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Objectives: To investigate the utility of eye-tracking features as a neurobiological 
marker for identifying depression with mixed features (DMF), a psychiatric 
disorder characterized by the presence of depressive symptoms alongside 
subsyndromal manic features, thereby complicating both diagnosis and 
therapeutic intervention.

Methods: A total of 93 participants were included, comprising 41 patients with 
major depressive disorder (MDD), of whom 20 were classified as DMF, and 52 
healthy controls (HC). Eye-tracking features were collected using an infrared-
based device, and participants were evaluated using clinical scales including 
the Montgomery-Åsberg Depression Rating Scale (MADRS), Young Mania 
Rating Scale (YMRS), and Brief Psychiatric Rating Scale (BPRS). Performance of 
extreme gradient boosting (XGBoost) model based on demographic and clinical 
characteristics was compared with that of the model created after adding ocular 
movement data.

Results: Significant differences were observed in certain eye-tracking features 
between DMF, MDD, and HC, particularly in orienting saccades and overlapping 
saccades. Incorporating eye-tracking features into the XGBoost model 
enhanced the predictive accuracy for DMF, as evidenced by an increase in the 
area under the curve (AUC) from 0.571 to 0.679 (p < 0.05), representing an 18.9% 
improvement. This suggests a notable enhancement in the model’s ability to 
distinguish DMF from other groups. The velocity of overlapping saccades and 
task completion time during free viewing were identified as significant predictive 
factors.

Conclusion: Eye-tracking features, especially the velocity of overlapping 
saccades and free viewing task completion time, hold potential as non-invasive 
biomarkers for the identification of DMF. The integration of these parameters 
into the XGBoost machine learning model significantly improved the accuracy 
of DMF diagnosis, offering a promising approach for enhancing clinical decision-
making in psychiatric settings.
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1 Introduction

Depression ranks among the most prevalent mental disorders, 
characterized by high incidence, recurrence, and disability rates, 
which impose a significant burden on society, families, and individuals 
(1). Approximately 11.6% of patients with depression exhibit mixed 
features (2), defined by the presence of typical depressive symptoms 
alongside some manic or hypomanic characteristics, without meeting 
the diagnostic criteria for mania or hypomania (3, 4). Mixed features 
complicate the diagnosis and treatment of depression, as conventional 
single antidepressant therapies may be  insufficient to address the 
complexities of mixed presentations and potentially exacerbate manic 
symptoms (5, 6). Furthermore, the presence of mixed features not only 
increases the risk of suicide among patients (2), but also contribute to 
treatment resistance and a poor prognosis (7).

Diagnosing depression with mixed features (DMF) presents 
significant challenges in clinical practice due to the diverse and 
complex nature of its symptoms, which can mimic those of mania or 
hypomania (5). Clinicians must remain highly vigilant and conduct 
comprehensive assessments to accurately differentiate between the 
various manifestations of depression and bipolar disorder. In the 
absence of specific biomarkers, the diagnosis of DMF relies heavily on 
patients’ subjective reports and clinical observations, increasing the 
risk of both misdiagnosis and missed diagnosis (2). Consequently, the 
development of novel diagnostic strategies and the improvement of 
accuracy in identifying mixed features have become key research 
priorities in the field of mental health.

Eye-tracking technology, a non-invasive physiological 
measurement technique, has increasingly gained prominence in 
recent years within the fields of neurology, psychiatry and psychology 
research. This technology offers direct insights into cognitive 
processes, attention allocation, and emotional states by monitoring 
parameters such as gaze point, eye movement velocity, and eye 
movement trajectory (8). In the field of mental health, eye-tracking 
technology has been employed to investigate a variety of mental 
illnesses (9–11), due to its potential to elucidate the neurobiological 
mechanisms underlying these conditions.

Compared with healthy individuals, patients with depression 
exhibit distinct eye-tracking features, including a preference for 
negative emotional stimuli, a reduced fixation duration and number 
on positive stimuli, and an increased fixation duration and number on 
negative stimuli (12, 13). These features may serve as non-invasive 
biomarkers for diagnosing depression. Combining eye movement 
tracking with facial movement tracking can achieve up to 80% 
accuracy in predicting the worsening of depressive symptoms (14). 
Furthermore, distinct eye movement differences between mania and 
depression have been identified. Adolescents with depression exhibit 
a reduced response during the initial cognitive processing of emotional 
stimuli, while adolescents with mania do not significantly differ from 
healthy individuals (15). Eye-tracking features also differ among 
patients with bipolar disorder presenting different clinical 
manifestations. Patients with psychotic bipolar disorder exhibit more 
pronounced smooth pursuit dysfunction compared to those with 
non-psychotic bipolar disorder, which can be  used to distinguish 
between the two (16).

While eye-tracking technology has been utilized to differentiate 
between patients with depression and healthy controls, as well as 
between individuals with bipolar disorder and those with unipolar 

depression (17), no studies to date have investigated the potential of 
eye-tracking technology in identifying MDF in patients with 
depression. Given the significant overlap between mixed features and 
manic symptoms, we hypothesize that patients with DMF will exhibit 
distinct eye-tracking features compared to those with pure depression. 
This study aims to collect and analyze eye-tracking features in patients 
with DMF and those without mixed features. Additionally, this study 
will develop a machine learning prediction model incorporating 
demographic data, clinical scales, and eye-tracking features to assess 
the potential of eye movement metrics in identifying mixed features. 
We anticipate that this research will provide a novel perspective for 
accurately identifying DMF.

2 Methods

2.1 Participants

Our study included a total of 93 participants, consisting of 41 
patients with Major Depressive Disorder (MDD) and 52 healthy 
controls (HC). The MDD patients underwent clinical assessments 
conducted by two experienced clinical psychiatrists (each holding a 
doctoral degree and possessing over 5 years of experience in 
psychiatry) and were subsequently categorized into the DMF group 
(N = 20) and the non-DMF group (labeled as MDD, N = 21) based on 
the diagnostic criteria of DSM-5. The study flowchart is presented in 
Figure 1.

The patient group was recruited from psychiatric inpatients at 
Guangdong Provincial People’s Hospital in Guangzhou, China. The 
inclusion criteria were as follows: (a) meeting the diagnostic criteria 
for MDD as specified in the DSM-5; (b) no prior physical therapy, 
including modified electroconvulsive therapy or repetitive transcranial 
magnetic stimulation; (c) aged 10–25 years; (d) of Han ethnicity; (e) 
right-handed; (f) able to cooperate with the study; and (g) capable of 
understanding the study’s content with family assistance, willing to 
participate, and able to provide informed consent. The exclusion 
criteria included: (a) comorbidity with other mental or neurological 
disorders; (b) MDD in clinical remission or resolved; and (c) severe 
physical illness.

Healthy participants were recruited via community advertisements 
in Guangzhou, China. The inclusion criteria for healthy participants 
were: (a) no mental illness as per the DSM-5; (b) no family history of 
mental disorders; with the remaining criteria matching those of the 
patient group from (c) to (g). The exclusion criteria for healthy 
participants were: (a) neurological diseases; and (b) severe 
physical illnesses.

It is important to highlight that DMF is most prevalent in children 
and adolescents (7), whereas the peak onset of depression typically 
occurs later in life. To ensure comparability of the results, we limited 
the age range of all study participants to 10–25 years.

2.2 Demographic and clinical scale 
assessment

This study collected demographic information, including gender, 
age, educational attainment, and history of leave of absence, from all 
participants. Each participant was interviewed by two experienced 
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clinical psychiatrists, both holding doctorate degrees and possessing 
over 5 years of psychiatric experience. Interviews and standardized 
scales were utilized to evaluate suicide history, depression severity, 
mania levels, and the severity of psychotic symptoms.

The Montgomery-Asberg Depression Rating Scale (MADRS) is 
utilized to assess the severity of depressive symptoms (18). The Young 
Mania Rating Scale (YMRS) is employed to evaluate the level of mania 
(19). The Brief Psychiatric Rating Scale (BPRS) is utilized to assess the 
severity of psychotic symptoms, comprising five subscales: anxiety/
depression, lack of energy, cognitive disturbance, activation, and 
hostility/suspiciousness (20). The Chinese version of the BPRS 
includes two additional items: impaired insight and work 
incapacity (21).

2.3 Eye-tracking

The eye-tracking features were recorded using a pupil center 
corneal reflections method that sampled at a 90-Hz rate. 
Eye-tracking system is name EyeKnow (Beijing CAS-Ruiyi 
Information Technology Co., Ltd). Prior to the experiment, a five-
point calibration procedure was performed to calibrate the eye 
movement data with a maximum calibration error of 2° in radius. 
The eye-tracking features were analyzed and calculated by the 
eye-tracking system’s embedded data processing module. 
Participants received standardized and comprehensive instructions 
before testing to minimize potential variability. A detailed protocol 
was followed, outlining the sequence of tests to further reduce 

FIGURE 1

Flow chart of the study. MDD, Major depressive disorder; DMF, Depression with mixed features; HC, Healthy controls.
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variability. The total time required to complete the entire task was 
approximately 10 min, including time for calibration, an audio-
visual demonstration, and task execution.

The eye-tracking paradigms include: (1) Smooth Pursuit Tracking: 
A green dot moved along a sinusoidal trajectory with a horizontal/
vertical/circular amplitude of 20° and a frequency of 0.2 Hz. Participants 
were asked to continuously track the sinusoidal movement of the target 
dot. Participants complete two trials. The first trial involves a single task, 
while the second trial requires participants to manage two tasks 
simultaneously, such as tracking a moving target while simultaneously 
remembering or identifying its characteristics. The single task assesses 
participants’ fundamental visuomotor processing abilities, whereas the 
dual-task assesses these abilities in a distracting multitasking 
environment. The recorded metrics for this component include latency, 
tracking speed, tracking acceleration, deviation count, total deviation, 
and mean deviation. Additionally, the single task also requires recording 
overshoot count, undershoot count, tracking gain, and reaction time. 
(2) Orienting Saccades (OS): A green target dot was displayed, and 
participants were instructed to rapidly shift their gaze from one point 
to another. This task evaluated participants’ saccadic control and the 
speed of their visual attention shifts. The recorded metrics included 
accuracy, latency, fastest completion time, average completion time, 
average saccade speed, and maximum saccade speed. (3) Overlapping 
Saccades (OLS): Participants were instructed to scan a series of 
overlapping targets. This task evaluated participants’ saccadic control 
and attention allocation abilities in processing continuous visual stimuli. 
The recorded metrics included accuracy, latency, fastest completion 
time, average completion time, average saccade speed, maximum 
saccade speed, overshoot count, undershoot count, multi-step saccade 
count, saccade gain, and maximum vertical eye movement. (4) Anti-
saccades (AS): Similar to orienting saccades, participants were 
instructed to execute a saccade to the opposite position of the target dot 
as quickly as possible. This task evaluated participants’ inhibitory 
control and proactive attention shifting abilities. The recorded metrics 
included accuracy, latency, fastest completion time, average completion 
time, uncorrected error rate, average saccade speed, maximum saccade 
speed, and maximum vertical eye movement. (5) Free Viewing (FV): 
The task allowed participants to freely observe a scene without specific 
instructions. This task evaluated participants’ natural visual exploration 
behavior and attention allocation. The recorded metrics included 
saccade count, fixation count, and task average completion time. (6) Go/
No Go Task; Participants were required to respond to a series of stimuli, 
where some stimuli (Go) required a response, while others (No Go) 
required inhibiting a response. This task evaluated participants’ selective 
attention and inhibitory control abilities. The recorded metrics included 
accuracy and latency. For data collection methods across different 
paradigms, refer to relevant research papers (12, 22, 23).

2.4 Machine learning (ML)

We constructed a dataset using baseline demographic characteristics 
such as gender, age, educational attainment, and school absenteeism, 
along with clinical questionnaires (BPRS, MADRS, YMRS) and eye 
movement data (OS, OLS, AS, FV). These features were used to train a 
model to predict whether each patient with depression exhibits mixed 
features. The data were normalized prior to analysis. The dataset was 
then randomly divided into a training set and a test set in a 7:3 ratio.

The machine learning algorithm employing extreme gradient 
boosting (XGBoost), implemented using the XGBoost library in 
Python 3.7, was used to develop predictive models that effectively 
perform classification tasks. To investigate the correlation between 
eye movement parameters and mixed features, two distinct feature 
sets were developed. XGBoost-1 was trained using demographic 
characteristics (gender, age, educational attainment, and school 
absenteeism) and clinical questionnaires (BPRS, MADRS, YMRS), 
without including any eye movement parameters. In contrast, 
XGBoost-2 includes the aforementioned characteristics and eye 
movement parameters (OS, OLS, AS, FV). To optimize the 
performance of the XGBoost model, we systematically tuned the key 
hyperparameters. Supplementary Table 1 shows the ranges of the 
hyperparameters that were tuned and the final optimal parameter 
values that were determined. Supplementary Figure 1 illustrates the 
changes in cross—validation AUC scores during the Bayesian 
optimization process. The model’s predictive discrimination ability 
was evaluated using accuracy, precision, recall, F1 score, and area 
under the curve (AUC), calculated using R-Studio 4.2.2. Model 
performance was compared using AUC, decision curve analysis 
(DCA), and net reclassification improvement (NRI). The AUC of the 
two models was compared using the DeLong test in MedCalc 22.021. 
Additionally, the local explanation technique SHAP (Shapley 
Additive Explanations) was used to identify which features 
significantly influence the model’s output and to elucidate the model’s 
decision-making process.

2.5 Statistical analysis

Descriptive analyses were conducted on the demographic data 
and clinical symptom assessment data from the three subject groups 
in this study, including demographic characteristics, clinical 
questionnaires, and eye movement data. The analysis of variance 
(ANOVA) F test and the Pearson chi-square test were used to 
compare continuous and categorical data among the three groups: 
DMF, MDD, and HC. Groups that exhibited statistically significant 
differences after the analysis of variance underwent further post hoc 
comparisons. Spearman correlation analysis was used to assess the 
relationship between disease group scale scores and eye movement 
parameters. The significance level was set at p < 0.05. All statistical 
analyses were performed using SPSS version 26.0.

3 Results

3.1 Demographic and clinical 
characteristics

This study included 93 participants, comprising 20 individuals 
with DMF, 21 with MDD, and 52 healthy controls (HC). Table 1 
presents the demographic and clinical characteristics across the three 
groups. A higher proportion of women was observed in both the 
DMF and MDD groups, but the statistical difference between these 
two groups was not significant (Female: DMF, 85%; MDD, 76.2%; 
χ2 = 0.506, p = 0.477; HC, 50%). There were no dropouts in the HC 
group, while a proportion of participants in both the DMF and MDD 
groups did drop out of school. The difference in dropout rates 
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between these two groups was also not statistically significant (School 
Dropout: DMF, 35%; MDD, 19%; χ2 = 1.328, p = 0.249). Both the 
DMF and MDD groups exhibited suicidal ideation or behavior, with 
no significant statistical difference between them (χ2 = 1.205, 
p = 0.272). In terms of clinical characteristics, with the exception of 
the Young Mania Rating Scale (YMRS) results, no statistically 
significant differences were found between the DMF group and the 
MDD group (all p > 0.05). The Impaired Insight score was 
significantly higher in the DMF group than in the HC group 
(t = −2.878, p = 0.005), although the difference from the MDD group 
was not statistically significant. Additionally, the difference in 
Impaired Insight scores between the HC group and the MDD group 
was not statistically significant. Regarding YMRS scores, the DMF 
group exhibited significantly higher scores than both the MDD group 
and the HC group (DMF vs. MDD: t = 3.041, p = 0.006; DMF vs. HC: 
t = −3.652, p = 0.002), while the statistical difference between the 
MDD and HC groups was not significant (MDD vs. HC: t = −1.594, 
p = 0.126).

3.2 Eye-tracking features

Table 2 presents the eye-tracking features for each group. The 
metrics for smooth pursuit tracking (both dual task and single task), 
eye fixations, and responsive search score did not show statistically 
significant differences among the three groups. However, several 
indicators related to OS, OLS, AS, FV, and the Go/NoGo Task showed 
statistically significant differences among the groups (p < 0.05). The 
specific indicators are as follows: OS-fastest completion time 
(F = 3.385, p = 0.039), OS-maximum saccade speed (F = 3.577, 
p = 0.033), OLS-fastest completion time (F = 3.128, p = 0.049), 
OLS-average saccade speed (F = 4.233, p = 0.01), OLS-maximum 
saccade speed (F = 3.403, p = 0.038), OLS-undershoot count 
(F = 3.264, p = 0.043), OLS-saccade gain (F = 4.245, p = 0.018), 
AS-average completion Time (F = 3.181, p = 0.047), FV-saccade 
count (F = 8.028, p = 0.001), FV-fixation count (F = 7.583, p = 0.001), 
FV-task average completion time (F = 3.378, p = 0.039), Go/NoGo-
accuracy (F = 3.922, p = 0.024).

TABLE 1 Demographic and clinical features.

Items DMF (N = 20) 
Mean (sd)/N (%)

MDD (N = 21) 
Mean (sd)/N (%)

HC (N = 52) 
Mean (sd)/N (%)

Significant direction

Age 18.05 (3.35) 17.52 (3.49) 17.79 (7.93)

Gender Female: DMF, MDD > HC

  Male 3 (15%) 5 (23.8%) 26 (50%)

  Female 17 (85%) 16 (76.2%) 26 (50%)

Educational attainment

  <9 7 (35%) 6 (28.6%) 5 (9.6%)

  9–12 8 (40%) 10 (47.6%) 32 (61.5%)

  >12 5 (25%) 5 (23.8%) 15 (28.8%)

School dropout HC without dropout

  No 13 (65%) 17 (81%) 52 (100%)

  Yes 7 (35%) 4 (19%) /

Suicidal ideation and behavior HC without suicidal ideation and behavior

  No / / 52 (100%)

  Suicidal ideation only 8 (40%) 12 (57.1%) /

  Suicide behavior 12 (60%) 9 (42.9%) /

BPRS total score 31.11 (7.59) 30.57 (8.03) 19.02 (1.42) DMF, MDD > HC

  Anxiety/depression 2.51 (0.93) 2.72 (0.75) 1.17 (0.29) DMF, MDD > HC

  Lack of energy 1.45 (0.60) 1.59 (0.79) 1.04 (0.10) DMF, MDD > HC

  Cognitive disturbance 1.52 (0.67) 1.25 (0.48) 1.02 (0.07) DMF, MDD > HC

  Activation 1.71 (0.57) 1.51 (0.41) 1.04 (0.10) DMF, MDD > HC

  Hostility/suspiciousness 1.44 (0.53) 1.31 (0.48) 1.02 (0.07) DMF, MDD > HC

BPRS additional questions

  Impaired insight 1.39 (0.98) 1.1 (0.44) 1 (0) DMF > HC

  Work incapacity 1.78 (1.40) 2 (1.41) 1 (0) DMF, MDD > HC

MADRS 35.78 (12.55) 37.86 (10.34) 11.43 (2.98) DMF, MDD > HC

YMRS 8.39 (9.37) 1.38 (3.03) 0.31 (0.81) DMF > MDD、HC

DMF, Depression with mixed features; MDD, Major depressive disorder; HC, Healthy controls; BPRS, Brief Psychiatric Rating Scale; MADRS, Montgomery-Asberg Depression Rating Scale; 
YMRS, Young Mania Rating Scale.
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TABLE 2 Oculometric parameters.

Items DMF (N = 13)
Mean (sd)

MDD (N = 21)
Mean (sd)

HC (N = 48)
Mean (sd)

ANOVA p DMF vs. MDD DMF vs. HC MDD vs. HC

Smooth pursuit tracking (dual task)

Latency (ms) 754.74 (537.94) 1,307.04 (3,207.74) 707.18 (838.98) 0.415

Tracking speed (°/s) 20.25 (10.88) 40.34 (47.2) 26.43 (18.5) 0.084

Tracking acceleration (°/s2) 38.58 (38.78) 268.44 (697.13) 167.66 (708.64) 0.605

Deviation count (times) 25.46 (18.66) 22.57 (16.94) 20.67 (18.79) 0.693

Total deviation (>4°, °) 140.25 (104.96) 140.41 (111.43) 118.36 (107.42) 0.664

Mean deviation (>4°, °) 5.46 (0.8) 5.84 (1.93) 5.38 (1.58) 0.549

Smooth pursuit tracking (single task)

Latency (ms) 641.31 (250.7) 580.13 (263.14) 577.14 (339.01) 0.795

Tracking speed (°/s) 20.81 (5.32) 32.07 (36.75) 40.09 (72.12) 0.558

Tracking acceleration (°/s2) 41.05 (25.86) 889.93 (3,822.71) 1,923.84 (9,479.09) 0.691

Deviation count (times) 36.31 (19.76) 32.67 (25.57) 24.44 (23.72) 0.182

Total deviation (>4°, °) 192.85 (107.93) 181.74 (140.73) 132.83 (124.34) 0.174

Mean deviation (>4°, °) 5.37 (0.67) 5.63 (0.69) 5.61 (1.27) 0.758

Overshoot count (times) 8.77 (8.04) 7.86 (7.7) 6.31 (4.83) 0.37

Undershoot count (times) 16.15 (13.24) 10.52 (9.11) 8.98 (11.26) 0.125

Tracking gain (−) 80.24 (41.47) 66.66 (28.83) 59.76 (48.48) 0.315

Reaction time (ms) 514.79 (176.77) 463.59 (200.63) 434.03 (146.18) 0.292

Orienting saccades

Accuracy (%) 100 (0) 97.93 (5.24) 99.7 (2.06) 0.065

Latency (ms) 276.31 (56.65) 266.06 (52.25) 260.2 (30.75) 0.458

Fastest completion time (ms) 270.76 (74.59) 240.48 (54.22) 233.68 (28.71) 0.039 0.191 0.033 1

Average completion time (ms) 343.34 (83.75) 309.41 (107.48) 292.46 (37.5) 0.067

Average saccade speed (°/s) 209.21 (119.47) 281.98 (131.21) 282.01 (68.46) 0.050

Maximum saccade speed (°/s) 420.32 (212.07) 565.66 (192.73) 500.5 (113.98) 0.033 0.028 0.305 0.335

Overlapping saccades

Accuracy (%) 99.3 (2.52) 98.61 (4.54) 99.83 (1.2) 0.216

Latency (ms) 333.4 (65.35) 317.1 (103.07) 312.2 (64.86) 0.676

Fastest completion time (ms) 292.21 (86.58) 233.59 (76.66) 248.91 (57.17) 0.049 0.049 0.132 1

(Continued)
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TABLE 2 (Continued)

Items DMF (N = 13)
Mean (sd)

MDD (N = 21)
Mean (sd)

HC (N = 48)
Mean (sd)

ANOVA p DMF vs. MDD DMF vs. HC MDD vs. HC

Average completion time (ms) 408.42 (71.51) 359.12 (117.33) 351.12 (71.87) 0.106

Average saccade speed (°/s) 218.89 (94.17) 292.36 (105.08) 291.64 (67.84) 0.018 0.042 0.019 1

Maximum saccade speed (°/s) 506.47 (247.15) 648.42 (183.38) 559.89 (125.76) 0.038 0.049 0.910 0.131

Overshoot count (times) 0.46 (0.78) 1.1 (1.26) 0.58 (1.11) 0.155

Undershoot count (times) 2.15 (2.3) 1.57 (1.81) 0.9 (1.45) 0.043 1 0.060 0.396

Multi-step saccade count (times) 0 (0) 0.05 (0.22) 0 (0) 0.236

Saccade gain 0.88 (0.18) 0.94 (0.12) 0.98 (0.09) 0.018 0.300 0.016 0.712

Maximum vertical eye movement (Up, °) 18.58 (3.91) 19.06 (3.25) 18.46 (3.58) 0.813

Maximum vertical eye movement (Down, °) 20.85 (3.27) 19.44 (4.04) 20.11 (5.2) 0.691

Maximum horizontal eye movement (Left, °) 18.04 (3.19) 19.86 (5.83) 20.27 (5.06) 0.374

Maximum horizontal eye movement (Right, °) 18.89 (4.32) 21.22 (7.3) 20.23 (5.08) 0.503

Anti-saccades

Accuracy (%) 55.32 (37.65) 65.94 (20.97) 64.65 (26.59) 0.496

Latency (ms) 320.69 (74.67) 337.98 (57.85) 321.82 (52.15) 0.532

Fastest completion time (ms) 293.41 (134.54) 302.96 (129.67) 260.14 (47.29) 0.16

Average completion time (ms) 445.81 (145.59) 420.92 (116.64) 376.99 (71.65) 0.047 1 0.085 0.277

Uncorrected error rate 21.08 (36.48) 10.78 (12.85) 9.61 (17.43) 0.206

Average saccade speed (°/s) 205.96 (117.81) 249.48 (109.53) 254.54 (77.2) 0.249

Maximum saccade speed (°/s) 508.91 (243.47) 621.85 (243.65) 556.53 (181.33) 0.282

Maximum vertical eye movement (Up, °) 20.43 (11.3) 25.16 (7.28) 25.84 (7.92) 0.122

Maximum vertical eye movement (Down, °) 23.21 (9.59) 22.84 (7.57) 25.87 (6.54) 0.219

Maximum horizontal eye movement (Left, °) 29.13 (11.79) 32.27 (7.06) 32.58 (8.35) 0.441

Maximum horizontal eye movement (Right, °) 30.17 (13.48) 30.56 (7.29) 33.57 (7.45) 0.265

Free viewing

Saccade count (times) 34 (7.79) 38.95 (4.73) 32.56 (6.14) 0.001 0.073 1 <0.001

Fixation count (number) 35.15 (8.07) 39.71 (4.73) 33.42 (6.17) 0.001 0.119 1 0.001

Task average Completion time (s) 0.93 (0.43) 1.11 (0.28) 1.22 (0.37) 0.039 0.527 0.039 0.713

Go/NoGo task

Accuracy (%) 58.46 (29.96) 49.05 (22.34) 67.08 (24.49) 0.024 0.861 0.814 0.021

Latency (ms) 352.3 (121.29) 330.35 (132.97) 363.82 (116.13) 0.576

DMF, Depression with mixed features; MDD, Major depressive disorder; HC, Healthy controls.
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Figure 2 displays the results of post hoc comparisons among the 
three groups. The OS-maximum saccade speed, OLS-average saccade 
speed, and OLS-maximum saccade speed were slower in the DMF 
than in the MDD, while the OLS-fastest completion time was longer 
in the DMF than in the MDD. No statistically significant differences 
were observed for the remaining indicators between the DMF and 
MDD groups. The indicators that showed differences between the 
DMF and HC include OS-fastest completion time, OLS-average 
saccade speed, OLS-saccade gain, and FV-task average completion 
time. In contrast, the indicators that showed differences between the 
MDD and HC are FV-saccade count, FV-fixation count, and Go/
NoGo accuracy.

3.3 Correlation analysis between 
eye-tracking features and clinical scales

Figure 3 presents the correlation analysis between eye-tracking 
features and clinical scales in the DMF and MDD. Notably, only the 
OS-maximum saccade speed showed a negative correlation with 
BPRS-impaired insight (p < 0.05), while no significant correlations 
were observed between other eye-tracking features and clinical scales. 
These findings suggest that eye-tracking features represent a distinct 
set of characteristic data for patients with depression, independent of 
clinical scale scores.

3.4 Predictive value of eye-tracking 
features for DMF

The dataset was randomly divided into two groups: a training set 
comprising 70% of the 34 patients and a test set consisting of the 
remaining 30%. XGBoost-1 was trained using demographic and clinical 
features, achieving an area under the curve (AUC) of 0.571 (95% 
confidence interval [CI]: 0.143, 0.964) in the test set. When additional 
eye movement parameters were incorporated, including OS-fastest 
completion time, OS-maximum saccade speed, OLS-fastest completion 
time, OLS-average saccade speed, OLS-maximum saccade speed, 
OLS-undershoot count, OLS-saccade gain, AS-average completion 
time, FV-saccade count, FV-fixation count, FV-task average completion 
time, and Go/NoGo-accuracy, the AUC of XGBoost-2 improved to 
0.679 (95% CI: 0.321, 0.964) (Figure 4). The DeLong test indicates that 
the AUC of the XGBoost algorithm improved by 0.108 (p = 0.039), 
reflecting an 18% enhancement in performance. Additionally, the 
metrics of accuracy, precision, recall, and F1 score increased by 33.2, 
12.4, 50.1, and 18.9%, respectively (Table 3). DCA shows that when the 
risk threshold is set between 0.69 and 0.78, XGBoost-2 exhibits superior 
diagnostic efficiency and net benefit compared to XGBoost-1.

3.5 Eye-tracking features prediction the 
optimal feature set of DMF

Figure 5 illustrates the optimal feature set for the XGBoost-2 
model. The YMRS emerges as the most significant predictor of 
XGBoost-2 classification, followed closely by OLS-maximum saccade 
speed and BPRS-hostility/suspiciousness. Among the eye-tracking 
features, the top three predictive factors are OLS-maximum saccade 

speed, FV-task average completion time, and OLS-average saccade 
speed. The SHAP analysis indicates that a longer AS-average 
completion time, a slower OLS-maximum saccade speed, and lower 
MADRS scores are closely associated with the identification of mixed 
features. This evidence supports the classification of these features as 
DMF by the XGBoost-2 model. By integrating results from 
eye-tracking features (OLS, AS, FV) and clinical scales (YMRS, 
MADRS), the predictive capacity of the XGBoost model for DMF 
is enhanced.

4 Discussion

This study investigated the relationship between eye-tracking 
features and depression, aiming to develop a prediction model for 
mixed features using machine learning methods. A key finding was 
the identification of significant differences in eye-tracking features 
among DMF, MDD, and HC. Notably, in certain indicators of OS and 
OLS, the DMF exhibited slower maximum and average saccade 
speeds, as well as longer fastest completion times compared to the 
MDD. Furthermore, the DMF demonstrated significantly more 
saccades and fixations during the FV than the HC, suggesting that 
DMF may experience specific cognitive impairments related to visual 
attention and processing speed. Another significant finding was that 
incorporating eye-tracking features into the machine learning 
prediction model markedly enhanced its ability to predict DMF. This 
indicates that eye-tracking features provide valuable additional 
information for identifying DMF, underscoring their potential role 
in diagnosing mental health disorders.

Patients with depression exhibit abnormalities in eye-tracking 
features, potentially linked to the neural mechanisms underlying 
emotion regulation and cognitive control (13). We  found that 
eye-tracking features are also correlated with DMF. Notably, the 
reduced performance of DMF patients in the maximum saccade 
speed of OS and the average saccade speed of OLS may indicate 
distinct neurocognitive substrates compared to patients with 
non-mixed depression. These abnormalities may reflect a reduced 
ability to process emotional stimuli, which is consistent with the 
attentional bias and emotional regulation deficits often observed 
in patients with depression (5). A decreased ability to process 
emotional stimuli often indicates a poorer prognosis (24). 
Moreover, the observed slowing of eye-tracking features may 
be associated with functional abnormalities in the prefrontal cortex 
and limbic system, which are crucial for regulating attention and 
emotional responses (25, 26). Some studies suggest that patients 
with bipolar disorder exhibit varying attention preferences for 
emotion-related images at different clinical stages, potentially 
linked to alterations in eye movement parameters (27). Our 
findings support this notion and specifically focus on DMF, a 
subgroup believed to share certain characteristics with patients 
diagnosed with bipolar disorder, yet have received comparatively 
less attention in previous studies (6).

Eye-tracking technology has garnered significant attention for its 
applications in mental disorder-related conditions, due to its 
non-invasive nature and its ability to directly measure visual attention 
allocation. This technology can reveal patients’ attention biases when 
processing emotional stimuli, thereby aiding in understanding the 
pathological mechanisms underlying depression (28). Researchers 
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have utilized eye tracking within the emotion recognition paradigm 
to explore the connections between MDD, childhood trauma, and 
emotional processing (29). In terms of disease diagnosis, the 
parameters derived from eye tracking provide an objective tool for 
diagnosis, thereby reducing reliance on patients’ subjective reports 
(14). Our study also found that there were certain correlations among 
the BPRS, YMRS, and MADRS scores in MDD patients, while there 
were almost no correlations between eye-tracking features and the 
above—mentioned scale results. This confirms that eye-tracking 
features are a set of independent parameters that can bypass the 
ambiguity of scales and be  included in the objective diagnostic 
markers for MDD. Moreover, the application of eye-tracking 
technology can go beyond diagnosis; it can also be used to monitor 
disease progression and evaluate treatment effectiveness. By 
identifying patients’ responses to treatment over an extended period, 
clinicians can adjust treatment plans in a timely manner for more 
precise interventions. Currently, some researchers are investigating 
the use of eye-tracking technology for long-term assessment of the 
severity of depression in order to better adjust treatment 
strategies (30).

Identifying mixed features in patients with depression presents a 
significant challenge in psychiatry. Table 4 summarizes the advantages 
and disadvantages of the existing diagnostic schemes for 
MDF. Current diagnostic standards primarily rely on 
symptomatology, leading to a high rate of missed diagnoses and 
misdiagnoses. Some studies have used the YMRS to identify DMF, 
employing criteria such as a Depressive Symptomatology-Clinician-
Rated Version score ≥ 15 and a YMRS score between 2 and 12. 
However, researchers have noted that existing scales are insufficient 
for detecting primary DMF (31, 32). In this study, the XGBoost-1 
model, incorporating demographic and clinical scales (including 
YMRS), yielded an AUC of only 0.571, indicating that common 
clinical scales may lack reliability in identifying DMF, consistent with 
previous findings. In contrast, the XGBoost-2 model, integrating 
eye-tracking features, achieved an AUC of 0.679, representing an 
18.9% improvement, along with enhanced accuracy and precision. 
SHAP analysis identified that certain indicators within OLS, AS, and 
FV significantly influence the prediction model. These results provide 
evidence that eye-tracking, an emerging auxiliary technology, can 
be applied in clinical settings. As an objective indicator, clinicians 

FIGURE 2

Inter-group differences in eye-tracking features. (a) Orienting saccades: fastest completion time; (b) Orienting saccades: maximum saccade speed; (c) 
Overlapping saccades: fastest completion time; (d) Overlapping saccades: average saccade speed; (e) Overlapping saccades: maximum saccade 
speed; (f) Overlapping saccades: undershoot count; (g) Overlapping saccades: saccade sain; (h) Anti-saccades: average completion time; (i) Free 
viewing: saccade count; (j) Free viewing: fixation count; (k) Free viewing: task average completion time; (l) Go/NoGo task: accuracy.
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FIGURE 3

Heatmap of correlations between scale results and eye-tracking features. OLS, overlapping saccades; OS, Orienting saccades; FV, Free viewing; AS, 
Anti-saccades; BPRS, Brief Psychiatric Rating Scale; MADRS, Montgomery-Asberg Depression Rating Scale; YMRS, Young Mania Rating Scale.

may consider incorporating eye-tracking features into early screening 
protocols for DMF to achieve more accurate diagnoses.

Additionally, the application of ML in neurological and 
psychiatric disorders is becoming an increasingly important trend. 
By analyzing extensive clinical, psychological, and biological data, 
machine learning models can identify patterns and trends related to 
neurological and psychiatric disorders, thereby supporting the 
prediction, diagnosis, and treatment of these conditions. For instance, 
14 types of ML algorithms are effective for early detection of cognitive 
impairment (33). In depression research, XGBoost and network 
analysis help identify depression-related factors and their 

relationships, and can be applied to epidemiological studies using 
large survey data (34, 35). By incorporating multimodal data and 
combining it with ML, depression diagnosis technology may further 
develop, particularly in improving the accuracy of identifying 
depression subtypes.

When using ML in research, it is crucial to be cautious about 
over-fitting, as it can lead to a model performing well on the training 
data but poorly on unseen data, thereby severely affecting the model’s 
generalization ability. In this study, we used the Bayesian optimization 
algorithm to automatically search for the optimal hyperparameter 
combination for the XGBoost model: limiting the maximum depth 

TABLE 3 Prediction results of XGBoost.

Accuracy Precision Recall F1 score AUC

XGBoost-1 0.546 (0.273, 0.818) 0.667 (0.333, 1.000) 0.571 (0.143, 0.861) 0.615 (0.200, 0.857) 0.571 (0.143, 0.964)

XGBoost-2 0.727 (0.455, 0.909) 0.750 (0.571, 1.000) 0.857 (0.571, 1.000) 0.800 (0.571, 0.933) 0.679 (0.321, 0.964)

All are 95% confidence intervals (CI). AUC, Area under the curve.
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of trees (max depth: 3–10) to prevent the trees from becoming too 
complex, using gamma (0–1) and min child weight (1–10) parameters 
to control the threshold for tree node splitting to reduce model 
complexity, adopting a small learning rate range (0.01–0.3) to 
stabilize model training, and combining 5-fold cross-validation 
(cv. = 5) to evaluate the model’s performance on different data 

subsets. This optimization strategy can effectively prevent over-fitting 
while maintaining the model’s predictive performance.

This study does have certain limitations. Firstly, the relatively 
small sample size may have limited the statistical power and 
generalizability of the results. Secondly, participants were recruited 
from specific geographical locations and cultural backgrounds, 

FIGURE 4

The performance of the mixed features pre-prediction model, as assessed by the receiver operating curve and decision curve analysis, for XGBoost-1 
and XGBoost-2 on the testing dataset. (a) The ROC curve comparison; (b) Decision curve analysis. AUC, area under the curve; ROC, receiver operating 
characteristic.
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FIGURE 5

The feature sets of the top-performing model were evaluated using SHAP analysis. (a) Features are ordered from the most influential to the least, based 
on their contribution to the predictive accuracy of XGBoost-2 in forecasting mixed features. (b) Feature Decision Analysis illustrates how the model 
utilizes these features to make decisions. The lines in the figure depict the trajectory of changes in model output values as feature values vary. It can 
be observed that changes in AS—Average Completion Time lead to significant fluctuations in model output values (within a range of approximately −2 
to 2), while features at the bottom, such as FV—Fixation Count, have relatively smaller impacts on the model output. (c) The SHAP Value Distribution 
shows the contribution distribution of each feature to the model’s prediction results. The influence of AS—Average Completion Time is the most 
significant. When its value is high (red points), it tends to have a positive contribution to the prediction results, while a low value (blue points) has a 
negative contribution. OLS—Maximum Saccade Speed and MADRS also show strong predictive power. OLS, overlapping saccades; OS, Orienting 
saccades; FV, Free viewing; AS, Anti-saccades; BPRS, Brief Psychiatric Rating Scale; MADRS, Montgomery-Asberg Depression Rating Scale; YMRS, 
Young Mania Rating Scale.

https://doi.org/10.3389/fneur.2025.1555630
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Liu et al. 10.3389/fneur.2025.1555630

Frontiers in Neurology 13 frontiersin.org

which may affect the representativeness of the sample and the 
applicability of the findings. In visual search tasks, Saudi 
participants were less efficient in their search behavior than British 
participants (36); in fixation tasks, Czech participants focused 
more on the focal objects measured by fixation counts, while 
participants from Taiwan spent more time fixating on the 
background (37); hence, studies involving a more diverse 
population are necessary to validate our results. Additionally, the 
measurement of eye-tracking features could be  influenced by 
individual differences, such as medication use or cognitive ability 
(38, 39), and these factors may not have been adequately controlled 
in this study. Lastly, while we utilized common machine learning 
models for data analysis, the predictive accuracy of these models 
may be  influenced by data quality and feature selection. Model 
performance may vary across different datasets and clinical 
settings, indicating that further validation studies are essential to 
assess the model’s robustness.

Based on the findings and limitations of this study, we suggest 
several avenues for future research. Firstly, expanding the sample 
size and enhancing the diversity of research participants is crucial. 
Secondly, conducting long-term follow-up studies will help clarify 
changes in eye movement parameters over time and their 
correlation with the progression and treatment efficacy of 
depression. Additionally, standardized procedures for the clinical 
application of eye-tracking should be  gradually established to 
reduce information bias, which relies on long-term clinical research 
and practice. Finally, it is important to investigate other potential 
biomarkers beyond eye-tracking features, such as neuroimaging 
markers, genetic markers, and behavioral characteristics (40–43). 
Developing a more comprehensive hybrid feature recognition 
framework by integrating multi-modal data could significantly 
enhance diagnostic accuracy.

5 Conclusion

This study underscores the potential value of eye-tracking 
technology in identifying DMF. Eye-tracking features may serve as 

non-invasive biomarkers that enhance the objectivity and accuracy 
of depression diagnoses. By integrating data on eye-tracking 
features, the application of ML models reveals significant potential 
for identifying DMF. This data-driven approach promises to yield 
more precise predictions for clinical decision-making. Future 
research and clinical practice should further explore and validate 
these findings to achieve accurate diagnosis and treatment 
of depression.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors without undue reservation.

Ethics statement

The studies involving humans were approved by Guangdong 
Provincial People’s Hospital in Guangzhou, China. The studies 
were conducted in accordance with the local legislation and 
institutional requirements. Written informed consent for 
participation in this study was provided by the participants’ legal 
guardians/next of kin.

Author contributions

X-CL: Methodology, Visualization, Writing – original draft. MC: 
Methodology, Validation, Writing – review & editing. Y-JJ: Formal 
analysis, Visualization, Writing – review & editing. H-BC: Writing – 
review & editing. Y-QL: Writing – review & editing. ZX: Investigation, 
Writing – review & editing. Q-YG: Investigation, Writing – review & 
editing. W-QO: Investigation, Writing – review & editing. Y-YW: 
Investigation, Writing – review & editing. Q-LX: Writing – review & 
editing. X-C-CH: Investigation, Writing – review & editing. J-FZ: 
Investigation, Writing – review & editing. Y-KH: Writing – review & 
editing. Q-TY: Conceptualization, Project administration, 

TABLE 4 Advantages and disadvantages of MDF diagnostic schemes.

Items Description Advantages Disadvantages

Clinical mental 

examination

Based on DSM-5 or ICD-11 Currently the authoritative standard for 

diagnosing DMF

 1. Subjective; relies on the professional level of the 

clinician

 2. Time window limitation exists (symptoms lasting 

≥2 weeks), which may delay early identification

Psychiatric scales YMRS, HCL-32, etc.  1. Quantitative assessment

 2. Can be used for large-scale screening

Still relatively subjective, with patient self-report bias

Traditional biomarkers Metabolomics, genetic 

polymorphisms, inflammatory 

markers, etc.

 1. Objective

 2. Can be used for early identification

 1. High cost

 2. Lack of specificity

 3. Most biomarkers are still in the research stage, lacking 

clinical translation

Emerging auxiliary 

techniques

Eye-tracking features, machine 

learning models, voice feature, etc.

 1. Objective

 2. Can integrate multimodal data

Lack of clinical evidence

DMF, Depression with mixed features; DSM-5, Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition; ICD-11, Eleventh Revision of the International Statistical Classification of 
Diseases and Related Health Problems; YMRS, Young Mania Rating Scale; HCL-32, Hypomania Checklist-32.

https://doi.org/10.3389/fneur.2025.1555630
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Liu et al. 10.3389/fneur.2025.1555630

Frontiers in Neurology 14 frontiersin.org

Writing  – original draft. M-JJ: Conceptualization, Supervision, 
Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This study was supported 
by the Science and Technology Program of Guangzhou, China. Grant/
Award Number: 202102080299.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or claim 
that may be made by its manufacturer, is not guaranteed or endorsed 
by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fneur.2025.1555630/
full#supplementary-material

SUPPLEMENTARY FIGURE 1

The changes in cross-validation AUC scores during the Bayesian optimization 
process. As the number of iterations increases, the AUC scores gradually 
improve and stabilize after a certain iteration. The red dot in the figure indicates 
the best AUC score and the corresponding iteration number obtained 
throughout the optimization process. Through this optimization method, the 
model can iteratively adjust the hyperparameters to achieve 
optimal performance.

References
 1. Miret M, Ayuso-Mateos JL, Sanchez-Moreno J, Vieta E. Depressive disorders and 

suicide: epidemiology, risk factors, and burden. Neurosci Biobehav Rev. (2013) 
37:2372–4. doi: 10.1016/j.neubiorev.2013.01.008

 2. Na K, Kang JM, Cho S. Prevalence of DSM-5 mixed features: a meta-analysis and 
systematic review. J Affect Disord. (2021) 282:203–10. doi: 10.1016/j.jad.2020.12.149

 3. American Psychiatric Association. Diagnostic and statistical manual of mental 
disorders. 5th ed. Arlington, VA: American Psychiatric Publishing (2013).

 4. Ostacher MJ, Suppes T. Depression with mixed features in major depressive 
disorder: a new diagnosis or there all along? J Clin Psychiatry. (2018) 79:94–5. doi: 
10.4088/JCP.17ac11974

 5. Stahl SM. Mixed-up about how to diagnose and treat mixed features in major 
depressive episodes. CNS Spectr. (2017) 22:111–5. doi: 10.1017/S1092852917000207

 6. Vieta E, Valentí M. Mixed states in DSM-5: implications for clinical care, education, 
and research. J Affect Disord. (2013) 148:28–36. doi: 10.1016/j.jad.2013.03.007

 7. Stahl SM, Morrissette DA, Faedda G, Fava M, Goldberg JF, Keck PE, et al. 
Guidelines for the recognition and management of mixed depression. CNS Spectr. (2017) 
22:203–19. doi: 10.1017/S1092852917000165

 8. Skaramagkas V, Giannakakis G, Ktistakis E, Manousos D, Karatzanis I, Tachos N, 
et al. Review of eye tracking metrics involved in emotional and cognitive processes. IEEE 
Rev Biomed Eng. (2023) 16:260–77. doi: 10.1109/RBME.2021.3066072

 9. de Belen RA, Pincham H, Hodge A, Silove N, Sowmya A, Bednarz T, et al. Eye-
tracking correlates of response to joint attention in preschool children with autism 
spectrum disorder. BMC Psychiatry. (2023) 23:211. doi: 10.1186/s12888-023-04585-3

 10. Levantini V, Muratori P, Inguaggiato E, Masi G, Milone A, Valente E, et al. EYES are the 
window to the mind: eye-tracking technology as a novel approach to study clinical 
characteristics of ADHD. Psychiatry Res. (2020) 290:113135. doi: 10.1016/j.psychres.2020.113135

 11. Zhu Y, Xu L, Guo Q, Zhang T, Hu X, Enck P, et al. Altered attentive bias towards 
interpersonal communication information across phases of schizophrenia: an eye-
tracking study. Gen Psychiatry. (2022) 35:e100699. doi: 10.1136/gpsych-2021-100699

 12. Gao M, Xin R, Wang Q, Gao D, Wang J, Yu Y. Abnormal eye movement features 
in patients with depression: preliminary findings based on eye tracking technology. Gen 
Hosp Psychiatry. (2023) 84:25–30. doi: 10.1016/j.genhosppsych.2023.04.010

 13. Huang G, Li Y, Zhu H, Feng H, Shen X, Chen Z. Emotional stimulation processing 
characteristics in depression: meta-analysis of eye tracking findings. Front Psychol. 
(2023) 13:1089654. doi: 10.3389/fpsyg.2022.1089654

 14. Stolicyn A, Steele JD, Seriès P. Prediction of depression symptoms in individual 
subjects with face and eye movement tracking. Psychol Med. (2022) 52:1784–92. doi: 
10.1017/S0033291720003608

 15. Wang Q, Wei X, Dang R, Zhu F, Yin S, Hu B. An eye tracking and event-related 
potentials study with visual stimuli for adolescents emotional issues. Front Psych. (2022) 
13:933793. doi: 10.3389/fpsyt.2022.933793

 16. Meyhoefer I, Sprenger A, Derad D, Grotegerd D, Leenings R, Leehr EJ, et al. 
Evidence from comprehensive independent validation studies for smooth pursuit 
dysfunction as a sensorimotor biomarker for psychosis. Sci Rep. (2024) 14:13859. doi: 
10.1038/s41598-024-64487-6

 17. Carvalho N, Laurent E, Noiret N, Chopard G, Haffen E, Bennabi D, et al. Eye 
movement in unipolar and bipolar depression: a systematic review of the literature. Front 
Psychol. (2015) 6:1809. doi: 10.3389/fpsyg.2015.01809

 18. Liu J, Xiang Y, Lei H, Wang Q, Wang G, Ungvari GS, et al. Guidance on the 
conversion of the Chinese versions of the quick inventory of depressive symptomatology-
self-report (C-QIDS-SR) and the Montgomery–Asberg scale (C-MADRS) in Chinese 
patients with major depression. J Affect Disord. (2014) 152-154:530–3. doi: 
10.1016/j.jad.2013.09.023

 19. Young RC, Biggs JT, Ziegler VE, Meyer DA. A rating scale for mania: 
reliability, validity and sensitivity. Br J Psychiatry. (1978) 133:429–35. doi: 
10.1192/bjp.133.5.429

 20. Chan DW, Lai B. Assessing psychopathology in Chinese psychiatric patients in 
Hong Kong using the brief psychiatric rating scale. Acta Psychiatr Scand. (1993) 
87:37–44. doi: 10.1111/j.1600-0447.1993.tb03327.x

 21. Chen Y. Introduction to psychiatric diagnostic scales. Shanghai Arch Psychiatry. 
(1993) 2:127–9. (in Chinese)

 22. Tang HY, Liao X, Li P, Zhang P, Yao J, Xing Y, et al. Efficacy of high-frequency 
rTMS in the treatment of gait disorder and cognition in patients with Parkinson’s disease 
based on wearable devices and eye-movement assessments. Front Aging Neurosci. (2024) 
16:1480171. doi: 10.3389/fnagi.2024.1480171

 23. Hao C, Zhang X, An J, Bao W, Yang F, Chen J, et al. An effective screening model 
for subjective cognitive decline in community-dwelling older adults based on gait 
analysis and eye tracking. Front Aging Neurosci. (2024) 16:1444375. doi: 
10.3389/fnagi.2024.1444375

 24. Joormann J, Stanton CH. Examining emotion regulation in depression: a 
review and future directions. Behav Res Ther. (2016) 86:35–49. doi: 
10.1016/j.brat.2016.07.007

 25. Funahashi S. Saccade-related activity in the prefrontal cortex: its role in eye 
movement control and cognitive functions. Front Integr Neurosci. (2014) 8:54. doi: 
10.3389/fnint.2014.00054

 26. Liversedge SP, Findlay JM. Saccadic eye movements and cognition. Trends Cogn 
Sci. (2000) 4:6–14. doi: 10.1016/S1364-6613(99)01418-7

https://doi.org/10.3389/fneur.2025.1555630
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fneur.2025.1555630/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fneur.2025.1555630/full#supplementary-material
https://doi.org/10.1016/j.neubiorev.2013.01.008
https://doi.org/10.1016/j.jad.2020.12.149
https://doi.org/10.4088/JCP.17ac11974
https://doi.org/10.1017/S1092852917000207
https://doi.org/10.1016/j.jad.2013.03.007
https://doi.org/10.1017/S1092852917000165
https://doi.org/10.1109/RBME.2021.3066072
https://doi.org/10.1186/s12888-023-04585-3
https://doi.org/10.1016/j.psychres.2020.113135
https://doi.org/10.1136/gpsych-2021-100699
https://doi.org/10.1016/j.genhosppsych.2023.04.010
https://doi.org/10.3389/fpsyg.2022.1089654
https://doi.org/10.1017/S0033291720003608
https://doi.org/10.3389/fpsyt.2022.933793
https://doi.org/10.1038/s41598-024-64487-6
https://doi.org/10.3389/fpsyg.2015.01809
https://doi.org/10.1016/j.jad.2013.09.023
https://doi.org/10.1192/bjp.133.5.429
https://doi.org/10.1111/j.1600-0447.1993.tb03327.x
https://doi.org/10.3389/fnagi.2024.1480171
https://doi.org/10.3389/fnagi.2024.1444375
https://doi.org/10.1016/j.brat.2016.07.007
https://doi.org/10.3389/fnint.2014.00054
https://doi.org/10.1016/S1364-6613(99)01418-7


Liu et al. 10.3389/fneur.2025.1555630

Frontiers in Neurology 15 frontiersin.org

 27. García-Blanco A, Salmerón L, Perea M, Livianos L. Attentional biases toward 
emotional images in the different episodes of bipolar disorder: an eye-tracking study. 
Psychiatry Res. (2014) 215:628–33. doi: 10.1016/j.psychres.2013.12.039

 28. Armstrong T, Olatunji BO. Eye tracking of attention in the affective disorders: a 
meta-analytic review and synthesis. Clin Psychol Rev. (2012) 32:704–23. doi: 
10.1016/j.cpr.2012.09.004

 29. Flechsenhar A, Seitz KI, Bertsch K, Herpertz SC. The association between 
psychopathology, childhood trauma, and emotion processing. Psychol Trauma Theory 
Res Pract Policy. (2024) 16:S190–203. doi: 10.1037/tra0001261

 30. Imbert L, Neige C, Moirand R, Piva G, Bediou B, Vallet W, et al. Eye-tracking 
evidence of a relationship between attentional bias for emotional faces and depression 
severity in patients with treatment-resistant depression. Sci Rep. (2024) 14:12000. doi: 
10.1038/s41598-024-62251-4

 31. Miller S, Suppes T, Mintz J, Hellemann G, Frye MA, McElroy SL, et al. Mixed 
depression in bipolar disorder: prevalence rate and clinical correlates during naturalistic 
follow-up in the Stanley bipolar network. Am J Psychiatry. (2016) 173:1015–23. doi: 
10.1176/appi.ajp.2016.15091119

 32. Zimmerman M, Mackin D. Identifying the DSM-5 mixed features specifier in 
depressed patients: a comparison of measures. J Affect Disord. (2023) 339:854–9. doi: 
10.1016/j.jad.2023.07.102

 33. Yousefi M, Akhbari M, Mohamadi Z, Karami S, Dasoomi H, Atabi A, et al. 
Machine learning based algorithms for virtual early detection and screening of 
neurodegenerative and neurocognitive disorders: a systematic-review. Front Neurol. 
(2024) 15:1413071. doi: 10.3389/fneur.2024.1413071

 34. Nam SM, Peterson TA, Seo KY, Han HW, Kang JI. Discovery of depression-
associated factors from a nationwide population-based survey: epidemiological study 
using machine learning and network analysis. J Med Internet Res. (2021) 23:e27344. doi: 
10.2196/27344

 35. Tian Z, Qu W, Zhao Y, Zhu X, Wang Z, Tan Y, et al. Predicting depression and 
anxiety of Chinese population during COVID-19 in psychological evaluation data by 
XGBoost. J Affect Disord. (2023) 323:417–25. doi: 10.1016/j.jad.2022.11.044

 36. Alotaibi A, Underwood G, Smith AD. Cultural differences in attention: eye 
movement evidence from a comparative visual search task. Conscious Cogn. (2017) 
55:254–65. doi: 10.1016/j.concog.2017.09.002

 37. Čeněk J, Tsai J, Šašinka Č. Cultural variations in global and local attention and 
eye-movement patterns during the perception of complex visual scenes: comparison of 
Czech and Taiwanese university students. PLoS One. (2020) 15:e0242501. doi: 
10.1371/journal.pone.0242501

 38. Reilly JL, Lencer R, Bishop JR, Keedy S, Sweeney JA. Pharmacological treatment effects 
on eye movement control. Brain Cogn. (2008) 68:415–35. doi: 10.1016/j.bandc.2008.08.026

 39. Lin Y, Intoy J, Clark AM, Rucci M, Victor JD. Cognitive influences on fixational 
eye movements. Curr Biol. (2023) 33:1606–1612.e4. doi: 10.1016/j.cub.2023.03.026

 40. Yakemow G, Kolesar TA, Wright N, Beheshti I, Choi EH, Ryner L, et al. 
Investigating neural markers of Alzheimer's disease in posttraumatic stress disorder 
using machine learning algorithms and magnetic resonance imaging. Front Neurol. 
(2024) 15:1470727. doi: 10.3389/fneur.2024.1470727

 41. Chen B, Sun X, Huang H, Feng C, Chen W, Wu D. An integrated machine learning 
framework for developing and validating a diagnostic model of major depressive 
disorder based on interstitial cystitis-related genes. J Affect Disord. (2024) 359:22–32. 
doi: 10.1016/j.jad.2024.05.061

 42. Sokolov AV, Schiöth HB. Decoding depression: a comprehensive multi-cohort 
exploration of blood DNA methylation using machine learning and deep learning 
approaches. Transl Psychiatry. (2024) 14:287. doi: 10.1038/s41398-024-02992-y

 43. Ji J, Dong W, Li J, Peng J, Feng C, Liu R, et al. Depressive and mania mood state 
detection through voice as a biomarker using machine learning. Front Neurol. (2024) 
15:1394210. doi: 10.3389/fneur.2024.1394210

https://doi.org/10.3389/fneur.2025.1555630
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://doi.org/10.1016/j.psychres.2013.12.039
https://doi.org/10.1016/j.cpr.2012.09.004
https://doi.org/10.1037/tra0001261
https://doi.org/10.1038/s41598-024-62251-4
https://doi.org/10.1176/appi.ajp.2016.15091119
https://doi.org/10.1016/j.jad.2023.07.102
https://doi.org/10.3389/fneur.2024.1413071
https://doi.org/10.2196/27344
https://doi.org/10.1016/j.jad.2022.11.044
https://doi.org/10.1016/j.concog.2017.09.002
https://doi.org/10.1371/journal.pone.0242501
https://doi.org/10.1016/j.bandc.2008.08.026
https://doi.org/10.1016/j.cub.2023.03.026
https://doi.org/10.3389/fneur.2024.1470727
https://doi.org/10.1016/j.jad.2024.05.061
https://doi.org/10.1038/s41398-024-02992-y
https://doi.org/10.3389/fneur.2024.1394210

	Identifying depression with mixed features: the potential value of eye-tracking features
	1 Introduction
	2 Methods
	2.1 Participants
	2.2 Demographic and clinical scale assessment
	2.3 Eye-tracking
	2.4 Machine learning (ML)
	2.5 Statistical analysis

	3 Results
	3.1 Demographic and clinical characteristics
	3.2 Eye-tracking features
	3.3 Correlation analysis between eye-tracking features and clinical scales
	3.4 Predictive value of eye-tracking features for DMF
	3.5 Eye-tracking features prediction the optimal feature set of DMF

	4 Discussion
	5 Conclusion

	References

