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Muscle-specific kinase levels in 
blood are an early diagnostic 
biomarker for SOD1-93A mouse 
model of ALS
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Neuromuscular junction (NMJ) denervation is an early event preceding motor 
neuron loss in amyotrophic lateral sclerosis (ALS). Progressive loss of the NMJ 
leads to irreversible muscle weakness and atrophy. Muscle-specific kinase (MuSK), 
locally expressed at the postsynaptic membrane of the NMJ, is activated by agrin 
released from motor nerve terminals and is essential for NMJ maintenance and 
regeneration. Here, we found that the progression of NMJ denervation prior to 
the onset of muscle weakness in SOD1-93A mouse model of ALS correlated with 
increased serum MuSK immunoreactivity and elevated MuSK expression throughout 
the skeletal muscle. Our results suggest that neuromuscular failure associated 
with the onset of muscle weakness increases MuSK expression throughout the 
muscle, which is subsequently cleaved by proteolytic enzymes to increase MuSK 
immunoreactivity in the blood. These results demonstrate that the level of serum 
MuSK immunoreactivity may indicate the early phase of NMJ denervation and 
serve as a biomarker for assessing the progression of other types of ALS and 
therapeutic benefits in preclinical studies.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that 
progresses from a subtle decline in motor function to fatal respiratory paralysis within years 
of diagnosis. Most cases of ALS are considered sporadic (sALS), in which both genetic and 
environmental factors contribute to the pathogenesis, whereas 10% of patients with ALS have 
a family history of the disease (i.e., familial ALS) (1, 2). Approximately 2% of patients with 
ALS have mutations in the superoxide dismutase 1 (SOD1) gene, and transgenic mice with 
SOD1-93A mutations have been shown to develop progressive weakness similar to that 
observed in patients with ALS (3). Therefore, these mice serve as a useful model for 
understanding the pathogenesis of ALS-like phenotypes and testing new therapies. Weakness 
and death in SOD1-93A mice occur directly as a consequence of motor neuron death; however, 
neuromuscular junction (NMJ) denervation occurs more earlier than motor neuron loss 
(4–9). Biopsy samples from patients with sALS have also shown significantly higher levels of 
partial and complete NMJ denervation compared to those in controls (8), and muscle weakness 
and wasting appear with the progression of denervation.

Muscle-specific kinase (MuSK) proteins are receptor-type tyrosine kinases localized and 
expressed in the postsynaptic membrane of the NMJ (10). MuSK is activated by agrin, a heparin 
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sulfate proteoglycan released from nerve terminals, and low-density 
lipoprotein receptor (LDLR)-related protein 4 (LRP4) acts as a 
coreceptor (11–13). MuSK phosphorylation is required for the 
anchoring and clustering of acetylcholine receptors (AChRs) to the 
postsynaptic membrane of the NMJ via Dok7, an essential intracellular 
MuSK-binding protein (14, 15). Furthermore, MuSK is required for the 
maintenance of both pre- and postsynaptic functions and morphology 
(16). We  recently evaluated the extracellular domain of MuSK in 
human and mouse serum and found that neuromuscular transmission 
failure increased the shedding of the MuSK ectodomain by 
metalloproteinases in skeletal muscle (17). In a mouse model of motor 
nerve crush injury, levels of serum MuSK immunoreactivity increased 
following denervation and returned to normal after reinnervation. 
Multiple lines of evidence, including muscle biopsies, post-mortem 
studies, and electrophysiological tests, have demonstrated that 
neuromuscular junction (NMJ) dysfunction is a key contributor to the 
early stages of ALS progression (4, 9). Therefore, in this study, based on 
the hypothesis that blood MuSK immunoreactivity is elevated in 
SOD1-93A mice prior to the onset of weakness after denervation, 
we  analysed whether MuSK immunoreactivity levels in the blood 
increased as signs of weakness and weight loss progressed.

Materials and methods

Animals

All animal procedures were conducted in accordance with the 
Basic Animal Care and Experimental Guidelines of the Ministry of 
Health, Labour and Welfare of Japan and were approved by the 
Experimental Animal Care and Use Committee of the Tokyo 
Metropolitan Institute of Gerontology (License No. 16036). Mice 
overexpressing a human SOD mutant [B6.Cg-Tg (SOD1-G93A) 
1Gur/J] were purchased from The Jackson Laboratory (Bar Harbor, 
ME), and mutant mice were identified through standard polymerase 
chain reaction (PCR) analysis of tail section DNA. The mutant SOD1 
transgene was maintained as a hemizygous trait by breeding 
hemizygous males with wild-type females (C57BL/6). The C57BL/6 
mice were obtained from Japan SLC (Hamamatsu, Japan). Due to 
sex-related differences in lifespan, muscle size, and muscle strength in 
SOD1 mice, only male mice were used in the experiments to avoid 
ambiguity caused by sex. Mice used in the experiments were 
euthanised by cervical dislocation without anaesthesia, which was 
approved under the license (No. 16036). We made every effort to 
minimize animal suffering during the course of our study, adhering 
strictly to ethical guidelines and approved protocols.

Production of recombinant MuSK and 
MuSK monoclonal antibodies

Recombinant mouse and human MuSK ectodomain proteins and 
MuSK monoclonal antibodies (mAbs) were prepared as previously 
described (17). Mouse MuSK ectodomain DNA fragment was 
PCR-amplified from differentiated C2C12 cell template cDNA using 
primer set 5′-CGGAATTCCAGAAGCAACCTTTCTTCCTGAGC-3′ 
(forward) and 5′-TCCTCTAGATTAGTGATGGTGATGGTGATGA 
CTTCCAAAGTCTGGAGGAACTTCTTT-3′ (reverse) (AY360453; 

GenBank). The PCR fragment was inserted into the EcoRI and Xho 
sites of the pSV-SPORT vector (Life Technologies). The DNA fragment 
of the human MuSK ectodomain was amplified by PCR using the full-
length human MuSK cDNA isolated in our previous study (17) as a 
template with the primer set 5′-GGAATTCACTTCGTCCTGCG 
TGAGCCT-3′ (forward) and 5′-CCGCTCGAGCATGGAGTATG 
TAGGTGAGAC-3′ (reverse) (AF006464; GenBank). The PCR 
fragment was inserted into the EcoRI and Xho sites of the pCDNA 3.1 
vector (Invitrogen). Expression vectors were transfected into human 
embryonic kidney 293-F cells using the FreeStyle MAX reagent (Life 
Technologies, United  States), and hexahistidine-tagged proteins 
secreted into the culture medium were purified using Ni-Sepharose 
(17-5318-02; GE Healthcare, United States).

Hybridomas were generated by fusing myeloma cells with 
splenocytes from rats immunised with the mouse MuSK protein 
(Kurabo, Japan) and from mice and rabbits immunised with the human 
MuSK protein (Kurabo, Japan, and Epitomics, United  States, 
respectively). Previously reported MH-18 (mouse mAb), MH-30 
(mouse mAb), RM-24 (rat mAb), and RbH-2 mAbs (rabbit mAb) were 
used in the experiments (17). The mAb was purified from the hybridoma 
supernatant using a HiTrap Protein G column (GE Healthcare, 
United States). The monoclonal antibodies used in this study were used 
at the same dilution concentrations reported previously (17).

Amplified luminescent homogeneous 
immunoassay of MuSK

The amplified luminescent homogeneous immunoassay 
(AlphaLISA, PerkinElmer, United States) was performed to quantify 
serum MuSK concentrations using purified mouse anti-MuSK 
antibody mAb (MH-30) and rat anti-MuSK mAb (RM-24), as 
described previously (17). Serum samples were collected at 6, 10, and 
20 weeks of age.

Western blotting

Western blot detection of the immunoprecipitated MuSK protein 
was performed on protein lysates extracted from the gastrocnemius 
muscles using mouse anti-MuSK mAbs (MH-30 and MH-18) and rabbit 
anti-MuSK mAb (RbH-2), as described previously (17). Mouse 
gastrocnemius muscles were harvested at 6, 10, and 20 weeks of age. 
Protein extracts were prepared using protein lysis buffer and protease 
inhibitors (Roche, Basel, Switzerland). Sodium dodecyl sulfate-
polyacrylamide gel electrophoresis was performed, and the proteins were 
transferred to polyvinylidene difluoride membranes. The signals were 
detected using IRDye800-conjugated goat anti-rabbit immunoglobulin 
G (IgG) antibodies (LI-COR Biosciences, United States). Images and 
band intensities were captured and recorded using an Odyssey Infrared 
Imaging System (LI-COR Biosciences, United States).

Immunofluorescence staining

Immunofluorescence staining and image analysis of NMJs were 
performed as previously described (17). Briefly, 40-μm-thick 
longitudinal sections were initially stained with rhodamine-conjugated 
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α-bungarotoxin (BTx; Life Technologies, United States). The sections 
were washed, permeabilized with ice-cold methanol, and incubated 
with rabbit anti-synaptophysin (Life Technologies, United States). After 
washing with phosphate-buffered saline, the sections were incubated 
with Alexa Fluor 488-labeled goat anti-rabbit IgG (Life Technologies). 
The 20-μm-thick longitudinal sections were stained with rabbit anti-
MuSK (RbH-8) mAb. Images were acquired using a Leica TCS SP8 
confocal microscope (Leica Microsystems, Germany) with a 20× 
objective lens (for synaptophysin staining) or a 63× objective lens (for 
MuSK staining). Innervation was evaluated on acquired images based 
on the following criteria. The scores were divided into three categories: 
fully occupied (almost complete overlap of staining between endplates 
and nerve endings), partially occupied (slight overlap of staining 
between endplates and nerve endings), and unoccupied (almost no 
overlap between endplates and nerve endings). Using ImageJ software 
(Version 1.42q; National Institutes of Health, United States), we defined 
region of interest (ROIs) for NMJs and synaptic membranes and 
quantified the mean intensity of MuSK staining within them. The 
MuSK-stained area of the extrasynaptic membrane was defined as the 
entire fascia outside the BTx-stained area on each image.

Quantitative PCR

This experiment was conducted as previously described (17). 
Total RNA was isolated from the gastrocnemius muscle using TRIzol 
reagent (Life Technologies, United States) and subjected to reverse 
transcription using the GoScript Reverse Transcription System 
(Promega, United States). The mRNA abundance was normalized to 
that of glyceraldehyde 3-phosphate dehydrogenase. Real-time PCR 
analysis was performed in duplicate using GoTaq qPCR Master Mix 
(Promega, United States). PCR reactions were carried out using the 
following primer sets:

MUSK, 5′-CTCGTCCTCCCATTAATGTAAAAA-3′ (forward) 
and 5′-TCCAGCTTCACCAG-TTTGGAGTAA-3′ (reverse).

GAPDH, 5′-CCATCACCATCTTCCAGGAG-3′ (forward) and 
5′-GTGGTTCACACCCATCACAA-3′ (reverse).

Behavior test

The wire-hanging test was conducted as described previously (17, 
18). Briefly, the mice were placed on the wire mesh of a wire-cage lid 
apparatus (O’Hara & Co., Ltd.), gently inverted, and held on a soft 
surface. The mice made up to three attempts to cling to the inverted 
lid for a period of up to 90 s, and the longest time was recorded.

Statistical analyses

Data were presented as the mean ± standard deviation. All 
statistical analyses were performed using Microsoft Excel and Prism 
10 (GraphPad Software, United States). Differences between the two 
groups were assessed for statistical significance using an unpaired 
t-test. The significance of time-series group comparisons was 
evaluated using a two-way analysis of variance, followed by Sidak’s 
multiple-comparisons test. Statistical significance was set at p < 0.05.

Results

Serum MuSK levels increased before onset 
of muscle weakness in SOD1-93A mice

We examined muscle strength, weight loss, and serum MuSK 
immunoreactivity levels in normal and SOD1-93A mice. In addition 
to the fact that the rate of progression of muscle weakness and weight 
loss in SOD1-93A mice varies depending on the rearing environment, 
this is the first study to measure and compare changes in MuSK 
immunoreactivity in the blood of the same mice in parallel with 
decreases in body weight and grip strength. Muscle strength 
measurements in the wire suspension test showed that the first 
significant muscle weakness was observable at 16 weeks of age 
(Figure 1A), whereas body weight decreased significantly at 18 weeks 
of age (Figure 1B). However, serum MuSK immunoreactivity levels 
increased significantly from 10 weeks of age, much earlier than the 
onset of muscle weakness and weight loss (Figure 1C). Serum MuSK 
immunoreactivity levels increased significantly by 14.2-fold during 
the observation period from 6 to 20 weeks of age. MuSK mRNA 
(Figure  1D) and protein expression (Figure  1E) levels in the 
gastrocnemius muscle of SOD1-93A mice increased significantly from 
10 weeks of age and correlated with elevated serum MuSK 
immunoreactivity levels. Therefore, our results show that serum 
MuSK immunoreactivity levels are elevated even before the onset of 
weakness in ALS mice.

Serum MuSK immunoreactivity levels are 
associated with neuromuscular 
denervation in SOD1-93A mice

Next, we investigated the temporal relationship between elevated 
blood MuSK immunoreactivity levels and NMJ denervation in 
SOD1-93A mice. NMJ denervation in SOD1-93A mice has been 
reported to occur before disease onset (7). The co-localization of 
presynaptic and postsynaptic structures in the NMJ was examined by 
histochemical analysis of SOD1-93A and normal mice at 6, 10 and 
20 weeks of age, and the findings were compared across these time 
points (Figures 2A,B). Immunofluorescence staining of the anterior 
tibialis muscle of SOD1-93A mice from 6 to 20 weeks of age showed 
progressive denervation of nerve terminals with increasing disease 
severity. The levels of both fully unoccupied and partially occupied 
endplates were significantly greater (p < 0.01) than those in wild-type 
mice 10 weeks before onset of muscle weakness and 4 weeks before 
elevated blood MuSK levels (Figures  2A–C). By 20 weeks, 
approximately 87.3% of the nerve terminals were completely 
denervated (Figures 2A,B). Taken together, our data indicated that 
serum MuSK immunoreactivity levels in SOD1-93A mice indirectly 
reflected NMJ denervation during disease progression.

Altered localization and expression of 
MuSK in SOD1-93A mice

In a previous study, MuSK expression at the endplates of the 
extensor digitorum longus muscle in SOD1-93A mice was shown to 
decrease with denervation (19). Patients with sALS have also been 
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reported to exhibit decreased MuSK immunostaining in the motor 
endplate of the vastus lateralis muscle (8). In contrast, MuSK expression 
in the motor endplate of the tibialis anterior muscle remained 
unchanged compared with that in normal mice in the mouse nerve 
transection model (17). Therefore, we performed immunostaining to 
examine the localization and expression of AChRs and MuSK in the 
motor endplates of the tibialis anterior muscles of SOD1-93A mice. The 
mean intensity of MuSK fluorescence in the endplates of SOD1-93A 
mice at week 20 was significantly lower (p < 0.01) (Figures  3A,B), 
whereas the mean intensity of MuSK fluorescence outside the synaptic 
region was significantly higher (p < 0.01) (Figure 3C), as observed in a 
mouse nerve transection model (Figures  3A,B) (17). The reduced 
MuSK expression in the NMJ is consistent with results reported in 
previous studies of patients with sALS and SOD1-93A mice (8, 17), 
whereas extrasynaptic MuSK expression was strongly enhanced in 
SOD1-93A mice, as observed in the mouse nerve transaction model 
(17). As in previous studies, there was no significant difference in the 
staining of rhodamine-conjugated α-bungarotoxin in the muscles of 
SOD1-93A and wild-type mice (Figure 3A) (19, 20).

Discussion

Recent preclinical studies have shown that therapies targeting 
MuSK signalling in the NMJ slow the onset and extend the lifespan of 

SOD1-93A mice (21–25). Such preclinical studies require the objective 
and reliable quantification of disease progression in individual mice. 
This study provided the first evidence that serum MuSK levels in 
SOD1-93A male mice increase from the asymptomatic phase as NMJ 
denervation progresses. The pathological features of ALS-like 
phenotypes are well reproduced in mice overexpressing the human 
SOD1 mutant (3, 4, 7, 8). Our results suggest that blood MuSK 
immunoreactivity levels can serve as biomarkers for NMJ dysfunction 
prior to the onset of weakness in this ALS model. We have previously 
shown that when the sciatic nerve of mice is crushed, serum MuSK 
immunoreactivity levels initially increase and then return to normal 
as NMJs regenerate. In contrast, nerve transection, which prevents 
NMJs regeneration, irreversibly increases blood MuSK 
immunoreactivity levels (17). We have also reported elevated blood 
MuSK immunoreactivity levels in patients and in a mouse model of 
myasthenia gravis (17), a disease characterised by impaired 
neurotransmission due to autoantibodies against NMJs. Other mouse 
models of severe ALS with human TAR DNA-binding protein-43 or 
fused-in-sarcoma mutations also exhibit early NMJ pathology, similar 
to that observed in SOD1 mice (9, 26, 27). Studies on the NMJs in 
patients with ALS are challenging due to difficulties in obtaining 
samples; adequately controlling for age, sex, and disease duration; 
correlations with medical and family history; and the inability to 
obtain samples prior to symptom onset (9). However, a combination 
of muscle biopsy evaluations, post-mortem analysis, and 

FIGURE 1

Serum muscle-specific kinase levels reflect the progression of amyotrophic lateral sclerosis in SOD1 mice. Changes in wire-hanging time (A), body 
weight (B), and serum MuSK immunoreactivity levels (C) in SOD1 mice and their WT littermates (n = 15; *p < 0.05, **p < 0.01, ***p < 0.001, and 
****p < 0.0001 vs. WT mice at the same time point). Evaluation of MuSK mRNA expression (D) and protein levels (E) (n = 4–6); gastrocnemius 
muscles were harvested at 6, 10, and 20 weeks of age for RNA and protein extraction. mRNA levels are shown as a ratio relative to those in WT mice 
at each time point. WT, wild-type; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.
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electrophysiological assessments has shown that NMJ dysfunction 
plays a significant role in the early progression of ALS (4, 9). Future 
studies should aim to determine whether serum MuSK 
immunoreactivity levels in other ALS models and patients with ALS 
can serve as early biomarkers for assessing neuromuscular dysfunction 
prior to motor neuron death.

Our previous studies using nerve crush and transection models 
in mice showed that two mechanisms are involved in the release of 
MuSK into the circulation: increased MuSK gene expression after 
NMJ denervation and ectodomain shedding of MuSK proteins by 
metalloproteases (17). Myogenin, a transcription factor belonging 
to the basic helix-loop-helix family, plays a crucial role in 
controlling both the expression levels and spatial distribution of 
MuSK in muscle tissue. It binds to and activates E-box sequences 
located within the MuSK gene promoter (28). In healthy, innervated 
muscles, the transcription of myogenin is actively suppressed, 
limiting MuSK production to a few nuclei positioned beneath the 

NMJs. The initiation of myogenin expression is dependent on the 
function of histone deacetylases (HDACs) (28–30). Among these, 
HDAC4 is notably concentrated in the nuclei directly beneath 
innervated NMJs, while its expression is minimal in the nuclei of 
non-synaptic muscle regions. However, in response to reduced 
neural input—caused by nerve damage or neuromuscular 
disorders—HDAC4 expression is upregulated and accumulates in 
nuclei beyond the synaptic zone. This increase in HDAC4 activity 
leads to a reduction in Dach2, a transcriptional co-repressor that 
normally inhibits myogenin. As a result, myogenin expression is 
enhanced in these non-synaptic regions, triggering MuSK 
production outside the NMJs. When neural stimulation is 
re-established, both myogenin and MuSK expression levels return 
to their original, localized patterns. Similar to the nerve transection 
model, SOD1-93A mice exhibited increased MuSK expression in 
skeletal muscle after denervation, with a corresponding increase in 
blood MuSK levels, suggesting that extrasynaptic MuSK is the 

FIGURE 2

Progression of NMJ denervation with increased serum MuSK immunoreactivity levels. Representative immunofluorescence staining (A,B) and 
quantification (C) of nerve terminals [(NT), green] and rhodamine-conjugated α-bungarotoxin [acetylcholine receptors (AChRs), red] at the NMJ. 
Longitudinal sections of tibialis anterior muscles were obtained from SOD1-93A (A) and normal mice (B) at 6, 10, and 20 weeks of age. Scale bar: 
30 μm. Images of 91–203 NMJs were acquired from each mouse. Data are shown as the percentage of endplates classified as fully occupied, 
unoccupied, or partially occupied (n = 3–4; **p < 0.01 vs. wild-type mice at 6 weeks of age; ##p < 0.01 and ####p < 0.0001 vs. SOD1 mice at 10 weeks 
of age, ††††p < 0.0001 vs. SOD1 mice at 20 weeks of age).
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primary source of serum MuSK protein. The mouse nerve 
transection model has been shown to exhibit similar levels of MuSK 
expression in the postsynaptic region of the NMJ as those observed 
in normal mice, whereas MuSK expression is significantly reduced 
in the postsynaptic region of the NMJ in both SOD1-93A mice and 
patients with sALS. The decrease in MuSK levels at the endplates of 
SOD1-93A mice may result from defective MuSK recycling in 
skeletal muscles, as reported in a previous study (19). However, 
future studies should aim to determine whether SOD1-93A mice 
and individuals with ALS share a common mechanism for the 
reduced expression of MuSK at the NMJ.

The second mechanism underlying the release of MuSK into the 
blood involves the proteolytic cleavage of elevated extrasynaptic 
MuSK by metalloproteinases (MMPs) (17). The ectodomains of 
numerous membrane proteins are proteolytically cleaved by MMPs 
and subsequently secreted extracellularly. MMPs are important 
regulators of various biological functions but are also involved in 
several pathological processes (31, 32). MMP-1, MMP-2, MMP-3, and 
MMP-9 levels in the blood and cerebrospinal fluid are reported 
predictors of ALS progression, with neuronal damage implicated in 
ALS pathogenesis (33, 34). Mouse models of nerve crush and 
transection may share a common mechanism with SOD1-93A mice, 
as the disruption of neurotransmission triggers MMPs to activate 
MuSK shedding, resulting in increased MuSK immunoreactivity levels 
in the blood (17). However, the matrix proteases that cleave the 
extracellular domain of skeletal muscle MuSK have not yet been 
identified, and their physiological and pathological roles remain to 
be elucidated.

Conclusion

The assessment of pre-onset denervation by measuring MuSK 
immunoreactivity levels in the blood, without pathological analysis, 
could facilitate the development of effective therapeutic agents.
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