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Introduction: Epilepsy is a chronic brain disease with a certain degree of 
neurodegeneration and is caused by abnormal discharges of neurons. 
The mechanism of cell senescence has garnered increasing attention in 
neurodegenerative diseases. However, the role of cell senescence in the onset 
and progression of epilepsy is unclear. Therefore, this study constructed a 
diagnostic model of epilepsy based on cellular senescence-related genes 
(CSRGs) to analyze their role in disease pathogenesis.

Methods: The differentially expressed genes (DEGs) were screened from the 
epileptic sample dataset of the gene expression omnibus (GEO) database, and 
the cellular senescence-related DEGs (CSRDEGs) related to epilepsy were 
identified by CSRGs crossover. The functional enrichment characteristics of 
CSRDEGs were analyzed using gene ontology (GO) and Kyoto encyclopedia of 
genes and genomes (KEGG) enrichment analyses. The differences in biological 
processes between high and low-risk groups were analyzed using gene set 
enrichment analysis (GSEA). For model construction, logistic regression, random 
forest, and least absolute shrinkage and selection operator (LASSO) regression 
were employed to identify key genes, including ribosomal protein S6 kinase 
alpha-3 (RPS6KA3), cathepsin D (CTSD), and zinc finger protein 101 (ZNF101). 
Subsequently, a multifactor logistic regression model was developed to evaluate 
the risk of epilepsy based on these screened genes.

Results: The model exhibited higher area under the curve (AUC) values in the 
GSE data sets 143272 and 32534, producing encouraging results. Finally, mRNA-
miRNA and mRNA-transcription factors (TFs) networks revealed the potential 
regulatory mechanism of the selected critical genes in the disease.

Discussion: This study elucidated the possible process of cell senescence in 
epileptic diseases through bioinformatics analysis, offering a potential target for 
personalized diagnosis and precise treatment.
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1 Introduction

Epilepsy is a common neurological disorder with a high prevalence 
worldwide. According to the World Health Organization, there are 
approximately 50 million individuals with epilepsy globally, and 
millions of new cases emerge annually. The incidence of epilepsy varies 
significantly among different regions and populations. Generally, 
epilepsy is more common in developing and low-income countries 
than in developed ones. This may be due to various factors, including 
a lack of medical resources, limited diagnosis, and insufficient disease 
management. Furthermore, epilepsy has a relatively higher incidence 
rate among children and the elderly. It is one of the primary causes of 
neurological disorders in children, significantly affecting the quality of 
life and social functioning of patients (1). Epilepsy has a high incidence 
rate currently, but the treatment effect is unsatisfactory (2). Therefore, 
it is crucial to investigate its molecular mechanisms further to identify 
novel therapeutic targets.

Cell senescence is regarded as one of the key pathological 
mechanisms in neurodegenerative diseases (3, 4), such as Alzheimer’s 
disease (AD) (5–7) and Parkinson’s disease (PD) (3, 8). Neurons and 
glial cells in AD and PD often display typical aging characteristics, 
including cell cycle arrest, organelle dysfunction, and a pro-inflammatory 
phenotype (9). Although the role of cellular senescence in 
neurodegenerative diseases has been extensively studied, its relevance in 
the pathogenesis of epilepsy has not been fully explored. Some studies 
in recent years have initially revealed clues indicating that cell senescence 
may play an important role in epilepsy. Some studies revealed that there 
are senescent phenotype characteristics (such as upregulation of p16INK4a 
expression and abnormal activation of cell cycle genes) (10); this implies 
that cell senescence may be crucial for developing epileptogenic zones 
and the regulation of seizure frequency. Additionally, the association 
between epilepsy and neuroinflammation has been widely reported, and 
the senescence-associated secretory phenotype (SASP) cellular may be a 
major contributor in promoting the formation of a chronic inflammatory 
environment (11). As a result, investigating the role of cell senescence-
related genes (CSRGs) in epilepsy may assist in identifying specific 
mechanisms behind the onset and progression of epilepsy and providing 
a theoretical basis for exploring new therapeutic targets.

In light of this, this study aimed to systematically analyze the functions 
of CSRGs and explore their potential role in the pathogenesis of epilepsy. 
Considering the critical role of CSRGs in other neurological diseases, 
we hypothesized that they may also be crucial in the pathogenesis of 
epilepsy. This study will use bioinformatics analysis to identify differentially 
expressed CSRGs related to epilepsy and investigate their regulatory 
mechanisms in neuronal function and inflammatory response. This study 
may offer a theoretical foundation for further understanding the molecular 
mechanisms underlying epilepsy and exploring new therapeutic targets.

2 Materials and methods

2.1 Data collection and preprocessing

This study acquired three epilepsy-related Homo sapiens datasets 
from the Gene Expression Omnibus (GEO) database1 and Gene Set 

1 https://www.ncbi.nlm.nih.gov/geo/

Enrichment (GSE) GSE143272, GSE32534, and GSE4290, using the R 
package GEOquery (12). The chip platform of the GSE143272 dataset 
was GPL10558, and the chip platform of datasets GSE32534 and 
GSE4290 was GPL570. The specific details are given in Table 1. Whole 
blood tissue served as the tissue source for dataset GSE143272, 
including 34 untreated epilepsy samples and 51 healthy control samples. 
Peritumoral cortical tissue was the source of dataset GSE32534, which 
contains five epilepsy samples and five control samples. The dataset 
GSE4290 originated from brain tissue containing 23 epilepsy samples.

This study aimed to identify genes associated with cellular 
senescence by collecting protein-coding CSRGs from the GeneCards 
database.2 Protein-coding genes were screened and retained by using 
“cell senescence” as the search keyword, identifying 3,575 CSRGs. 
Additionally, relevant literature was searched in PubMed3 using the 
same keyword, and 279 genes related to the cellular aging process in 
different studies were further collected. After merging and 
deduplication, 3,619 CSRGs were obtained. The detailed information 
is depicted in Supplementary Table 1.

Datasets GSE143272 and GSE32534 were preprocessed for 
standardized and normalized probe annotations using the R package 
limma (13). A subset of samples from dataset GSE143272 and all 
samples from dataset GSE32534 were included in this analysis. 
Furthermore, epilepsy-related samples in dataset GSE4290 served as 
a validation set for subsequent analyses.

2.2 Differentially expressed genes analysis

The samples were divided into two groups based on their grouping 
in the GSE143272 and GSE32534 datasets: an epilepsy group and a 
control group. Differential expression between epilepsy and control 
groups was analyzed using the R package limma. The threshold for 
identifying differentially expressed genes (DEGs) was established at 
|logFC| >0.10 and p-value <0.05. Specifically, genes were categorized 
as upregulated if their logFC >0.10 and p-value <0.05 and as 
downregulated if their |logFC| <−0.10 and p-value <0.05. The results 
of differential expression analysis were displayed using volcano plots 
generated by the R package ggplot2 (14).

2 https://www.genecards.org/

3 https://pubmed.ncbi.nlm.nih.gov/

TABLE 1 GEO microarray chip information.

Data set GSE143272 GSE32534 GSE4290

Platform GPL10558 GPL570 GPL570

Species Homo sapiens Homo sapiens Homo sapiens

Tissue Whole blood tissues Peritumoral cortex 

tissues

Brain tissues

Samples in 

epilepsy 

group

34 5 23

Samples in 

control group

51 5 /

Reference PMID: 30826443

PMID: 32054883

PMID: 23418513 PMID: 16616334
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Variance analysis was first used to identify DEGs from the 
GSE143272 and GSE32534 datasets in order to identify cellular 
senescence-related DEGs (CSRDEGs) associated with epilepsy. The 
screening criteria included |logFC| >0.10 and p-value <0.05. 
Subsequently, these DEGs were analyzed for intersection with the 
CSRGs of all epilepsy samples in the GSE4290 dataset. CSRDEGs 
were finally identified by constructing a Venn diagram displaying the 
overlap of these genes. Heatmaps were created using the R package 
pheatmap (15) to display these CSRDEGs.

2.3 Gene Ontology and Kyoto 
Encyclopedia of Genes and Genomes 
enrichment analysis

Gene Ontology (GO) analysis is a commonly used method for 
large-scale functional enrichment studies, including cellular 
component (CC), biological process (BP), and molecular function 
(MF). The Kyoto Encyclopedia of Genes and Genomes (KEGG) is 
currently the most widely used database for storing information on 
genomes, biological pathways, diseases, and drugs. Enrichment 
analysis of CSRDEGs was performed using GO and KEGG pathway 
analysis using the R package clusterProfiler (16). The Screening 
criteria for statistical significance were defined as p-value <0.05 and 
false discovery rate (FDR) (q-value) <0.25.

2.4 Gene set enrichment analysis

Gene set enrichment analysis (GSEA) is used to evaluate the 
distribution trends of genes in predefined gene sets ranked based on 
their correlation with a specific phenotype to determine their 
contribution to a given phenotype. In this study, the genes in the 
GSE143272 dataset were first arranged according to their logFC 
values. Subsequently, GSEA analysis was conducted on all genes in 
the GSE143272 dataset using the R package clusterProfiler. The 
parameters of the GSEA analysis were set as follows: the seed value 
was 2,020, the number of calculations was 1,000, the minimum 
number of genes contained in each gene set was 10, and the 
maximum number of genes was 500. The c2 gene set (Cp. All. 
V2022.1. Hs. Symbols) was obtained through the Molecular 
Signatures Database. GSEA used gene matrix transposed (GMT) files 
containing all canonical pathways (3,050 pathways). The screening 
criteria for significant enrichment were set as adjusted p-value <0.05 
and FDR value (q-value) <0.25, with p-value correction using the 
Benjamini–Hochberg (BH) method (17).

Epilepsy samples in the GSE4290 dataset were divided into 
high- and low-risk groups based on the median logistic risk score. 
Differential expression analysis was performed using the R package 
limma, and genes with |logFC| >0.10 and p-value <0.05 in high- 
and low-risk groups were eliminated. This research focuses on 
developing a diagnostic support model for epilepsy that 
differentiates between patients with epilepsy and healthy individuals 
based on gene expression profiles linked to cellular aging. The 
model produces scores designed to assess the probability of epilepsy 
during diagnosis rather than evaluate disease progression or 
recurrence risk.

2.5 Screening key genes

An initial single-factor logistic regression analysis was 
performed on CSRDEGs, utilizing a screening criterion of p-value 
<0.05 to identify key genes and construct a diagnostic model. The 
CSRDEGs identified through this screening were subsequently 
analyzed using a random forest (RF) approach. RF (18), an ensemble 
learning algorithm, integrates multiple decision trees through 
bootstrap aggregation and is frequently employed in model 
construction to generate numerous decision trees, with the final 
prediction determined by majority voting. The expression levels of 
CSRDEGs in the GSE143272 dataset were filtered using single-factor 
logistic regression, and the model was developed using the RF 
package with the parameters “set.seed (234)” and “ntree = 500.” The 
“MeanDecreaseGini (19)” metric, which assesses the average 
reduction in node impurity for a variable across all decision trees, 
was employed to evaluate the importance of each variable within the 
model. A higher MeanDecreaseGini value indicates greater variable 
importance. To determine the optimal number of variables, five 
10-fold cross-validations were conducted, and the resulting cross-
validation curves were combined. Cross-validation is a method of 
evaluating model performance by dividing the data into different 
training and validation sets multiple times, helping to alleviate the 
problems of overfitting and insufficient training data. Cross-
validation was performed using the training set, and the number of 
variables was selected that minimized the error. The significant 
variables were selected for subsequent analysis based on the 
MeanDecreaseGini value.

The least absolute shrinkage and selection operator (LASSO) 
regression analysis (20) was carried out using the R package glmnet 
(21). The parameters were adjusted to “set.seed (500)” and running 
the number of times to 200 to avoid overfitting. LASSO regression 
helps reduce overfitting and enhances the generalizability of the 
model by adding a penalty term (lambda times the absolute 
coefficient value) to the linear regression model. The results of the 
LASSO regression analysis are visualized through diagnostic model 
plots and variable trajectory plots. CSRDEGs included in the final 
LASSO regression model were considered key genes for subsequent 
analyses. The regulatory mechanisms of key genes were thoroughly 
explored through these network analyses, and their potential 
functions in epilepsy pathology were revealed.

2.6 Constructing mRNA-miRNA and 
mRNA-transcription factors (TFs) 
interaction network

The regulatory mechanisms of key genes and their potential 
roles in epilepsy pathology were explored by constructing mRNA-
miRNA and mRNA-TF interaction networks to identify the 
upstream regulators and downstream regulatory targets of these key 
genes. The miRWalk database was used4 to predict potential miRNA 
regulatory molecules of key genes. A total of 72 miRNAs related to 
11 key genes were screened out, and the mRNA-miRNA interaction 

4 http://mirwalk.umm.uni-heidelberg.de/
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network was constructed and visualized by Cytoscape software. The 
results demonstrated that ribosomal protein S6 kinase alpha-3 
(RPS6KA3) has a significant regulatory association with multiple 
miRNAs, such as hsa-miR-30c-5p and hsa-miR-19a-3p, indicating 
that these miRNAs may participate in the pathogenesis of epilepsy 
by regulating the expression of key genes. Additionally, the 
interactions of key genes with their transcription factors (TFs) were 
predicted using the ChIPBase database (22).5 The 40 TFs that were 
identified encompassed JUN, FOS, and STAT3, among others, which 
interact with 13 key genes. Cytoscape software was used to construct 
an mRNA-TF interaction network, exhibiting the regulatory 
network association between RPS6KA3, zinc finger protein 101 
(ZNF101), IL7R, and other genes and these TFs. This result 
suggested that these TFs may play an important role in the 
pathological process of epilepsy by regulating the expression of 
key genes.

2.7 Key genes for building diagnostic 
logistic regression models

Logistic regression models are often used to analyze the 
relationship between independent variables and binary dependent 
variables. In this study, all key genes were included to construct a 
multifactor logistic regression model. The coefficient of each key gene 
in the model was multiplied by its corresponding expression level, 
and the results were added to calculate the risk score of each sample. 
The dataset was divided into high- and low-risk groups based on the 
median risk score. The risk score is calculated as follows:

 
( ) ( )= ∗∑Risk score Coefficient gene mRNA expression genei i

i

Nomogram (23) is a graphical tool that uses a set of 
non-overlapping line segments to represent the functional relationship 
between multiple independent variables in a rectangular coordinate 
system. A nomogram was plotted based on the results of the 
multivariate logistic regression model using the R package rms (24) to 
demonstrate the interrelationships between key genes included in 
the model.

Decision curve analysis (DCA) is a method used to evaluate the 
clinical utility of predictive models, diagnostic tests, and molecular 
markers. DCA was performed on key genes of the GSE143272 
dataset using the R package ggDCA, and decision curve plots 
were constructed.

Furthermore, ROC curves of the logistic risk scores in 
GSE143272 and GSE32534 datasets were plotted using the R package 
pROC (25), and the area under the curve (AUC) values were 
calculated. The ROC curve is a tool used to evaluate model 
performance by analyzing the trade-off between sensitivity and 
specificity to select the optimal model, eliminate suboptimal models, 
or determine the optimal threshold within a single model. The ROC 
curve comprehensively measures the ability of the test to distinguish 
different conditions. The AUC can be used to evaluate the diagnostic 

5 https://rnasysu.com/chipbase3/index.php

performance of the logistic risk score for epilepsy. It is usually 
between 0.5 and 1. The diagnostic performance improves when the 
AUC is closer to 1. Low accuracy is indicated by an AUC between 0.5 
and 0.7, moderate accuracy by an AUC between 0.7 and 0.9, and high 
accuracy by an AUC above 0.9.

Semantic comparison of GO annotations provides a quantitative 
method for assessing similarities between genes and genomes, which 
has become an essential basis for many bioinformatics analysis 
methods. This study used the R package GOSemSim (26) to calculate 
the functional correlations (Friends) of key genes and determine 
their relationships through functional similarity analysis.

2.8 Key gene differential expression 
verification

The differences in key gene expression between epilepsy and 
control groups in the GSE143272 and GSE32534 datasets were 
analyzed using the Mann–Whitney U test (27) (Wilcoxon rank sum 
test). The differential analysis results were visualized using comparison 
plots between groups, plotted by the R package ggplot2. R package 
pROC was used to generate the ROC curves of key genes between 
epilepsy and control groups in GSE143272 and GSE32534 datasets. 
The AUC values were calculated to evaluate the diagnostic effect of key 
gene expression in patients with epilepsy.

2.9 Statistical analyses

The data processing and analyses in this study were performed 
using R software (version 4.2.2). Unless otherwise indicated, the 
independent samples t-test (Student’s t-test) was used to determine 
statistical significance for comparisons of continuous variables 
between two groups if the variables were normally distributed. The 
Mann–Whitney U test (Wilcoxon rank sum test) was used to analyze 
variables that did not follow the normal distribution. Kruskal–Wallis 
test was used when comparing three or more groups (28). Correlation 
coefficients between different molecules were calculated using 
Spearman correlation analysis (29). Unless otherwise stated, all 
statistical p-values are two-sided, and p-values <0.05 were considered 
statistically significant.

3 Results

3.1 Processing of epilepsy datasets

First, the batch effect was removed from the epilepsy datasets 
GSE143272 and GSE32534 using the R package sva (30). The 
effectiveness of this process was evaluated by comparing expression 
levels before and after batch effects were eliminated via distribution 
box plots. Results for dataset GSE143272 are displayed in Figures 1A,B, 
whereas the results for dataset GSE32534 are displayed in 
Figures 1C,D. Boxplot analysis revealed that the batch effect of the 
epilepsy dataset had been effectively eliminated; therefore, the 
distribution boxplot confirmed the accuracy and reliability of gene 
expression data analysis.
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3.2 DEGs related to epileptic cell 
senescence

Differentiated expression analysis was performed to analyze 
gene expression differences in GSE143272 and GSE32534 datasets 
between epilepsy and control groups using the R package limma. A 
total of 3,430 DEGs were identified in the GSE143272 dataset. The 
filtering criteria included |logFC| >0.10 and p-value <0.05, 
including 1,631 upregulated (logFC >0.10 and p-value <0.05) and 
1,799 downregulated genes (logFC <−0.10 and p-value <0.05). The 
results are displayed by a volcano plot (Figure 2A). Moreover, 930 
DEGs were identified in the GSE32534 dataset with the same 
screening criteria, which included 458 upregulated and 472 
downregulated genes, and the results are displayed in the volcano 
plot (Figure 2B).

The intersection analysis of the DEGs of GSE143272 and 
GSE32534 and the CSRGs in the GSE4290 dataset was conducted to 
draw a Venn diagram (Figure 2C) to identify CSRDEGs related to 
cellular senescence. Ultimately, 40 CSRDEGs were identified, 
including ZNF101, cathepsin D (CTSD), ribonucleotide reductase 
subunit M2 (RRM2B), anti-RNA polymerase II subunit H 
(POLR2H), myristoylated alanine-rich C kinase substrate like 1 
(MARCKSL1), ETS proto-oncogene 1 (ETS1), cellular repressor of 

E1A-stimulated genes 1 (CREG1), tripartite motif-containing 
protein 21 (TRIM21), mitogen-activated protein kinase kinase 4 
(MAP2K4), platelet endothelial cell adhesion molecule 1 (PECAM1), 
methionine sulfoxide reductase A (MSRA), proteasome activator 
subunit 1 (PSME1), interferon regulatory factor-1 (IRF1), E74-like 
factor 4 (ELF4), minichromosome maintenance 3 (MCM3), 
cathepsin S (CTSS), tumor necrosis factor α receptor 1 (TNFRSF1A), 
chloride intracellular channel protein 1 (CLIC1), E-twenty six 
variant gene 6 (ETV6), RNA-binding motif protein 25 (RBM25), 
neutrophil cytosolic factor 4 (NCF4), heat shock 70-kDa protein 6 
(HSPA6), speckled protein 100 kDa (SP100), RPS6KA3, ras 
association domain-containing protein 5 (RASSF5), tenascin-C 
(TNC), mitogen-activated protein kinase 1 (MAPK1), pyruvate 
dehydrogenase E1 subunit beta (PDHB), growth factor progranulin 
(GRN), interleukin-7 receptor (IL7R), ATPase copper-transporting 
alpha (ATP7A), Von Hippel–Lindau (VHL), tumor necrosis factor 
superfamily factor 10 (TNFSF10), DNA methyltransferase-1 
(DNMT1), interferon-induced transmembrane protein 3 (IFITM3), 
carboxypeptidase vitellogenic like (CPVL), TOR signaling pathway 
regulator-like (TIPRL), serglycin (SRGN), neural cell adhesion 
molecule 1 (NCAM1), and S100 calcium binding protein A6 
(S100A6). The expression differences of these CSRDEGs between 
different sample groups of the GSE143272 and GSE32534 datasets 

FIGURE 1

Data to batch processing. (A,B) Boxplot of GSE143272 distribution of epilepsy dataset before (A) and after (B) going to batch. (C,D) Epilepsy dataset 
GSE32534 distribution boxplot before (C) and after (D) debatched. Light blue is the control group, and light red is the epilepsy group.
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were further analyzed. Heatmaps were drawn using the R package 
heatmap to present the analysis results (Figures 2D,E).

3.3 GO and KEGG enrichment analyses

GO and KEGG enrichment analyses were conducted to explore 
the association between 40 CSRDEGs and CCs, MFs, and biological 
pathways associated with epilepsy. The detailed results are presented 
in Table  2. The analysis indicated that the 40 CSRDEGs were 
significantly enriched in specific CCs, including the lumen of secretory 
granules, cytoplasmic vesicles, vacuoles, and late endosomes. 
Additionally, these genes exhibited enrichment in MFs, notably MAP 
kinase activity. Crucially, the CSRDEGs were intricately associated 
with several key biological pathways, as identified by KEGG, including 
lipid metabolism and atherosclerosis, regulation of apoptosis, the 
MAPK signaling pathway, and the TNF signaling pathway. The GO 
and pathway enrichment analysis results were visualized by bar graphs 
and bubble plots (Figures 3A,B).

Meanwhile, GO enrichment analysis was used to construct the 
network diagram of CC, MF, and biological pathways (Figures 3C–E). 
The lines represent the corresponding molecules and the annotations 
of the corresponding entries, and the larger the nodes, the more 
molecules the entries contain.

3.4 GSEA

GSEA analysis was used to study the association between the 
expression levels of all genes in the GSE143272 dataset and the BPs, 
CCs, and MFs in which they were involved (Figure 4A); this helped 
determine the effects of expression levels of all genes in the GSE143272 
dataset on epilepsy. The specific results are displayed in Table 3. The 
findings revealed that all genes in the GSE143272 dataset were 
significantly enriched in neutrophil degranulation (Figure 4B), IL6 7 
pathway (Figure 4C), and NABA extracellular matrix (ECM) affiliated 
(Figure 4D). Dectin 2 family (Figure 4E) and other biologically related 
functions and signaling pathways.

FIGURE 2

Differential gene expression analysis. (A,B) Volcano plot of differentially expressed genes analysis between epilepsy group and control group in 
GSE143272 (A) and GSE32534 dataset (B). (C) DEGs in GSE143272 and GSE32534 datasets, genes and CSRGs Venn diagram of all epilepsy samples in 
GSE4290 dataset. (D,E) Heat map of CSRDEGs in GSE143272 (D) and GSE32534 datasets (E). DEGs, differentially expressed genes; CSRGs, cellular 
senescence-related genes; CSRDEGs, cellular senescence-related differentially expressed genes. Light red is the epilepsy group; light blue is the 
control group. In the heat map, red represents high expression, and blue represents low expression.
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3.5 Screening key genes

A multi-step analysis was performed to evaluate the value of 40 
CSRDEGs in the diagnosis of reflux. First, single-factor logistic 

regression was employed to screen 40 CSRDEGs using a p-value 
<0.05 as a screening criterion. The results demonstrated that 39 
significant CSRDEGs were identified (Supplementary Table  2). 
Subsequently, the expression levels of these 39 CSRDEGs in the 

TABLE 2 Results of GO and KEGG enrichment analysis for CSRDEGs.

Ontology ID Description Gene 
ratio

Bg ratio p-value p. adjust q-value

CC GO:0034774 Secretory granule lumen 6/40 322/19594 4.5061 × 10−5 0.00170598 0.0010723

CC GO:0060205 Cytoplasmic vesicle lumen 6/40 325/19594 4.7447 × 10−5 0.00170598 0.0010723

CC GO:0031983 Vesicle lumen 6/40 327/19594 4.9093 × 10−5 0.00170598 0.0010723

CC GO:0005775 Vacuolar lumen 5/40 174/19594 2.6671 × 10−5 0.00170598 0.0010723

CC GO:0005770 Late endosome 5/40 283/19594 0.00026391 0.00611396 0.00384293

MF GO:0004708 MAP kinase activity 2/40 18/18410 0.00068893 0.09438274 0.08412138

KEGG hsa05417 Lipid and atherosclerosis 6/30 215/8164 0.00010881 0.01032613 0.00843993

KEGG hsa04210 Apoptosis 5/30 136/8164 0.00012148 0.01032613 0.00843993

KEGG hsa04010 MAPK signaling pathway 5/30 294/8164 0.00397777 0.08501609 0.06948683

KEGG hsa04668 TNF signaling pathway 4/30 112/8164 0.00069861 0.03958799 0.03235674

KEGG hsa05152 Tuberculosis 4/30 180/8164 0.00400076 0.08501609 0.06948683

GO, Gene Ontology; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes; CSRDEGs, cellular senescence-related differentially expressed genes.

FIGURE 3

GO and KEGG enrichment analysis of CSRDEGs. (A,B) GO and pathway enrichment analysis results of CSRDEGs bar graph (A) and bubble plot (B) show 
CC, MF and biological pathway. GO terms and KEGG terms are shown on the ordinate. (C–E) GO and pathway (KEGG) enrichment analysis results of 
CSRDEGs network diagram showing CC (C), MF (D), and KEGG (E). Pink nodes represent items, blue nodes represent molecules, and the lines 
represent the relationship between items and molecules. CSRDEGs, cellular senescence-related differentially expressed genes; GO, Gene Ontology; 
KEGG, Kyoto Encyclopedia of Genes and Genomes; CC, cellular component; MF, molecular function. The screening criteria for GO and pathway 
enrichment analysis were p-value <0.05 and FDR value (q-value) <0.25.
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engineering group were analyzed and led in the GSE143272 dataset 
using the RF algorithm. The algorithm was configured with a seed 
value of 234 and 500 decision trees, analogous to the decision tree 
workpiece spindle (Figure 5A). The results demonstrate that when 
the number of decision trees is about 300, the artifacts reach a 
minimum and stabilize.

Moreover, a MeanDecreaseGini scatter plot was created for the 
39 CSRDEGs to select essential genes further (Figure  5B). The 
average value of the variable reducing node impurity across all trees 

is represented by MeanDecreaseGini. The significance of the gene in 
distinguishing the epilepsy group from the control group increases 
with this value, which in turn has a greater impact on the diagnosis 
of epilepsy. Besides, a five 10-fold cross-validation analysis 
determined the optimal number of genes, and the cross-validation 
error curve was plotted (Figure 5C). The curve represented that the 
model error was at its lowest when there were 26 genes. Combining 
these results with the MeanDecreaseGini value, 26 CSRDEGs were 
selected for further analysis. These selected CSRDEGs significantly 

FIGURE 4

GSEA analysis of epilepsy. (A) GSEA mountain plot of 4 biological functions of dataset GSE143272. (B–E) Gene set enrichment analysis (GSEA) showed 
that all genes were significantly enriched in neutrophil degranulation (B), IL6 7 pathway (C), NABA ECM affiliated (D), and Dectin 2 family (E). GSEA, 
gene set enrichment analysis. The screening criteria of GSEA were adj. p-value <0.05 and FDR value (q-value) <0.25, and the p-value correction 
method was Benjamini–Hochberg (BH).

TABLE 3 Results of GSEA for GSE143272.

ID Set size Enrichment score NES p-value p. adjust q-value

REACTOME_

NEUTROPHIL_

DEGRANULATION 379 0.51414888 2.53977724 12 × 10−10 2.1178 × 10−8 1.7696 × 10−8

PID_IL6_7_PATHWAY 34 0.58337638 2.00811468 0.00011881 0.00503238 0.004205

NABA_ECM_AFFILIATED 46 0.54504668 1.9943069 9.0572 × 10−5 0.00411023 0.00343446

REACTOME_DECTIN_2_

FAMILY 11 0.7478177 1.88658268 0.00111907 0.0234389 0.01958527

GSEA, gene set enrichment analysis.
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influence the diagnosis of epilepsy and are ranked in descending 
order of importance as follows: MARCKSL1, CTSD, ZNF101, 
RRM2B, RPS6KA3, CREG1, ETS1, MAP2K4, RBM25, PECAM1, 
IRF1, TNFSF10, PDHB, TNFRSF1A, NCAM1, ATP7A, ELF4, CTSS, 
PSME1, MCM3, MSRA, TNC, POLR2H, MAPK1, CPVL, and IL7R 
(Figures 5B,C).

Then, the 26 CSRDEGs identified by the RF algorithm were 
subjected to LASSO regression analysis to construct a LASSO risk 
model. The analysis results were displayed through the LASSO 
regression model plot (Figure 5D) and the LASSO variable trajectory 
plot (Figure 5E). The LASSO regression model finally identified the 
following 15 CSRDEGs: RPS6KA3, CTSD, NCAM1, CREG1, CPVL, 
TNFRSF1A, PECAM1, IL7R, ZNF101, RRM2B, MARCKSL1, 
MCM3, ATP7A, MAP2K4, and TNC. A forest plot of key genes was 
drawn using these 15 genes, which were analyzed further (Figure 5F).

3.6 Construction of mRNA-miRNA and 
mRNA-TF interaction network of key genes

An interaction network based on mRNA-miRNA and mRNA-TF 
was designed to further understand the regulatory mechanism of the 
key genes in epilepsy. Their regulatory patterns and potential 
molecular mechanisms were thoroughly examined by visualizing 
them through Cytoscape software. First, the miRNA regulatory 
associations of the 15 key genes (including RPS6KA3, CTSD, NCAM1, 
CREG1, CPVL, TNFRSF1A, PECAM1, IL7R, ZNF101, RRM2B, 
MARCKSL1, MCM3, ATP7A, MAP2K4, and TNC) were predicted 
using the miRWalk database. Furthermore, an mRNA-miRNA 
interaction network was built (Figure 6A). The results revealed that 11 
key genes (including ATP7A, CREG1, CTSD, MAP2K4, MARCKSL1, 
MCM3, NCAM1, RPS6KA3, RRM2B, TNC, TNFRSF1A) had 

FIGURE 5

Screening of key genes. (A) Plot of model training error of RF algorithm. (B) MeanDecreaseGini scatter plot of CSRDEGs (in descending 
MeanDecreaseGini order). (C) Cross-validation error plot. (D) Diagnostic model plot of LASSO regression model. (E) Variable trajectory plot of LASSO 
regression model. (F) Forest plot of key genes in LASSO regression model. CSRDEGs, cellular senescence-related differentially expressed genes; 
LASSO, least absolute shrinkage and selection operator.
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significant interactions with 72 miRNAs. Detailed information is 
provided in Supplementary Table 3.

Then, the TFs binding to these key genes were predicted using 
the ChIPBase database. An mRNA-TF interaction network was 
constructed (Figure 6B). The results revealed that 13 key genes (such 
as RPS6KA3, ATP7A, CPVL, CREG1, CTSD, IL7R, MARCKSL1, 
MCM3, PECAM1, RRM2B, TNC, TNFRSF1A, and ZNF101) 
interacted with 40 transcription factors. Further details are 
documented in Supplementary Table 4. These interaction networks 
provide new insights into the regulatory mechanisms of these genes 
and their potential biological functions in epilepsy.

The mRNA-miRNA network is illustrated in Figure  6A. The 
complex regulatory associations between genes such as RPS6KA3 and 
MAP2K4 and multiple miRNAs highlight that these miRNAs may 
play essential roles in the pathological process of epilepsy by 
regulating gene expression. Figure 6B demonstrates the mRNA-TF 
network, which exhibited significant interactions between key genes 
and multiple TFs (such as JUN, FOS, and STAT3, among others), 
suggesting that these factors may be crucial in the regulatory network 
of epilepsy by controlling the expression of key genes.

3.7 Establishment of diagnostic logistic 
regression model and functional similarity 
analysis of key genes

The 15 key genes (RPS6KA3, CTSD, NCAM1, CREG1, CPVL, 
TNFRSF1A, PECAM1, IL7R, ZNF101, RRM2B, MARCKSL1, MCM3, 
ATP7A, MAP2K4, and TNC) were incorporated into a multivariate 
logistic regression model to determine the coefficients of each gene. 
This analysis facilitated the development of a diagnostic model for 

epilepsy. Then, the expression and coefficient of 15 key genes from the 
GSE143272 dataset were interpolated based on the risk score formula. 
The risk score of each sample was determined, and then the epilepsy 
group was divided into low- and high-risk scores based on their 
median risk score value. The following formula was used to calculate 
the risk score for the GSE143272 dataset:

 

= − ∗ + ∗ +
∗ − ∗ +
∗ − ∗ +
∗ + ∗ −
∗ + ∗ +
∗ − ∗ −
∗ +

Risk score 1549.336 RPS6KA3 588.388 CTSD
446.008 NCAM1 94.376 CREG1
640.352 CPVL 722.159 TNFRSF1A
17.809 PECAM1 640.925 IL7R
1789.441 ZNF101 852.298 RRM2B
125.355 MARCKSL1 826.417 MCM3
979.354 ATP7A ∗ +

∗
1776.780 MAP2K4

422.015 TNC

The association between the 15 key genes was depicted using a 
nomogram (Figure 7A), which exhibited that ZNF101 and MAP2K4 
expression were the main contributors to the multivariate logistic 
model. Then, the diagnostic performance of the multivariate logistic 
model for epilepsy was evaluated by DCA based on the GSE143272 
dataset. The results are illustrated in Figure 7C, which demonstrates 
that the line of the model was stable at a higher level than all and 
none in a certain range, and the net benefit of the model was higher, 
indicating that the diagnostic effect of the model was better. Finally, 
the ROC curve was plotted based on the risk scores of the GSE143272 
and GSE32534 datasets using the R package pROC to verify the 
utility of the multifactor logistic model in epilepsy diagnosis. 
According to ROC analysis, the multifactor logistic model 
demonstrated high accuracy in epilepsy diagnosis (Figures 7B,D). 
The functional similarity (Friends) analysis scores were used to 

FIGURE 6

Interaction network analysis of key genes. (A) mRNA-miRNA interaction network of key genes. (B) mRNA-TF interaction network of key genes. TF, 
transcription factor. Orange is mRNA, pink is miRNA, and purple is TF.
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determine the genes that play an important role in the biological 
process of epilepsy (Figure 7E). The results revealed that ZNF101 
played an essential role in epilepsy and was the closest to the cut-off 
value (cut-off value = 0.60).

The location of 15 key genes on the human chromosome was 
analyzed using the R package RCircos (31), and a chromosome 
localization map was drawn (Figure 7F), which revealed that more 
genes were located on chromosomes 1, 11, 17, and X; MARCKSL1 
and CREG1 were on chromosome 1, CTSD and NCAM1 on 

chromosome 11, MAP2K4 and PECAM1 on chromosome 17, and 
ATP7A and RPS6KA3 on chromosome X.

3.8 Differential expression validation 
analysis of key genes

To elucidate the roles of 15 key genes (RPS6KA3, CTSD, 
NCAM1, CREG1, CPVL, TNFRSF1A, PECAM1, IL7R, ZNF101, 

FIGURE 7

Key genes to construct diagnostic. (A) Logistic regression model nomogram of key genes in the diagnostic multivariate logistic model based on dataset 
GSE143272. (B) Diagnostic ROC curve of risk score of diagnostic multivariate logistic model in data set GSE143272. (C) DCA plot of the key genes of the 
diagnostic multivariate logistic model based on dataset GSE143272. (D) Diagnostic ROC curve of risk score of diagnostic multivariate logistic model in 
dataset GSE32534. (E) Functional similarity map of key genes. (F) Chromosomal mapping of key genes. The ordinate of the DCA plot is the net benefit, 
and the abscissa is the probability threshold or threshold probability. DCA, decision curve analysis. ROC, receiver operating characteristic; AUC, area 
under the curve. The closer the AUC is to 1 in the ROC curve, the better the diagnostic performance. When AUC was above 0.9, the accuracy was high.
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RRM2B, MARCKSL1, MCM3, ATP7A, MAP2K4, and TNC) within 
the GSE143272 dataset, a differential expression analysis was 
conducted comparing the epilepsy and control cohorts. The findings, 
depicted in Figure  8A, indicate that the expression levels of five 
pivotal genes (CTSD, CREG1, ZNF101, RRM2B, and MARCKSL1) 
demonstrated statistically significant differences (p < 0.001) between 
the epilepsy and control groups. Finally, the R package pROC was 
used to draw ROC curves based on the expression levels of key genes 
in the GSE143272 dataset. According to the ROC curves 
(Figures 8B–F), the expression level of key genes including CTSD, 
CREG1, PECAM1, ZNF101, RRM2B, MARCKSL1, and MAP2K4 
demonstrated a certain accuracy in classifying epilepsy and control 
groups (0.7 < AUC < 0.9). Moreover, the expression levels of 
RPS6KA3, NCAM1, CPVL, TNFRSF1A, IL7R, MCM3, ATP7A, and 
TNC exhibited low accuracy in classifying epilepsy and control 
groups (0.5 < AUC < 0.7).

By applying the same analytical approach, we  examined the 
expression profiles of key genes (RPS6KA3, CTSD, NCAM1, CREG1, 
CPVL, TNFRSF1A, PECAM1, IL7R, ZNF101, RRM2B, MARCKSL1, 
MCM3, ATP7A, MAP2K4, TNC) in the GSE32534 dataset. The 
differential expression patterns of these 15 key genes between the 
epilepsy group and the control group were illustrated using a grouped 
comparison chart (Figure 8G). These findings demonstrated that the 
expression levels of two key genes, namely NCAM1 and PECAM1, 
were highly statistically significant (p-value <0.01). Finally, the R 
package pROC was used to draw the ROC curve based on the 
expression levels of the key genes in the GSE32534 dataset. The ROC 
curves (Figures 8H–L) revealed that the expression levels of key genes 
NCAM1, CPVL, PECAM1, and TNC had high accuracy in classifying 
epilepsy and control groups (AUC >0.9). Furthermore, the expression 
levels of RPS6KA3, CTSD, CREG1, TNFRSF1A, IL7R, ZNF101, 
RRM2B, MARCKSL1, MCM3, ATP7A, and MAP2K4 exhibited 
moderate accuracy (0.7 < AUC < 0.9).

3.9 GSEA enrichment analysis based on 
high and low logistic risk score groups

GSEA was used to investigate the association between the 
expression of all 21,655 genes and the BPs, CCs, and MFs involved 
in different epilepsy risk score groups (low/high) in the GSE4290 
dataset (Figure  9A) in order to determine the effect of all gene 
expression levels in the GSE4290 dataset on the difference between 
high and low epilepsy risk score groups. The specific results are 
demonstrated in Table 4. The results revealed that all the genes in the 
GSE4290 dataset were significantly enriched in the neuronal system 
(Figure 9B), anti-inflammatory response GABA receptor signaling 
(Figure  9C), neurotransmitter receptors and postsynaptic signal 
transmission (Figure 9D), neuroactive ligand-receptor interaction 
(Figure  9E), and other biologically relevant functions and 
signaling pathways.

4 Discussion

This study identified 15 key genes linked to epilepsy, such as 
RPS6KA3 and TNFRSF1A, which are involved in lipid metabolism, 
apoptosis, and inflammation. These genes may influence seizure 

development and frequency. Additionally, we explored the role of 
CSRGs in epilepsy and developed a diagnostic model. Current 
epilepsy treatments, primarily including drugs and surgery (32), 
demonstrate varying effectiveness, with about 30% of patients 
experiencing drug-resistant epilepsy (33). This resistance may result 
from gene mutations, drug metabolism issues, and molecular changes 
in the brain (34).

Surgical treatment can control seizures by removing the lesion 
area, but it requires precise localization of the epileptic focus and has 
surgical risks, such as possible neurological damage (35). Current 
epilepsy treatments have limitations, making it essential to explore 
their molecular mechanisms and identify novel therapeutic targets. 
The complex pathology of epilepsy involves genetic mutations, 
neurotransmitter imbalances, and synaptic dysfunction. Studies have 
identified genes such as SCN1A, GABRA1, and KCNQ2 (36), which 
regulate neuronal electrophysiological activity, synaptic signaling, and 
neural development (37). Mutations in the SCN1A gene are a major 
cause of severe epilepsy in infants (38), while mutations in KCNQ2 
and KCNQ3 genes increase neuronal excitability, affecting seizure 
frequency and type (39). Neuroinflammation and oxidative stress also 
play crucial roles in epilepsy development (40), with 
neuroinflammation triggering abnormal neuronal firing and epileptic 
lesions and oxidative stress causing mitochondrial dysfunction and 
calcium imbalance (41). Since most studies focused on specific gene 
mutations or pathways without exploring their interactions, a 
comprehensive understanding of the etiology and pathogenesis of 
epilepsy is lacking despite advances in understanding molecular 
mechanisms. Most studies focus on specific gene mutations or 
signaling pathways without understanding the interactions between 
molecular mechanisms. Developing targeted treatments for epilepsy 
is challenging due to its diverse and individual causes. The global 
prevalence and treatment difficulties of epilepsy highlight the need for 
a deeper understanding of its molecular mechanisms for prevention 
and treatment.

Cellular senescence, an irreversible cell cycle arrest due to stress, 
was initially seen as protective against tumors but is now linked to 
various diseases, including cardiovascular, metabolic, and 
neurodegenerative disorders (42). Recently, research interest has been 
drawn to CSRGs, which are crucial in aging-related diseases through 
their effects on the cell cycle, metabolism, and inflammation (43). 
Studying these genes is vital for understanding complex disease 
mechanisms. For instance, genes such as p16INK4a, p21, and p53 are 
overexpressed in AD patients, which contribute to the disease through 
stress response, mitochondrial function, and neuroinflammation (44). 
Moreover, cellular aging leads to mitochondrial dysfunction and 
dopamine neuron damage, causing movement and cognitive issues 
(45). Notably, the SASP, a hallmark of cellular senescence, plays a 
critical role in establishing a chronic inflammatory microenvironment 
within the central nervous system. This is mediated by the secretion 
of various pro-inflammatory cytokines, including tumor necrosis 
factor-α (TNF-α) and interleukin-6 (IL-6). This inflammatory milieu 
not only exacerbates glial cell activation and synaptic structural 
abnormalities but also disrupts GABAergic inhibitory 
neurotransmission, thereby increasing neuronal synchrony and 
excitability. These collective alterations contribute to the 
pathophysiology and recurrence of epilepsy (46–48). Consequently, 
targeting senescence-related genes and pathways represents a 
promising therapeutic strategy.
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FIGURE 8

Validation analysis of differential expression of key genes. (A) Group comparison of key genes in the epilepsy group and the control group of dataset 
GSE143272. (B–F) Key genes RPS6KA3, CTSD, and NCAM1 (B), CREG1, CPVL, and TNFRSF1A (C), PECAM1, IL7R, and ZNF101 (D), RRM2B, MARCKSL1, 
and MCM3 (E), ATP7A, ROC curves of MAP2K4 and TNC (F) in dataset GSE143272. (G) Group comparison diagram of key genes in dataset GSE32534 
epilepsy and control groups. (H–L) Key genes: RPS6KA3, CTSD, and NCAM1 (H), CREG1, CPVL, and TNFRSF1A (I), PECAM1, IL7R, and ZNF101 (J), 
RRM2B, MARCKSL1, and MCM3 (K), ATP7A, GSE32534 ROC curves of MAP2K4 and TNC (L) in dataset GSE32534. *Represents p-value <0.05, indicating 
statistical significance. **Represents p-value <0.01, highly statistically significant. ***Represents p-value <0.001 and highly statistically significant. When 
AUC >0.5, it indicates that the molecule’s expression is a trend to promote the event’s occurrence, and the closer the AUC is to 1, the better the 
diagnostic effect. AUC between 0.5 and 0.7 had low accuracy, AUC between 0.7 and 0.9 had moderate accuracy, and AUC above 0.9 had high 
accuracy. DCA, decision curve analysis; ROC, receiver operating characteristic; AUC, area under the curve; TPR, true positive rate; FPR, false positive 
rate. Light blue represents the control group, and light red represents the epilepsy group.
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The role of cellular senescence in neurodegenerative diseases 
such as AD and PD is well-established; its mechanisms in epilepsy 
remain unclear. Most studies on epilepsy focus on inflammation 
and neuronal apoptosis (49), rarely addressing cell aging-related 
genes such as p16INK4a, p53, and CDKN2A. The expression patterns 
of CSRGs in epilepsy patients and their impact on the lesion 
microenvironment are not well understood. The precise function of 

cell senescence in different forms of epilepsy, including temporal 
lobe and infantile epilepsy, also needs further investigation.

This study analyzed gene expression data from epilepsy patients 
and healthy controls using the GEO database and various 
bioinformatics methods, overcoming traditional research challenges in 
data integration and model construction. This study has several 
limitations. Fifteen potential key genes in epilepsy were identified, 

FIGURE 9

GSEA analysis of the high and low-risk groups of epilepsy. (A) GSEA mountain plot of four biological functions of dataset GSE4290. (B–E) GSEA 
showed that all genes were significantly enriched in neuronal system (B), anti inflammatory response GABA receptor signaling (C), and anti-
inflammatory response GABA receptor signaling (C). Neurotransmitter receptors and postsynaptic signal transmission (D), neuroactive ligand receptor 
interaction (E). GSEA, gene set enrichment analysis. The screening criteria of GSEA were adj. p-value <0.05 and FDR value (q-value) <0.25, and the 
p-value correction method was BH.

TABLE 4 Results of GSEA (low/high) for GSE4290.

ID Set size Enrichment score NES p-value p. adjust q-value

REACTOME_NEURONAL_SYSTEM 394 0.47660382 1.96345638 1 × 10−10 2.479 × 10−7 2.4516 × 10−7

WP_GABA_RECEPTOR_SIGNALING 30 0.69762082 1.94311111 0.00011952 0.04938266 0.04883643

REACTOME_NEUROTRANSMITTER_

RECEPTORS_AND_POSTSYNAPTIC_SIGNAL_

TRANSMISSION 196 0.47801477 1.84995884 1.9014 × 10−6 0.00157115 0.00155377

KEGG_NEUROACTIVE_LIGAND_RECEPTOR_

INTERACTION 262 0.3956592 1.58541008 9.7042 × 10−5 0.04811335 0.04758116

GSEA, gene set enrichment analysis.
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including RPS6KA3, CTSD, and NCAM1. RPS6KA3, located on the X 
chromosome, encodes the RSK2 protein, crucial for neuronal growth 
and survival, and mutations in this gene are linked to various diseases 
(50). Mutations in CTSD gene, which encodes the Cathepsin D protein 
involved in lysosomal protein degradation, can lead to protein 
metabolism disorders and are associated with neurodegenerative 
diseases such as AD and PD (51, 52). NCAM1 gene encodes a neural 
cell adhesion molecule critical for neuronal interactions and network 
formation, and its abnormal expression is linked to various 
neurological disorders (53). CREG1 gene is a key transcriptional 
regulator, and its protein influences the cell cycle by interacting with 
retinoblastoma protein, impacting neuronal survival and 
differentiation (54). CPVL gene encodes a serine-like carboxypeptidase 
involved in protein degradation and immune modulation, affecting 
inflammatory and metabolic diseases (55). TNFRSF1A gene encodes 
TNFR1, a major mediator of TNF-α signaling, crucial in inflammation, 
apoptosis, and immune response, and is linked to various disorders, 
especially autoinflammatory and neurological diseases (56). PECAM1 
gene encodes a transmembrane protein in endothelial cells and 
platelets, which is essential for angiogenesis, inflammation, and 
intercellular interactions, potentially influencing the blood–brain 
barrier and neurovascular units in epilepsy (57). IL7R gene encodes 
the IL-7Rα, which is crucial for immune development and regulation 
in T and B cells (58, 59). ZNF101 gene produces a zinc finger protein 
that regulates gene expression, cell cycle, and DNA repair (60). RRM2B 
gene encodes a subunit essential for DNA replication and repair, 
maintaining genome stability. MARCKSL1influences cytoskeletal 
dynamics and cell movement by regulating phosphatidylinositol-4,5-
bisphosphate (PIP2) distribution (61). MARCKSL1 regulates 
cytoskeletal dynamics by controlling PIP2 distribution, aiding cell 
migration and invasion (62). MCM3 gene encodes a key DNA 
replication initiation complex component, crucial for DNA replication 
accuracy and genome stability (63). ATP7A gene mutations, affecting 
copper ion transport, are linked to copper metabolism disorders like 
Menkes and neurodegenerative diseases (64). MAP2K4 encodes 
MKK4, a dual-specificity kinase crucial in the MAPK pathway, 
responding to environmental stresses via JNK and p38 MAPK 
activation (65). Recent studies indicate that MAP2K4 is crucial in AD 
and PD by regulating apoptosis and neuroinflammation (66). TNC 
gene, which encodes an extracellular matrix protein, is abnormally 
expressed in neurodegenerative diseases, especially AD and PD, 
potentially worsening pathology by affecting cell adhesion and 
inflammation (67, 68). The column-line graph (Figure  6A) 
demonstrates that ZNF101 and MAP2K4 significantly contribute to 
the multifactorial logistic model. ZNF101 may influence neuronal 
survival by regulating DNA repair or apoptosis, while MAP2K4 is 
involved in the pathogenesis of epilepsy by affecting apoptosis and 
inflammation through the MAPK signaling pathway.

Among the 15 genes, RPS6KA3, MAP2K4, MARCKSL1, and 
CREG1 are associated with cell signaling, neuronal growth, and 
survival. Their proteins are involved in several crucial cell signaling 
pathways, such as MAPK and phosphatidylinositol signaling 
pathways. Mutations or abnormal expressions of these genes may 
affect neuronal excitability and plasticity, leading to abnormal neural 
networks and potentially causing seizures (66, 69). Besides, RRM2B, 
MCM3, ZNF101, CTSD, and ATP7A are involved in protein 
metabolism, cell cycle regulation, and genome stability, playing roles 
in DNA replication, repair, and protein degradation to maintain 

genome stability and cellular metabolic balance. Their functions are 
vital for neuronal survival, and any mutations or functional defects 
can result in disrupted protein metabolism and DNA damage 
accumulation, leading to neuronal damage and neurodegenerative 
diseases (64). NCAM1, TNC, PECAM1, IL7R, TNFRSF1A, and CPVL 
are associated with cell adhesion, inflammatory response, and 
immune regulation. The proteins encoded by these genes play essential 
roles in mediating intercellular interactions, facilitating the 
establishment of neural networks, and modulating immune system 
functions. Specifically, these proteins are crucial for neuronal cell 
adhesion, angiogenesis, and the regulation of immune responses. 
Abnormal expression of adhesion molecules and excessive 
inflammation can lead to neurodegenerative diseases (70).

Furthermore, mRNA-miRNA and mRNA-TF interaction networks 
were constructed to better understand the regulatory mechanisms of 
key genes in epilepsy. The mRNA-miRNA network revealed the role of 
miRNA in gene regulation, while the mRNA-TF network demonstrated 
the effect of TFs linked to neuronal function, stress response, and 
inflammation on epilepsy. These analyses addressed the limitations of 
gene expression data and offered new targets for personalized epilepsy 
treatment by regulating upstream factors of key genes. Significant 
regulatory interactions between 11 key genes and 72 miRNAs were 
identified in an mRNA-miRNA network, suggesting these miRNAs 
may impact epilepsy-related processes by modulating gene expression. 
For instance, RPS6KA3 interacts with several miRNAs (such as 
hsa-miR-30c-5p and hsa-miR-19a-3p), potentially affecting neuron 
growth and survival via the MAPK pathway, influencing neural 
plasticity and seizure frequency (71). Abnormal MAP2K4 expression 
may worsen neuronal stress and inflammation through JNK and p38 
pathways, highlighting its role in epilepsy (72).

Additionally, an mRNA-TF network analysis exhibited 13 key 
genes significantly interacting with 40 TFs. TFs such as JUN, FOS, and 
STAT3 have crucial roles in cellular stress response, immune 
regulation, and neuronal growth by controlling key genes such as 
ZNF101 and TNFRSF1A. Particularly, ZNF101 influences neuronal 
survival and dysfunction by managing DNA repair and the cell cycle. 
This regulatory network is vital for understanding the gene-TF axis in 
epilepsy, offering insights into the pathogenesis and personalized 
treatment strategies for the disease. Targeting specific miRNAs or TFs 
can effectively manage epilepsy-related gene expression, reducing 
neuronal damage and seizure frequency. For instance, miR-21 
influences neuronal survival via the phosphatase and tensin homolog 
(PTEN)/mammalian target of rapamycin (mTOR) pathway, and its 
intervention can mitigate epileptic seizures (72). Anti-inflammatory 
treatments targeting genes, including TNFRSF1A and IL7R, are 
essential for epilepsy patients exhibiting pronounced inflammatory 
responses (73, 74).

Bioinformatics and machine learning methods are used to develop 
an epilepsy diagnostic model using CSRGs, which lays a foundation 
for clinical diagnosis and personalized treatment. A multifactor 
logistic regression model was created using 15 key genes. The model 
demonstrated preliminary evidence of strong diagnostic potential 
based on the ROC analysis using GSE143272 and GSE32534 datasets 
(Figures  8B,D). This study demonstrated the effectiveness of a 
multifactor logistic model for diagnosing epilepsy at the genetic level, 
particularly using CSRG-based markers to distinguish patients from 
healthy individuals. This strategy combines multiple gene expressions 
for a more accurate prediction than single biomarker methods. The 
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multidimensional gene combinations enhance the reliability of the 
model, highlighting the diagnostic potential of CSRGs. Notably, 
ZNF101 and MAP2K4 significantly contribute to epilepsy diagnosis 
(Figure 8A). ZNF101, a zinc finger transcription factor, may affect 
neuronal DNA repair and homeostasis. Recent research links neuronal 
senescence and abnormal regulatory factor expression in patients with 
refractory epilepsy to neuroinflammation and disease progression (9, 
75). RPS6KA3, a key player in the MAPK signaling pathway, 
influences neuronal survival and excitability. Dysregulation of this 
pathway is linked to neuronal hyperexcitability and epilepsy (9, 11). 
MAP2K4 regulates the JNK and p38 MAPK pathways, impacting 
stress, apoptosis, and inflammation, and plays an important role in 
epilepsy-related neuronal damage and chronic inflammation (11, 76). 
These genes are crucial in epilepsy pathology, affecting 
neuroinflammation, synaptic signaling, and gene stability, offering 
insights into molecular mechanisms and potential therapies for 
epilepsy. The CSRGs-based genetic diagnostic model provides hints 
for personalized treatment. Early identification of high-risk epilepsy 
patients can help with personalized treatment strategies by detecting 
expression levels of key genes, including ZNF101 and MAP2K4. The 
role of inflammation-related genes (such as TNFRSF1A and IL7R) 
suggests that anti-inflammatory therapy can be  a new treatment 
direction, especially for patients with significant inflammatory 
responses, potentially reducing seizure frequency.

This study also analyzed differences between high- and 
low-epilepsy risk groups using GSEA on 21,655 genes from the 
GSE4290 dataset, revealing pathways related to epileptic 
mechanisms (Figures  8A–E). GSEA identified significant 
enrichment of nervous system function pathways in the high-risk 
group (Figure  8B). These neurological pathways encompass 
neurotransmitter receptors and postsynaptic signaling mechanisms, 
suggesting that these genes may play a pivotal role in aberrant 
neuronal signaling. This dysfunction is associated with the 
occurrence of seizures, which are closely connected to disrupted 
synaptic signaling and increased neuronal excitability in epilepsy. 
Furthermore, the connection between epilepsy and neuroinhibitory 
pathways was reinforced by the enrichment of the GABA receptor 
signaling pathway (Figure 8C). Abnormalities in GABA receptor 
signaling, a key inhibitory neurotransmitter, result in reduced 
inhibitory neuromodulation, increasing the risk of abnormal 
neuronal discharges (48). These findings suggested that targeting 
the GABA pathway can be  a potential therapeutic approach for 
controlling seizures. The findings also indicated that the neuroactive 
ligand-receptor interaction pathway (Figure 8E) was enriched in the 
high-risk epilepsy group. It also highlighted the enrichment of the 
neuroactive ligand-receptor interaction pathway in patients with 
high-risk epilepsy, indicating that its dysfunction may increase 
neuronal excitability and trigger seizures (77). Targeted intervention 
in this pathway can help regulate abnormal neural activity and 
reduce seizures. GSEA analysis linked seizures to key 
neurobiological pathways, particularly neurotransmitter 
abnormalities, GABA signaling, and neuroactive ligand-receptor 
interactions, offering potential targets for personalized treatments 
for epilepsy. Future multi-omics data research can further explore 
these pathways to develop new therapeutic strategies.

A total of 15 critical CSRGs were identified using bioinformatics 
and machine learning methodologies, and a diagnostic model was 
constructed that exhibited robust performance across both training 

and validation datasets. The primary aim of this study was to 
distinguish patients with epilepsy from healthy controls by leveraging 
gene expression profiles linked to cellular aging, thereby constructing 
a reliable diagnostic tool for epilepsy. The model assigned high and 
low scores to evaluate the likelihood of epilepsy at the time of 
diagnosis rather than predicting disease progression or recurrence 
risk. Although the validation dataset (GSE32534) was limited in size 
(n = 10), it corroborated these findings and was consistent with 
existing literature. Increasing the sample size can enhance the 
generalizability of these results. Currently, the model is in an 
exploratory phase and has not yet been validated at the protein level 
or with clinical samples. Given the constraints of time and resources, 
we  recommend using additional external datasets or data 
augmentation in future research to enhance the stability and 
applicability of the model to a broader and more diverse population.

5 Conclusion

In conclusion, the findings of this study indicated a significant 
association between cellular senescence and the pathophysiology of 
epilepsy, which may present novel targets for early diagnosis and 
personalized treatment strategies. Considering the complexity of 
epilepsy as a neurological disorder, the clinical applicability of these 
markers warrants further investigation. Future research should focus 
on a comprehensive exploration of these pathways, integrating multi-
omics data to substantiate their potential. This approach can yield 
innovative insights and strategies for the precise diagnosis and 
management of epilepsy. Moreover, future studies should aim to collect 
larger-scale epilepsy datasets through multi-center collaborations to 
enhance the robustness and generalizability of the model.
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