seizures still faces significant 
challenges, mainly due to the reliance on tests such as EEG, which 
requires specialized training, longer execution time (15) and remains 
largely inaccessible in many regions of the world, particularly cities 
with lack of specialized services (16).

The first studies on predicting seizures through EEG records were 
conducted by Rogowski et al. in 1981 (17). In the late 1990s, Novak et al. 
(18) used retrospective data, pioneering a method based on time-
frequency mapping of R-R interval and autonomous parasympathetic 
activation to predict seizures several minutes in advance. With the 
development of research, resource engineering techniques detect 
seizures with high sensitivity results and low false positive tests but 
require many manual features that hinder the diagnostic process and 
practicality (19). Other seizure prediction model options have combined 
scalp and intracranial EEG, playing a transformative role in the patient’s 
quality of life, especially in resistant groups, as they allow patients and 
caregivers to carry out preventive seizure control actions or medication 
administration (20). Applying machine learning (ML) algorithms to 
predict and detect seizures has gained significant space due to the 
advantages cited (21). Techniques such as Support Vector Machines 
(SVMs) and Artificial Neural Networks (ANNs) have been promising 
in this domain, with several studies leveraging EEG data to classify and 
predict seizure events (22–24). EEG has long been the gold standard for 
monitoring brain activity in epilepsy but is limited by its need for 
specialized equipment and trained staff in a clinical setting (25). Given 
the limitations, the potential use of electrocardiogram (ECG) signals as 
an alternative or complementary approach to seizure prediction has 
been explored (26). Unlike EEG, ECG is widely accessible, non-invasive, 
and can be  easily integrated into wearable devices, offering a more 
practical solution for continuous monitoring (27).

Several studies have reported autonomic changes before the onset 
of a seizure, which are usually reflected in heart rate variability (HRV) 
parameters, becoming a predictive biomarker of ictal events (28). In 
temporal lobe epilepsy, studies have detected tachycardia minutes 
before a preictal event, while some studies have detected bradycardia, 
illustrating cardiac dysregulation in the face of a seizure (29, 30). By 
analyzing these subtle changes in HRV, studies have been able to 
identify early changes of an impending seizure, allowing for precise 
intervention through single-lead ECG (31, 32).

The time between consecutive ECG heartbeats—the interval 
between two R-wave (RRI) peaks—is particularly significant in 
this context, as variations in RRI indicate changes in autonomic 
function, which are closely linked to brain activity (28). Machine 
learning models utilizing RRI data have shown promising results 
in distinguishing between preictal and interictal states, thereby 

increasing the predictive accuracy of seizure events (25). This 
capability is crucial for developing practical tools that alert 
patients and caregivers to an impending seizure, enabling 
preventative measures to mitigate injury and improve patient 
safety (5, 33, 34).

Although there are still challenges to its implementation (33, 35), 
the integration of ECG monitoring into wearable technologies, such 
as smartwatches and smartphones, represents a significant advance in 
the management of epilepsy due to greater acceptance by patients (36). 
Remote measurement technologies (RMTs) equipped with sensors 
capable of continuously tracking vital signs offer a convenient and 
scalable solution for real-time health monitoring (35). These devices 
can collect large amounts of data that, when analyzed using advanced 
machine learning techniques, can provide personalized insights into 
a patient’s condition (37). For individuals with epilepsy, this can mean 
more independence and quality of life (36).

The current study is grounded in the hypothesis of a heart-brain 
connection, suggesting that subclinical epileptic alterations can 
influence the cardiac cycle. We aim to explore how accurately ECG 
signals can estimate such brain epileptic abnormalities, and 
we hypothesize that ECG could serve as an affordable alternative for 
assessing epileptic brain activity.

2 Methods

ECG signals were obtained from the MIT-BIH Normal Sinus 
Rhythm (NSR) and MIT-BIH Epilepsy Databases. Each ECG signal 
was segmented into one-second statistical cycles, with characteristics 
set to 400 ms before and 600 ms after the R wave. The proposed 
features were compared with the usual features based on the mean for 
different numbers of neurons in the hidden multi-layer perceptron 
(MLP) layer. The results were evaluated for sensitivity, specificity, and 
accuracy based on the algorithm’s performance at the testing stage. 
The proposed methodology is illustrated in Figure 1.

The MIT–BIH NSR database contains 18 ECG recordings lasting 
approximately 24 h. The individuals in this database did not have 
significant arrhythmias: 5 men, aged between 26 and 45 years, and 13 
women, aged between 20 and 50 years. Postictal Heart Rate 
Oscillations in Partial Epilepsy are based on data analysis of 11 partial 
seizures recorded in five female patients during ECG monitoring. 
Patients were aged 31 to 48 years, had no clinical evidence of cardiac 
disease, and had partial seizures with or without secondary 
generalization of frontal or temporal foci.

2.1 Preprocessing

At this stage of the study, we employed the Pan and Tompkins 
algorithm for QRS complex detection. This algorithm was selected due 
to its low computational cost and its high accuracy—achieving a 
99.3% success rate in detecting QRS complexes in the MIT-BIH 
Arrhythmia Database (38, 39). The algorithm includes several 
processing steps: a bandpass filter (comprising low-pass and high-pass 
filters), a derivative operation, a squaring function, a moving window 
integrator, and a threshold-based decision rule. The primary objective 
of this preprocessing step is to minimize the impact of various types 
of noise and artifacts present in the ECG signal.
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To ensure signal clarity, we removed several types of noise, including:

 • Power line interference at 60 Hz and its harmonics;
 • Baseline wander, a low-frequency noise (0.15–0.3 Hz) caused by 

respiration, which shifts the ECG baseline;
 • Electrode contact noise, resulting from poor contact between the 

electrode and the skin, which can disrupt signal acquisition;
 • Electrode motion artifacts, caused by changes in electrode-skin 

impedance due to movement;
 • Muscle contraction noise, originating from skeletal muscle activity;
 • Electrosurgical interference, generated by other medical 

equipment operating in the 100 Hz to 1 MHz range;
 • Instrumentation noise, produced by the electronic components 

used in ECG acquisition.

To remove these noise components, we followed the methodology 
described in Pan and Tompkins, applying a bandpass filter to 
eliminate both low- and high-frequency noise. Specifically, we used 
a Butterworth filter for this task, which effectively attenuates 
undesired frequency components while preserving the integrity of 
the ECG signal.

The ECG signal was amplitude-normalized, and the sampling 
frequency was set to 256 Hz with a 12-bit resolution over a 10-millivolt 
range. To avoid measurement artifacts, we excluded the initial and final 
segments of each ECG recording, corresponding to 1% of the total signal 
duration. In addition, each ECG signal is defined as:

 ( )= …ECG b1,b2, ,bn  (1)

Where bn is the nth cardiac cycle. Each card cycle is defined by 
bn = {xstart, x2, …, xend}, where x is a heartbeat, xstart, and xend are 
given by xstart = PR − Fsλ, and xend = PR + Fsθ, where PR is the position 
of the R-peak (PR are found in annotation files in MIT-BIH database), Fs 
is the sampling frequency and λ and θ are proportion weights of the 
heartbeat, being λ + θ ≤ 1. xstart and xend are position limits.

2.2 Neural network analyses

Many authors perform hyperparameter tuning on classifiers such as 
Support Vector Machines, Neural Networks, and k-Nearest Neighbors to 
enhance the accuracy rate. Alternatively, using optimal (or best possible) 
features is an alternative to achieve higher accuracy rates. Two feature types 
in the same Neural Network were used to achieve higher accuracy. The first 
group of features will consist of statistics centered on the mean, including 
mean, variance, skew, and kurtosis. The second group of features is an 
adaptation of mean-centric statistics. Unlike classical features that measure 
the distance from each point to the mean of the data, we propose to use the 
distance from each point to the median of the data, and we will refer to this 
distance as the median deviation. Being less sensitive to outliers, the 
median minimizes noise interference, such as power line signals or muscle 
activity. This implies that data centralization becomes more homogeneous, 
resulting in a more concentrated distribution and better data clustering.

2.2.1 Feature extraction
We will use various statistical techniques centered on the mean 

(mean, variance, skewness, and kurtosis). This variation uses statistics 

FIGURE 1

Segmentation of statistical cycles, followed by feature extraction of healthy controls and subjects with epilepsy; two-step feature extraction comprising 
(a) computation of usual statistical features and (b) new statistical features based on the median. Computation values are then used as input data in a 
Multi-Layer Perceptron neural network to classify the statistical cycles between healthy and epilepsy classes.
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that are no longer centered on the mean of the data but on the median. 
We will show that this modification is sufficient to increase the hit rate 
of less complex ANNs.

The new features are based on the median deviation of the 
data, that is, the distance of each data point to the median (η) of 
the set. The new features are Median Variance (σ 2

ç ), Median 
Standard Deviation (σç), Median Skewness (ψ ç), and Median 
Kurtosis (κç), defined by:
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2.3 Classification

We will use a MLP neural network for the classification stage. 
MLP is one of the most popular and widely used architectures in 
machine learning applications.

The MLP consists of at least three layers of neurons: an input layer, one 
or more hidden layers, and an output layer. Each neuron in one layer is 
connected to all neurons in the next layer. Each connection is associated 
with a weight that determines the strength of the connection between 
neurons (40, 41).

MLP is a fully connected neural network, meaning every neuron 
in one layer is connected to every neuron in the next layer. The input 
layer receives the input data, the hidden layer processes the 
information, and the output layer produces the neural network results. 
Regarding the decision-making process, we aim to demonstrate that 
choosing optimal features can be an alternative to optimizing MLP.

Instead of increasing the number of hidden layers, changing 
activation functions, and optimizing MLP parameters, we will use the 
most basic MLP configuration. The MLP used in this work consists of 
an input layer with four inputs, a hidden layer (5, 10, and 100 
neurons), and an output layer for two classes (Healthy and Epilepsy). 
The neural network is trained using the gradient descent training 
algorithm and employs the sigmoid activation function in all layers 
(42). Figure 2 illustrates the classification stage.

2.4 Evaluation metrics

Evaluation metrics are measures used to evaluate the quality of a 
machine-learning model or a specific problem-solving solution. They 

FIGURE 2

Illustration of the classification stage based on MLP configuration.
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evaluate the model’s ability to generalize and generate accurate results 
in test data or a production environment.
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Where TP corresponds to the number of true positives for the 
presence of epileptic seizures, NT the true negatives for the absence of 
seizures, FP for records with seizures classified as absent, and FN for 
positives with absence.

To avoid overfitting, the cross-validation technique that evaluates 
a model’s generalization capacity will be  used. Cross-validation 
partitions the dataset into mutually exclusive subsets and later uses 
some of these subsets to estimate model parameters (training data), 
with the remaining subsets (validation or test data) employed in 
model validation. The K-fold method, with K = 10, was used as a 
cross-validation technique (43).

3 Results

We conducted several experiments to evaluate the proposed 
methodology. To do this, we used statistical cycles of healthy individuals 
and statistical cycles of subjects with epilepsy (Equation 1). The 
experiments were conducted by segmenting the ECG signal into statistical 
cycles with a constant segment of 1 s, with 400 ms before and 600 ms after 
the R wave. In total, 2,000 cardiac cycles were used: 1,000 from healthy 
individuals and 1,000 from individuals with epilepsy. For each cardiac 
cycle, the mean, variance, skewness, and kurtosis were determined, along 
with the characteristics proposed in this study, including median variance 
(Equation 2), median standard deviation (Equation 3), median skewness 
(Equation 4), and median kurtosis (Equation 5). Training and test data 
were partitioned by the patient as follows: approximately 70% of the data 
were allocated for training and 30% for evaluation. We considered 18 
recordings from healthy individuals (5 males and 13 females). Among 
them, three males were assigned to the training set and 2 to the test set. 
For females, nine records were used for training and 4 for testing.

The hyperparameters used in the MLP implementation include 
the number of neurons, which were tested separately with values of 5, 
10, and 100. The learning rate was set to 0.01, following the default 
value of the MLP Classifier. The model was trained for 1,000 epochs, 
using the ReLU activation function (activation = ‘relu’) and the Adam 
optimization algorithm (solver = ‘adam’). For the loss function, log 
loss was used, which is appropriate for classification tasks. The 
stopping criterion was defined as a gradient tolerance of 10−4. 
Regarding the software configurations, the implementation was 
performed in Python 3.x, using libraries such as NumPy for numerical 
computations, Pandas for data manipulation, and Scikit-Learn 
(sklearn) for machine learning models. The primary framework used 
was Scikit-Learn, specifically the MLP Classifier. The hardware 
processor carried out for analysis was an 11th generation Intel Core i3 
with 4 cores at 3 GHz, with 8 GB of RAM. The execution was 

performed exclusively on the CPU, without GPU usage. The operating 
system was Windows 11. Additionally, to increase the robustness of 
the proposed method, we employed 10-fold cross-validation.

In Figure 3, we plot the statistical cycles of healthy individuals and 
subjects with epilepsy to illustrate the segmentation and deformations 
of the statistical cycles.

Two sets of features were used as input to neural networks. The first 
group consists of classic statistical characteristics based on the mean, such 
as variance, skewness, and kurtosis, illustrated in Figure 4a. The second 
group is a proposal of this study, which uses the median of the data as the 
basis for new statistics called Median Variance (Equation 2), Median 
Skewness (Equation 4), and Median Kurtosis (Equation 5). These new 
characteristics are illustrated in Figure 4b.

The characteristics of each healthy cardiac and epilepticus cycle 
were extracted and plotted on a 3D scatter plot in Figure 4.

The MLP was evaluated with the same input and output neuron 
numbers (3 and 2, respectively) to test the method’s generality. We vary 
between 5, 20, and 100 neurons in the middle layer. The results 
regarding sensitivity, specificity, and accuracy metrics (Table 1) are 
shown. In addition, the results underwent cross-validation performed 
in 10 sets, with 70% of the patients for training and 30% for testing.

4 Discussion

The present study used neural networks to investigate the 
relationship between brain and cardiac activity by analyzing statistical 
cycles of ECG signals in individuals with epilepsy and comparing 
them to healthy controls. The results indicated that the ECG has high 
sensitivity and specificity to identify statistical patterns in individuals 
with epilepsy. The epileptic group exhibited more significant variance, 
skewness, and kurtosis, while the healthy controls showed lower 
variance and more excellent uniformity in the statistical cycles. 
Frequency deformations were also observed in the cardiac cycles of 
individuals with epilepsy, related to the increase in heart rate caused 
by the autonomic nervous system and deformations in the amplitude 
of the cycles, which may reflect brain activity.

Specific deformations in the statistical cycles of individuals with 
epilepsy compared to healthy individuals are demonstrated. There is 
evidence of a lower number of deformations and homogeneous overlap, 
with low variation between statistical cycles in the healthy control group 
(Figures 3a,b) compared to individuals with epilepsy (Figures 3c,d). A 
frequency deformation can be  observed in the statistical cycles of 
individuals with epilepsy (Figures  3c,d), which is expected due to 
increased heart rate promoted by the autonomic nervous system. 
Additionally, it is also possible to observe deformations in the amplitude. 
These deformations in the cardiac cycles of individuals with epilepsy can 
be  used to estimate brain activity and present an alternative to 
EEG. Therefore, this study provides evidence of the heart-brain 
relationship as an option to assess and monitor brain activities in 
individuals with epilepsy, justifying the heart-brain relationship.

The findings reinforce the heart-brain relationship as a promising 
tool to assess and monitor brain activity in individuals with epilepsy. 
When comparing the classic characteristics with those proposed in 
this study, a significant difference in the dispersion of the data is 
observed. In Figure 4a, there is a region where the healthy statistical 
and statistical cycles of individuals with epilepsy overlap, making it 
difficult to distinguish between classes. However, this overlapping 
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phenomenon is not observed in Figure  4b, allowing for a clear 
distinction between classes, even for basic MLP configurations. 
Table 1 states that different MLP configurations can be used to classify 
healthy statistical and statistical cycles of individuals with epilepsy.

The table demonstrates that optimal features can be an alternative 
to decrease the number of neurons or hidden layers in a neural 
network. Two crucial aspects of this work deserve to be highlighted. 
In conjunction with neural networks, statistical cycles were employed 
to measure changes in the morphology of ECG waves. One notable 
advantage of this approach, as compared to heart rate variability 
(HRV) analysis, lies in its ability to detect brain activity prior to any 
observable fluctuations in heart rate. This method enables a more 

proactive and precise assessment of cognitive and physiological 
responses, offering deeper insights into the mechanisms that drive 
autonomic regulation. In addition, using variance, skewness, and 
kurtosis centered on the median enabled us to achieve sensitivity of 
97.01%, specificity of 98.01%, and accuracy of 98.01%, in our analyses.

We analyzed the performance of the MLP model by varying the 
number of neurons in the hidden layer (5, 10, and 100). The “Median-
based” method achieved sensitivity of 97.01%, specificity of 98.01%, and 
accuracy of 98.01% across all neuron configurations, with standard 
deviation less than 2%, demonstrating robustness against outliers. In 
contrast, the “Mean-based” method showed sensitivity of 86.03%, 
specificity of 89.02%, and accuracy of 88.02%, with a standard deviation 

FIGURE 3

Segmentation of ECG signals in statistical cycles of healthy individuals and subjects with epilepsy. (a) Statistical cycles of healthy individuals. (b) Distribution 
of statistical cycles of healthy individuals. (c) Statistical cycles of subjects with epilepsy. (d) Distribution of statistical cycles of subjects with epilepsy.

FIGURE 4

Statistical features of cardiac cycles in healthy individuals and cardiac cycles in individuals with epilepsy: (a) Features (Variance, Skewness, and Kurtosis) 
based on the mean of cardiac cycles in healthy individuals and cardiac cycles in individuals with epilepsy. (b) Features (Variance, Skewness, and 
Kurtosis) based on the median of cardiac cycles in healthy controls and cardiac cycles in individuals with epilepsy.
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of approximately 4.04% (Equation 3). As the number of neurons 
increased, the “Mean-based” method performed better, with more 
excellent value stability. Additionally, statistical tests (Levene, Student’s 
t-test, and Mann–Whitney) indicated a statistically significant difference 
(p < 0.05) for MLP with 5, 10 and 100 hidden neurons. Despite this, the 
median-based method is recommended for approximately normal 
distributions due to its robustness. In contrast, the mean-based method 
is preferable for normal distributions due to its lower computational cost.

Median-based features were selected for their robustness against 
outliers, reducing noise interference such as power line signals or muscle 
activity. Figure  4 illustrates this effect, where data clustering is more 
evident when using median-based features (Figure 4b) than mean-based 
features (Figure 4a). Additionally, the median allows the construction of 
dataset-centered features. This implies that when computing median-
based variance, the centralization becomes more homogeneous, resulting 
in a more concentrated data distribution (Figure  4). If the data are 
normally distributed (mean ≈ median), the new features will perform 
similarly to classical ones. However, classical features are recommended 
due to the additional cost of sorting required to compute the median. On 
the other hand, for distributions deviating from normality, median-based 
features are more effective due to their robustness against outliers.

Compared to previous studies that primarily use EEG signals and 
complex models like CNNs or Random Forests, this study offers a 
simpler and more accessible approach. It leverages ECG signals—
more practical for wearable devices—and introduces median-centered 
statistical features (variance, skewness, kurtosis), which are more 
robust to noise and outliers than traditional mean-based metrics. 
Despite using a basic MLP architecture, the method achieved superior 
classification performance.

While studies such as Rathod et al. (44) and Mohammadpoory 
et al. (45) reached high accuracy using EEG and deep learning, they 
require more computational resources. Others, like Yang et al. (46) 
combined EEG and ECG but did not explore robust feature 
engineering. Even simpler models like the MLP used by Nascimento 
et al. (47) with EEG achieved lower accuracy (94.3%).

Key differences in performance across studies can be explained 
by: EEG captures brain activity directly but is less feasible for 
continuous monitoring. ECG, used here, is more practical for real-
world, wearable applications; Many studies rely on raw or mean-based 

features, while this study emphasizes noise-resistant, median-
based features.

Ultimately, the proposed method stands out for its balance of 
simplicity, efficiency, and high accuracy—making it especially suitable 
for real-time, non-invasive epilepsy monitoring in resource-
limited settings.

Table  2 compares the proposed method in this study with 
approaches found in the literature for epilepsy signal classification.

The analysis of Table 2 highlights several important aspects of 
epilepsy signal classification. The evolution of accuracy over the years 
is evident, with more recent models (2023–2025) surpassing older 
studies (<2,020) in metrics such as accuracy and specificity. Model 
customization and integrating deep learning techniques are evident 
trends in recent studies, emphasizing progress in the field.

The MLP + Median-based feature method proposed in this study 
achieved sensitivity of 97.01%, specificity of 98.01%, and accuracy of 
98.01%. This result is superior to most listed studies, underscoring the 
method’s effectiveness. In comparison, other successful methods include 
Random Forest (45) with 97.98% accuracy and the CNN approach with 
97.55% accuracy (48). Although these figures are high, they do not reach 
the performance of this study. This difference may be attributed to sample 
variability between our study, Mohammadpoory et al. (45) and Rathod 
et al. (44). However, it supports our hypothesis that selecting optimal 
features reduces machine learning complexity, as the MLP used in this 
study is less complex than the methods used by Mohammadpoory et al. 
(45) and Rathod et al. (44).

Classical approaches such as SVM (23, 49) and K-NN (46) 
continue to show solid results but are generally outperformed by more 
recent methods like CNN (48) and Random Forest (45). Additionally, 
Yang et  al. (46) utilized a combined signal approach, such as 
EEG + ECG, demonstrating an effort to integrate multiple data 
sources, which could potentially enhance overall performance.

The literature addresses other possibilities. Jeppesen et al. (37) used 
a Logistic Regression Machine Learning (LRML) model that was quickly 
adaptable to each patient, which proved to be superior to a standardized 
approach. Applying the optimized configuration to patients resulted in 
a sensitivity of 78.2% and a false alarm rate (FAR) of 0.62/24 h. Compared 
to the standardized method, there was a 31% reduction in FAR while 
maintaining similar sensitivity levels. Due to the limited data available 

TABLE 1 Accuracy, sensitivity and specificity values based on the MLP model.

Classifier Hyperparameters Accuracy Sensitivity Specificity

Mean (± standard deviation) for k = 10 (%)

Number of neurons Mean-based method

MLP

5 0.86 ± 0.03 0.84 ± 0.04 0.87 ± 0.03

10 0.87 ± 0.02 0.85 ± 0.03 0.88 ± 0.02

100 0.88 ± 0.02 0.86 ± 0.03 0.89 ± 0.02

Classifier Hyperparameters Accuracy Sensitivity Specificity

Mean (± standard deviation) for k = 10 (%)

Number of neurons Median-based method

MLP

5 0.95 ± 0.02 0.93 ± 0.02 0.95 ± 0.01

10 0.96 ± 0.01 0.95 ± 0.01 0.97 ± 0.01

100 0.98 ± 0.01 0.97 ± 0.01 0.98 ± 0.01
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from each patient—1–5 seizures recorded each—a low influence on the 
adaptation of LRML was expected. However, even seizure-free 
individuals gradually feed the LRML, benefiting from customizing the 
algorithm’s decision threshold. This way, the portion of the decision 
threshold based on the non-seizure candidate’s data rapidly changes from 
an initial generic scenario to a personalized environment, significantly 
reducing the FAR. Although they make use of a median filter to remove 
possible false R peak detections, missed R peaks, and/or ectopic 
heartbeats, the application of skewness, variance, and kurtosis, also 
centered on the median, can provide a robust and accurate measurement 
of crisis classification and prediction.

Karasmanoglou et al. (33) developed a method for the early detection 
of seizures based on a semi-supervised analysis of ECG signals. The study 
used mean-centric metrics to issue seizure alerts 3–30 min before. The 
models were evaluated using optimal thresholds, for which the labels 
“weak” and “hand-selected” were applied to distinguish the analyses. 
Three anomaly detection techniques were tested: Local Outlier Factor 
(LOF), Minimum Covariance Determinant (MCD) estimator, and 
One-Class Support Vector Machines (OCSVM). These techniques were 
applied to identify anomalous patterns in segments of the RR series of the 
ECG. The LOF demonstrated a slightly more accurate and consistent alert 
behavior with accuracy, sensitivity, and specificity of 94.8, 93.0, and 95.8%, 
respectively, for the “Handpicked,” as well as 93.5, 95.6, and 93.1% for 
the “Weak.”

Billeci et al. (50) had a median filter to increase the signal-to-noise 
ratio, obtaining a specificity of 89.34%, a sensitivity of 89.06%, and an 
accuracy of 88.06% in an ECG database composed of 15 patients with 
38 different types of seizures. Ghaempour et al. (32) in addition to the 
median filter, a high-pass filter allows the passage of signals with 
parameters higher than a predetermined cut-off point. With this 
model, they achieved 94.29% accuracy, 100% sensitivity, and 89.47% 
specificity when analyzing ECG data at 4-s intervals. Behbahani et al. 
(51) also employed an adaptive decision threshold method to trigger 

alarms and predict seizures: predictions were made when selected 
traits exceeded decision thresholds, enabling an average sensitivity of 
78.59%. The dataset used for this study was large, consisting of 170 
seizures collected from 16 patients during sleep and wakefulness. Our 
work adds to this growing body of research by providing a 
comprehensive analysis that integrates cardiac cycle features with 
neural networks, aiming for high accuracy and practical applicability.

Therefore, the results presented in this study demonstrate the 
effectiveness of the MLP model in classifying medical data, specifically 
related to epilepsy diagnosis. Different scenarios were tested, including 
variations in the number of neurons in the hidden layer and the use of 
mean- and median-based approaches, providing valuable insights to 
support medical decision-making in the treatment and monitoring of 
epilepsy patients. Regarding diagnostic accuracy of 98.01%, the high 
performance of the model reveals a significant ability to correctly predict 
the condition of epilepsy patients in most cases. The median-based 
approach outperformed the mean-based approach, demonstrating greater 
robustness to outliers, which are common in medical records such as 
ECG signals. Another essential aspect is the evaluation of sensitivity 
(recall), which measures the model’s ability to correctly identify positive 
cases, i.e., patients with epilepsy. High sensitivity implies a low risk of false 
negatives, ensuring that epilepsy patients are properly identified.

In the tested scenarios, sensitivity increased with the number of 
neurons, reaching 97.01% in the median-based approach with 100 
neurons. Specificity is also a crucial factor, indicating the model’s 
ability to correctly identify negative cases, i.e., individuals who do not 
have epilepsy. High specificity reduces false positives, preventing 
incorrect diagnoses and unnecessary follow-up investigations. The 
model with 100 neurons using the median-based approach achieved 
a specificity of 98.01%, an excellent performance for clinical 
applications. Regarding clinical use and decision support, the model 
demonstrates usefulness in various epilepsy treatment contexts. High-
sensitivity models can be used for initial screening, allowing at-risk 

TABLE 2 Accuracy, sensitivity, and specificity of the proposed method compared to the literature for epilepsy classification.

Author, Year Classifier Signal Accuracy (%) Sensitivity (%) Specificity (%)

In this study, 2025

MLP + feature Mean-

based
ECG

88.02 86.03 89.02

MLP + feature Median-

based
ECG

98.01 97.01 98.01

Rathod et al., 2025 CNN EEG 97.55 – –

Mohammadpoory et al., 

2024
Random Forest EEG 97.98 96.19 99.12

Yang et al., 2022 K-NN EEG + ECG 96.25 – –

Aslam et al., 2022 CNN EEG – – –

Nascimento et al., 2022 MLP EEG 94.3 90.5 98.1

Cabral et al., 2019 DCC EEG 96.4 95.5 96.7

Liang et al., 2019 LTCN EEG 84 99 99

Bhattacharyya and Pachori, 

2017
Random Forest EEG 94.4 97.9 99.5

Fergus et al., 2016 KNNC EEG 88 88 93

Acharya et al., 2011 SVM EEG 96 96 97

Shoeb and Guttag, 2010 SVM EEG 96 – –

*Current study.
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patients to receive urgent follow-up. On the other hand, high-
specificity models are ideal for confirming diagnoses, reducing the 
need for invasive or additional tests. The choice between mean- or 
median-based approaches will depend on the impact of extreme data 
values, such as fluctuations in ECG recordings. Finally, the results 
suggest that the MLP model with 100 neurons and a median-based 
approach is the most effective configuration for minimizing diagnostic 
errors related to epilepsy. Depending on the clinical context, 
physicians may choose to prioritize higher sensitivity for screenings 
or higher specificity for diagnostic confirmations, contributing 
significantly to a more precise and efficient disease management.

This work can be extended to practical applications in wearable 
devices through strategies that balance real-time detection with 
computational efficiency. A promising approach involves the 
implementation of an optimized embedded system capable of 
executing the ECG signal processing pipeline directly on the device, 
reducing the dependence on data transmissions to external servers 
and minimizing latency. To this end, the median-based feature 
extraction algorithm can be adapted to use integer operations instead 
of floating-point operations, reducing energy consumption without 
significantly compromising accuracy. In addition, model quantization 
techniques, such as converting the MLP to 8 bits, can reduce memory 
demand and speed up inferences, making the system viable for 
low-cost microcontrollers, such as those of the ARM Cortex-M family.

Another practical extension is the development of an adaptive 
sampling mechanism, where the ECG acquisition rate is dynamically 
adjusted according to the user’s context. For example, during periods 
of rest, the system can operate at a reduced sampling rate (e.g., 
128 Hz), while in higher-risk situations, such as during sleep or after 
detecting preliminary anomalies, the rate can be increased to 256 Hz. 
This approach not only saves power, but also allows the device to 
prioritize analysis at more clinically relevant times.

Integrating multimodal sensors, such as accelerometers and 
gyroscopes, can further improve the robustness of the system by 
ruling out false positives caused by sudden movements or intense 
physical activity. Contextual data, such as the user’s baseline heart 
rate and sleep history, can be  incorporated into the model to 
customize detection thresholds, increasing specificity in 
uncontrolled environments.

To enable large-scale deployment, a hybrid edge-cloud architecture 
can be adopted. In this scenario, the wearable device performs real-time 
detection with a simplified model, while raw data is periodically sent to a 
central server where more complex versions of the algorithm (e.g., LSTMs 
for seizure prediction) process the information retrospectively. This 
strategy allows for continuous updates of the model via federated learning, 
where parameters are refined with data from multiple users without 
compromising individual privacy.

Finally, validation in real-world settings is crucial to ensure 
clinical efficacy. Field studies with epileptic patients should assess not 
only the accuracy of the system, but also its usability, battery life, and 
user adherence. Partnerships with wearable manufacturers can 
accelerate technological translation by incorporating the algorithm 
into commercial smartwatches with ECG sensors already available, 
such as those from Apple Watch or Fitbit.

In summary, the practical extension of this work requires 
hardware optimizations (e.g., dedicated processors), algorithmic 
adaptations (e.g., quantization), and intelligent integration with 
complementary sensors. These advances would enable continuous, 
non-invasive and energy-efficient monitoring of epilepsy, 

democratizing access to early diagnostic tools in clinical and home 
settings. To ensure greater reproducibility and transparency in current 
work, the source code publicly is available at the following link.1

5 Limitations

Our study has limitations that deserve further comments. First the 
small sample size. Also, in wearable single-lead ECG models, noise and 
artifacts in the measurement present a difficulty to the sensitivity of the 
ML (52). An alternative Zambrana-Vinaroz et al. (53) applied was the 
development of a wearable device that captured ECG, 
photoplethysmograph (PPG), and ear EEG signals, reaching a sensitivity 
of 85%, even with the association. However, it has the advantage of being 
more robust to external disturbances caused by patient movement during 
detection due to the multiple measurement paths.

Although the features proposed in this study have shown superior 
results to the classical features for the same neural network 
configuration, there is a higher computational cost for calculating 
these new features. This increase in computational cost is due to the 
median calculation, which is the basis of these new characteristics. For 
each cardiac cycle, we verify whether the number of elements in the 
vector containing voltage variations in the cardiac cycle is odd or even 
before calculating the median, making the proposed method offline, 
this is one of the main limitations of our work.

One of the primary limitations of our study is the relatively small 
sample size, which may restrict the statistical power and 
generalizability of our findings. To address this limitation, future 
research should aim to include a larger and more diverse sample. This 
could be achieved through multi-center collaborations, which would 
allow for broader participant recruitment, or by extending the data 
collection period to capture a more representative dataset. Such efforts 
would significantly enhance the robustness, reliability, and external 
validity of the conclusions drawn.

Other limitations include the absence of a medication regimen 
and the stratification of epilepsy (moderate, severe). Despite this, 
kurtosis, skewness, and variance applicability have high potential in 
medicine, achieving promising results in different fields and basic 
diagnostic methods, e.g., blood pressure analysis. Populations with 
scarce features outside major metropolitan areas can benefit from 
rapid and use-to-use methods.

6 Conclusion

This study presents a novel and effective method for detecting 
epileptic brain activity through ECG signal analysis using neural 
networks. By introducing median-centered statistical features—
variance, skewness, and kurtosis—the proposed approach achieved 
high classification performance (accuracy: 98.01%, sensitivity: 97.01%, 
specificity: 98.01%) even with a simple MLP architecture. These results 
highlight the strength of robust feature engineering over 
model complexity.

1 https://drive.google.com/file/d/1B5eMZVeI6Bi8jtopNEg3zq35JfxPIsNp/

view?usp=drive_link
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A key contribution of this work is demonstrating that ECG, a 
widely accessible and non-invasive signal, can serve as a reliable proxy 
for brain activity monitoring in epilepsy. Unlike EEG, which requires 
specialized equipment and clinical settings, ECG can be  easily 
integrated into wearable devices, enabling continuous, real-
time monitoring.

The clinical potential of this method is significant. Its 
implementation in smartwatches or portable ECG monitors could 
allow for early seizure detection, providing timely alerts to patients 
and caregivers. This capability not only enhances patient safety by 
reducing the risk of injury but also supports more personalized and 
proactive epilepsy management. Furthermore, the method’s low 
computational cost makes it suitable for deployment in low-resource 
settings, contributing to more equitable access to neurological care.

In summary, this study advances the field of epilepsy monitoring 
by offering a cost-effective, scalable, and clinically relevant solution. 
Future research will focus on validating the model in real-world 
wearable systems and expanding its application to other 
neurological conditions.
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Glossary

EEG - electroencephalogram

ECG - electrocardiogram

ML - machine learning

SVMs - support vector machines

ANNs - artificial neural networks

HRV - heart rate variability

RRI - interval between two R-wave

RMTs - remote measurement technologies

NSR - normal sinus rhythm

MLP - multi-layer perceptron

TP - true positive

NT - true negative

FP - records with seizures classified as absent

FN - positives with absence

LRML - logistic regression machine learning

FAR - false alarm rate

LOF - local outlier factor

MCD - minimum covariance determinant

OCSVM - one-class support vector machines

PPG - photoplethysmograph
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