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Introduction

The recent surge in infectious disease outbreaks, such as the COVID-19 pandemic,

the Zika virus outbreak in South America, Ebola in Africa, Dengue in Asia, West

Nile virus in the Middle East and the Americas, and Enterovirus infections in North

America, underscores a growing global health challenge. COVID-19 alone resulted in

a high mortality rate, with more than 4 million fatalities and morbidity in a third of

survivors. Bacterial meningitis remains a major cause of death and disability worldwide.

Factors such as climate change, deforestation, and pathogen-related factors are driving

these outbreaks (1). Although primarily a respiratory infection, COVID-19 has significant

neurological manifestations that include encephalopathy, stroke, neuromuscular disorders,

and permanent neurological disability. Central nervous system (CNS) infections are

particularly concerning because of their diagnostic complexity and the lack of effective

treatments for many pathogens that result in death and disability. CNS infections

require multidisciplinary efforts to document, diagnose, and treat them to improve

patient outcomes.

Changing epidemiology of pathogens

Pathogen X

The term “Pathogen X” refers to a presently unknown infectious agent with pandemic

potential that is regarded to emerge through zoonotic spillover, spreading from animal

reservoirs to humans (2).While viruses are themost likely neuroinvasive agents for a future

pandemic, bacterial and fungal CNS infections also warrant attention. Fungal infections

are of particular concern in immunocompromised individuals, while bacterial infections

are complicated by antimicrobial resistance.

Dengue virus (DENV)

Globally, DENV infection is the fastest-spreading vector-borne disease (3).

Approximately 1% of patients with DENV infection develop neurological complications,

particularly with DENV-2 and DENV-3 serotypes. Neurological manifestations of

DENV infection include encephalopathy, encephalitis, immune-mediated syndromes,

and myositis, which has been later reported as Dengue-associated transient muscle

dysfunction (4). The spectrum of DENV-related neurological manifestations ranges from

encephalitis/encephalopathy at one pole to muscle involvement at the other, often with

overlapping cases in between (4).
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Climate change and dengue
Dengue is prevalent in tropical and subtropical regions, with

a 30-fold increase in incidence over the past four decades, affecting

over 390million people annually (5). Global warming has expanded

the habitat of Aedes mosquitoes, the primary vector of DENV, as

higher temperatures, humidity, and precipitation amplify vector

populations. The majority of DENV cases (90%) between 1983

and 2001 occurred at temperatures of 27–29.5◦C and humidity

levels exceeding 75% (6). Dengue outbreaks have been linked to El

Niño and La Niña events, which cause fluctuations in temperature

and heavy rainfall. Record outbreaks of Dengue were reported

in the Americas in 2023, with over three million cases (7), and

in Bangladesh, attributed to high temperatures and El Niño (8).

Projections estimate that an additional 25 billion people will live

in DENV-prone areas by 2080, adding to the four billion already at

risk. Rising global temperatures could extend the reach of DENV to

new regions, including the USA, Japan, and China, with South and

West Africa likely to experience the greatest increase (9). Climate

change has also affected Europe and there is a potential for an

increase in the occurrence of Zika, Chikungunya and Dengue in

the Southwestern region of Europe (10).

Fungal meningitis

Approximately 300 of the 100,000 known fungi can cause CNS

infections. Fungal meningitis is prevalent in immunocompromised

patients, and those with nosocomial infections, particularly by

Candida, Aspergillus, and Mucor species, are an important

concern. Candida is the most common nosocomial fungal infection

following neurosurgery.

Medical tourism and fungal meningitis
Medical tourism is emerging as a significant risk for fungal

meningitis. Historically, patients from nations with poor healthcare

systems sought medical treatment in those with advanced

healthcare, such as the USA, UK, and Europe. However, this

trend has reversed recently, with patients from developed countries

seeking treatment in less developed countries because of lower

costs, shorter waiting times, and access to specific treatments.

In 2017, 1.3 million Americans sought medical care abroad for

procedures such as cosmetic surgery, dental treatments, and organ

transplants (11). The lack of regulatory oversight in these settings

increases the risk of infection. Fungal meningitis has been reported

in the United States following contaminated spinal and epidural

anesthesia for cosmetic procedures in Mexico (12).

Drug-resistant meningitis

Acute bacterial meningitis (ABM) is an important cause of

mortality and morbidity, with fatality rates of 8%−15% despite

treatment and sequelae in 22% of the survivors (13). While

Haemophilus influenzae has been controlled by vaccination,

Streptococcus pneumoniae and Neisseria meningitidis remain

major pathogens.

Emerging antibiotic resistance threatens progress in the

treatment of ABM. Poor CNS penetration of antibiotics necessitates

the use of high-dose regimens for the treatment of meningitis.

Penicillin-resistant S. pneumoniae was first identified in 1967

and caused treatment failures through the 1970s−1990s (14).

Third-generation cephalosporins, such as ceftriaxone, have been

used as effective alternatives, but resistance to both penicillin

and ceftriaxone has been reported, requiring treatment with

vancomycin and rifampin (15). Resistance in N. meningitidis is less

common, but instances of ceftriaxone-resistant strains were also

reported in the USA in the 1970s (16). Resistance to penicillin,

rifampin, and ciprofloxacin has also been reported (17), posing

a challenge in regions like the African meningitis belt, where

vaccination efforts have reduced disease incidence but increased the

prevalence of non-vaccine serotypes.

Multidrug-resistant tuberculosis
(MDR-TB)

MDR-TB, defined as resistance to isoniazid and rifampicin,

is a strong predictor of mortality (18). Resistance arises from

primary infection with drug-resistant Mycobacterium tuberculosis

or mutations during treatment (19). In Asia, MDR-TB is reported

in 5.2% of cases with isoniazid resistance in 9.4% (20). In Europe,

MDR-TB occurs in 3.5% of cases, with resistance to at least one

drug in 14.1% (21). Mortality rates for MDR-TB range from 16.7%

to 100% (22). To address this challenge, the International TBM

Consortium is planning a large trial to evaluate improved treatment

regimens (23).

Antimicrobial resistance is a natural phenomenon exacerbated

by the widespread use of antibiotics. In the United States, 30%

of outpatient antibiotic prescriptions were deemed inappropriate

in 2010–11 (24). Global antibiotic consumption increased by

65% between 2000 and 2015, driven primarily by low- and

middle-income countries (LMICs). Urbanization and increased

transportation in LMICs are projected to increase antimicrobial

resistance by more than 50% in some regions. Poor surveillance

and infrastructure exacerbate community-level transmission of

resistant organisms through wastewater and food processing

systems (25).

Antimicrobial use in agriculture also contributes significantly

to resistance. In 2017, 73% of antibiotics were used in animals

(26). Industrial farming often employs antimicrobials to promote

growth and longevity in livestock (27). Drug-resistant organisms

can persist in soil and manure, contaminating water sources

used for drinking and sanitation (28). Contaminated food further

facilitates the spread of resistance through direct consumption or

during processing.

Geriatric infections

The human population is aging much faster than in the past.

The number of people aged 60 years and older is projected to

increase by 60% in developed countries and 160% in less developed

countries over the next 30 years (29). By 2050, one-third of the

world’s population will be over 60 years old, with 80% residing in
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LMICs. Infectious diseases remain one of the five leading causes of

death and one of the 10 leading reasons for hospitalization among

individuals aged 65 years or older (30).

The aging population brings specific challenges regarding

infection, leading to significantmorbidity andmortality. Associated

comorbidities such as diabetes, hypertension, stroke, cancer,

malnutrition, alcoholism, immobility, institutionalization, and age-

related immune decline, along with economic factors, further

increase the risk of severe infections. Aging often modifies the

clinical presentation of infections, causing delays in seeking

medical care and hospitalization. The majority of infections occur

in resource-poor and tropical countries, underscoring the need for

cost-effective medical solutions to ensure that advancements reach

those who need them most. There is a need for modifications in

medical education and resources to deal with aging populations

and infections.

Cost-e�ective medicine

Economic incentives are a key driver of medical research

and development, making modern medicine expensive and

often inaccessible in resource-poor settings. Providing cost-

effective solutions is essential to ensure affordable treatment

without compromising outcomes. The high costs of intensive

care unit (ICU) management can be mitigated by rationalizing

admission policies, avoiding unnecessary investigations, selecting

appropriate antibiotics, and reducing errors through better training

and education.

The resource crunch in LMICs triggers innovation and

sometimes desperatemeasures, such as the use of prolonged AMBU

ventilation for 18 days for respiratory paralysis in Guillain-Barré

Syndrome (31), the use of single breath count as a surrogate

marker for arterial blood gas changes and as a guide for intubation

in Guillain-Barré Syndrome (32), and employing a syndromic

approach to Acute Encephalitis Syndrome (AES).

Acute encephalitis syndrome is a critical public health problem

in which patients present with acute onset of fever with alteration in

consciousness ranging from stupor to coma, with or without new-

onset convulsions, excluding simple febrile seizures. A syndromic

approach to AES categorizes patients into those with primary

CNS involvement (e.g., Japanese encephalitis, herpes simplex

encephalitis, West Nile virus encephalitis) and those with systemic

features (e.g., rash, myalgia, thrombocytopenia, hypotension, and

hepatic or renal dysfunction). Systemic AES may be caused

by cerebral malaria, scrub typhus, dengue, chikungunya, or

leptospirosis. Neurological AES may benefit from cranial CT/MRI,

which reveals characteristic features in diseases like Japanese

encephalitis (JE) and herpes simplex encephalitis.

MRI is valuable in patients with neurological AES. If

frontotemporal involvement is detected, it suggests herpes simplex

encephalitis and acyclovir should be administered, whereas

thalamic, basal ganglia or brainstem involvement is suggestive of

JE or arboviral encephalitis, and acyclovir may be withheld. For

systemic AES, treatable causes should be prioritized. This strategy

has helped reduce the cost of AES diagnosis and treatment in

Northern India (33). Protocols tailored to specific regions and

etiologies may significantly improve outcomes at a lower cost.

Research on major health issues in LMICs such as on cost-effective

medicine through research funding, grants, publication promotion,

and budget allocation can go a long way in improving the medical

care in the areas where it is most needed.

Diagnostics

Advancements in neurodiagnostics have revolutionized the

field of neuro-infection, but many infections remain undiagnosed

(34, 35). While polymerase chain reaction (PCR) and multiplex

PCR are accessible in resource-rich settings, these are often

unavailable in low-resource settings. Hypothesis-free diagnostics

using sequencing techniques have emerged for the diagnosis of

CNS infections, providing unbiased results by analyzing all non-

human DNA in a sample. This method has identified pathogens

that were previously diagnosable only via biopsy or autopsy.

Real-time quaking-induced conversion (RT-QIC) has improved

cerebrospinal fluid testing for prion diseases (36).

MRI has significantly improved the diagnosis of CNS infections

and will continue to do so with wider availability and technical

advancements. Infections cause inflammation, which increases

tissue density, while cell death reduces it onMRI. Machine learning

(ML) and artificial intelligence (AI) protocols are now being used

to detect infections through medical imaging of the lungs (37).

While these methods primarily identify secondary effects rather

than pathogens, bacteria-specific PET tracers are being evaluated,

although these remain experimental (38–40).

Artificial intelligence (AI)

Artificial intelligence is advancing rapidly, contributing to anti-

infective drug discovery, understanding of infection biology, and

the development of new diagnostics. Generalisable AI models

require large and representative datasets, including data from

LMICs and remote areas. Programmable datasets, such as nucleic

acid and amino acid sequences, are being integrated into ML

models to predict drug efficacy, host-pathogen interactions, and

host responses. These advancements are expected to aid in the

design of next-generation drugs, vaccines, and diagnostics for

infectious diseases (41).

The AI model for diagnostic prediction may have inaccuracies.

A recent study evaluating the diagnosis and outcome of COVID-19

patients based on chest radiographs and CT scans revealed

poor predictive ability of the model because of methodological

flaws and /or bias (42). Obtaining high-quality data relevant

to new or emerging pathogens or strains, especially in LMICs

may be difficult because of a lack of infrastructure and public

health resources. ML models based on limited data may

result in bias and misdiagnosis, limiting their application in

clinical settings.

The application of AI in real-world settings, however, poses

many challenges. Ethical and practical issues must be addressed

before AI can be widely applied to infectious diseases. Clinical

studies, regulatory frameworks, and reporting standards are

needed. While AI is unlikely to replace clinicians or academics in

the near future, over-reliance on AI could lead to the deskilling
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of physicians. AI may struggle to adapt to novel situations or

individual patients as effectively as human clinicians, particularly

non-specialists or general practitioners.

Conclusions and way forward

The COVID-19 pandemic demonstrated that every

country is vulnerable to public health emergencies and

highlighted the need to develop and implement a coherent

and context-specific strategy to deal with future emergencies.

A primary healthcare approach that provides universal

and equitable promotive, preventive, and curative services

through whole-of-government and whole-of-society approaches,

is essential.

Reducing infections globally requires several short-

term and long-term measures. Short-term measures

include rational use of antibiotics, cost-effective medicine,

vaccination, hygiene, surveillance, monitoring, quarantine, and

isolation. Long-term strategies include education, sanitation,

prevention of environmental damage, improvement of

health policy frameworks, socioeconomic development, and

meaningful research.
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