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The value of Fast Dixon combined 
with deep learning technology in 
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Introduction: This study aimed to investigate the application of Fast Dixon 
combined with the deep resolve gain (DRG) technique for enhancing the image 
quality of the brachial plexus on high-resolution MRI without the use of contrast 
agents.

Methods: Heavily T2–weighted Fast Dixon high-resolution coronal thin-slice 
magnetic resonance imaging was conducted on 19 social volunteers. Post-
scan, the original data underwent reconstruction using deep learning-based 
denoising technology. Subjective quality scores were assigned to both the 
original and MIP images, and those processed with and without denoising 
technology were compared. The signal-to-noise ratio (SNR) and contrast-to-
noise ratio (CNR) values for each segment of the bilateral brachial plexus were 
measured and analyzed to assess image quality.

Results: Subjective evaluations revealed that the quality of both original thin-
slice and thin-MIP images processed with the DRG significantly outperformed 
those processed without the DRG (original thin-slice p  = 0.005, thin-MIP 
p < 0.05). The bilateral SNRs and CNRs of each anatomical structure (root, trunk, 
cord, branch) of the brachial plexus in the experimental group with DRG were 
significantly greater than those in the control group without DRG (p  < 0.05), 
as follows: the SNRs of the bilateral nerve roots increased by 35.1–36.2%, the 
SNRs of the bilateral nerve trunks increased by 40.6–40.8%, and the SNRs of 
the bilateral nerve cords and branches increased by about 40–45%. The CNR 
of the bilateral nerve roots increased by 43.1–44.6%, the CNR of the bilateral 
nerve trunks increased by 41.8–41.7%, and the CNR of the bilateral nerve cords 
and branches increased by 47.3–50.6% (root p < 0.001, trunk p < 0.001, cord 
p = 0.001, branch p = 0.011).

Conclusion: Fast Dixon T2WI can enhance the visibility of brachial plexus 
segments to a certain extent through DRG denoising technology, which may 
be an effective means to visualize the brachial plexus without contrast agent.
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1 Introduction

The brachial plexus consists of the C5–C8 cervical and T1 thoracic 
nerve roots, traversing between the anterior and middle scalene 
muscles. Small branches of the plexus are located behind the pectoralis 
minor muscle and are distributed in the axilla, scapular region, and 
medial bicipital groove (1, 2). Its deep anatomical location, complex 
trajectory, and proximity to adjacent blood vessels present significant 
challenges in acquiring high-quality magnetic resonance imaging 
(MRI) of this structure (3).

Currently, two principal approaches are employed for brachial 
plexus MRI. The first is nerve imaging, which is based on diffusion-
weighted imaging (DWI), leveraging the restricted movement of water 
molecules caused by the nerve myelin sheath and perineurium, which 
generates high signals on DWI (4). Additionally, diffusion tensor 
imaging (DTI), derived from DWI, enables visualization of the brachial 
plexus as fiber bundles (5, 6). The second approach relies on T2–
weighted imaging, which uses differences in transverse relaxation 
between low-protein water molecules in the endoneurium and 
surrounding tissues. This method accentuates the signal from nerve 
fiber bundles, delineating the structural morphology of peripheral 
nerves (7). Among the available techniques, 3D TSE-STIR remains the 
clinical mainstay for brachial plexus imaging. While this sequence 
demonstrates substantial potential in nerve trajectory visualization 
through multiplanar reconstruction and maximum intensity projection 
(MIP) (8, 9), it faces critical limitations in radiofrequency field (RFF) 
homogeneity, particularly at higher field strengths. These B1 
inhomogeneities frequently induce localized fat suppression failure 
(10), where residual fat signals obscure critical neural structures, 
compromising diagnostic confidence in anatomically complex regions. 
To address this technical limitation, the present study introduces the 
Fast Dixon T2WI sequence, which combines water-fat separation 
algorithms for enhanced background suppression, thereby improving 
nerve-to-background contrast, with thin-slice, zero-gap acquisition 
that enables high-resolution, high-contrast quasi-three-dimensional 
imaging of the brachial plexus without the use of exogenous contrast 
agents. Although the reduction in voxel volume leads to a decrease in 
the original image’s signal-to-noise ratio (SNR), this drawback is 
mitigated through the integration of an artificial intelligence (AI)-based 
deep learning denoising technique, thereby enhancing the overall 
image quality of the brachial plexus.

For MR images, the main noise sources are the electronic noise 
generated in the signal receiving circuit and the dielectric and 
inductive coupling effects caused by the conducting medium in the 
body. The SNR refers to the ratio of the MR signal-to-noise, which is 
the core parameter used to measure the quality of MR images. The 
traditional methods used to improve the SNR include changing the 
repetition time (TR), echo time (TE), FOV, basic resolution, flip angle 
(FA), bandwidth, etc., but are usually accompanied by a certain extent 
of scan time extension. The traditional approaches for improving the 
signal-to-noise ratio (SNR) involve parameter adjustments such as 
repetition time (TR), echo time (TE), field of view (FOV), matrix size, 

flip angle (FA), and bandwidth, but these modifications typically incur 
prolonged scan durations. With the rapid development of deep 
learning algorithms in the field of medical imaging, the reconstruction 
of physical–mathematical constraints on MR images has overcome the 
triangular challenges of the resolution, SNR, and acquisition time 
speed in traditional reconstruction. Its application has now appeared 
in various research publications (11–15). The deep resolve gain (DRG) 
algorithm in this study leverages its inherent capability for noise 
reduction without requiring additional scanning time (15).

2 Materials and methods

2.1 General information

From July 2023 to December 2024, 19 healthy social volunteers, 
including 15 males and 4 females, participated in the study. The age 
range of the participants was 23–58 years, with a mean age ± standard 
deviation of 33.79 ± 7.72 years.

Inclusion Criteria: Eligible participants were healthy volunteers 
with no documented history of brachial plexus pathology, including 
traumatic injury, inflammatory conditions, neoplastic involvement, or 
congenital anomalies. Candidates were required to demonstrate 
normal sensorimotor function of the upper extremities and to be free 
from systemic comorbidities that could potentially impact 
neurological integrity, such as diabetes mellitus, autoimmune diseases, 
or metabolic disorders. All participants met MRI safety requirements, 
specifically the absence of pacemakers, metallic implants, or 
claustrophobia, and provided written informed consent.

Exclusion criteria: Exclusion criteria encompassed any history of 
brachial plexus injury, surgical intervention, or radiation therapy; the 
presence of neurological disorders affecting central or peripheral 
pathways, including carpal tunnel syndrome or demyelinating 
diseases; administration of neurotoxic medications within the 
preceding 6 months; chronic alcohol dependence; biochemical 
deficiencies compromising neural health; anatomical or physiological 
factors likely to compromise image quality, such as artifact-generating 
non-ferromagnetic implants; current pregnancy or lactation; and 
enrollment in other clinical trials within the last 30 days.

2.2 Equipment and methods

All the scanning protocols were conducted using a Siemens 
Magnetom Vida 3.0T magnetic resonance scanner, software version 
XA50, equipped with a 20–channel head and neck combined coil and 
an Ultra Flex18 small flexible coil. Prior to the examination, the 
participants were briefed on potential noise and heat sensations 
associated with the procedure to facilitate their cooperation.

During the scans, the participants were placed in a supine position 
with their head entering the scanner first. An Ultra Flex18 small 
flexible coil was placed to cover the junction of the shoulder and neck, 
as well as the axillary region. Magnetic resonance sandbags were 
symmetrically positioned on the dorsal side of the upper arms to 
enhance the display of distal brachial plexus signals.

A direct coronal non-interval scan was performed, covering the 
region from the C3 vertebral level to the humeral head in the 
superior–inferior direction and from the anterior edge of the vertebral 

Abbreviations: 2D, Two-dimensional; 3D, Three-dimensional; MIP, Maximal intensity 

projection; AI, Artificial intelligence; DRG, Deep resolve gain; SI, Signal intensity; 

CNR, Contrast-to-noise ratio; SNR, Signal-to-noise ratio; FOV, Field of view; RFF, 

Radio frequency field.
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body to the posterior edge of the spinal canal in the anterior–
posterior direction.

The scanning parameters for the T2WI Fast Dixon sequence were 
as follows: repetition time (TR)/echo time (TE) = 6,220 ms/104 ms; 
turbo factor (ETL) = 21; parallel imaging acceleration factor 
(GRAPPA) = 2; average = 2; field of view (FOV) = 288 × 360 mm2; 
acquisition matrix = 288 × 448; slice thickness = 1.6 mm 
(reconstructed in-plane resolution: 0.8 × 0.8 mm2); contiguous slices 
(gap = 0 mm) = 46; and total scan duration = 4 min 46 s.

Upon completing the scans, the deep resolve feature was activated 
in the advanced reconstruction section of the reconstruction 
parameter card via the original dataset. The DRG denoising mode was 
activated, with the denoising intensity factor set to 8 and the 
enhancement level factor set to 5. The first group of images without 
DRG technology was used as the control group, while the denoised 
DRG images were used as the experimental group.

2.3 Data measurement and image 
post-processing

All the data were exported in DICOM format to RadiAnt DICOM 
Viewer 2023 software for measurement. Regions of interest (ROIs) of 
appropriate size were placed on the roots, trunks, cords, and branches 
of the brachial plexus, as well as on the scalene muscles, on both sides 
of the same thin layer along the course of the brachial plexus. The 
background signal intensity (SI) was determined as the average value 
of the four-corner areas of the image. The SIs of the roots, trunks, 
cords, branches, muscles, and background noise were recorded. On 
the basis of these measurements, the SNR and CNR for each segment 
of the left and right brachial plexus were calculated via the following 
formulas: SNR = nerve SI/background noise SI; CNR = (nerve SI – 
muscle SI)/background noise SI. Additionally, 19 paired pre- and post-
denoising MIP image groups were reconstructed, and all thin-slice 
datasets were processed with 10 mm maximum intensity 
projection (MIP).

2.4 Image evaluations

Two musculoskeletal radiologists with 3 and 10 years of 
experience independently evaluated the reconstructed MIP images 
together with the source images in a random order and were blinded 
to the imaging parameters and clinical information. Like the 
previously published scoring system (16), the original thin-layer 
images were evaluated via a three-point scale: 3 points, no background 
noise, clear boundaries between nerves and tissues, uniform signals, 
and no artifact interference. Two points, mild noise, local fluctuations 
in the nerve signal, identifiable but local fuzzy boundaries between 
nerve and tissue, and mild artifacts; Score 1, the noise was significant, 
the structure was blurred, the nerve and tissue boundaries could not 
be distinguished, and artifacts covered key anatomical regions.

The thin-MIP images of the two groups were evaluated via a 
4-point scale to evaluate the root, trunk, bundle, and branch (17): 4 
points, the corresponding segments of the brachial plexus were 
continuous and complete, with clear boundaries with surrounding 
tissues and no artifacts or noise interference. Score 3: Each segment of 
the brachial plexus could be observed, and only one root/trunk/cord/

branch (such as the T1 root or 1 trunk/bundle/pectoral minor branch) 
in the corresponding segment was slightly blurred, with mild artifacts 
and noise interference; Score 2: severe loss of the corresponding 
segments of the brachial plexus (such as T1 root loss/incomplete 
display of the inferior trunk/blurred medial fasciculus/visible main 
branches but blurred bifurcations), unclear tissue boundaries, and 
moderate artifact noise interference; Score 1: the corresponding 
segment of the brachial plexus could not distinguish the structure, and 
the image was severely disturbed by artifact noise. When there was 
disagreement in blind reviews, discrepancy in assessment was resolved 
through negotiation, and the final outcome was based on their 
consensus agreement.

2.5 Statistical methods

Data analysis was conducted via SPSSPRO statistical software. The 
measurement data are presented as the means ±standard deviations 
(X̅ ± S). The Wilcoxon signed-rank test was employed to compare the 
quality grading between the original thin-slice brachial plexus images 
and the corresponding thin-MIP reconstructed nerve segment 
displays. For the SNR and CNR comparisons across brachial plexus 
segments, the paired Student’s t test was applied when normality 
assumptions were satisfied (assessed via the Shapiro–Wilk test); 
otherwise, the Wilcoxon signed-rank test was utilized. A two-tailed p 
value <0.05 indicated statistical significance. Interobserver agreement 
was evaluated via Cohen’s kappa coefficient, which was interpreted as 
follows: ≤0.20 (poor), 0.21–0.40 (fair), 0.41–0.60 (moderate), 0.61–
0.80 (good), and 0.81–1.00 (excellent).

3 Results

3.1 Qualitative analysis

Quantitative scores comparing image quality between two thin-
slice images are systematically summarized in Table 1 and are visually 
represented in Figure 1. Subsequent qualitative evaluations of critical 
brachial plexus substructures, including roots, trunks, cords, and 
branch segments, are statistically documented in Table  2, with 
comparative analyses graphically depicted in Figure 2.

Table 1 qualitatively shows the quality of the thin-layer images of 
the experimental and control groups. The score of the experimental 
group was greater than that of the control group, indicating that the 
quality of the T2WI Fast Dixon image combined with the DRG was 
better than that of the conventional T2WI Fast Dixon image 
(p = 0.005), and the difference was statistically significant.

TABLE 1 Comparison of subjective scores for the original images of the 
brachial plexus between the experimental and control groups.

Score Control 
group 

(n = 19)

Experimental 
group (n = 19)

p-value

1 point 1 1 0.005**

2 point 17 9

3 point 1 9

*p < 0.05, **p < 0.01.
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Table 2, Quality evaluation of the root, trunk, cord and branch 
segments of the two groups of images after thin-MIP, p < 0.05, 
indicating that T2WI Fast Dixon images combined with the DRG 
showed statistically significant differences in the root, trunk, cord and 
branch of the brachial plexus after reconstruction.

Interobserver agreement was excellent, with Cohen’s kappa values 
of k = 1.000 for the control group and k = 0.853 for the experimental 
group. Thin maximum intensity projection (thin-MIP) images showed 
good to excellent consistency between the two observers across 
anatomical segments. In the control group, kappa values for the root, 
trunk, cord, and branch were k  = 0.716, 0.835, 0.774, and 0.898, 
respectively. In the experimental group, the corresponding values were 
k = 0.776, 0.855, 0.883, and 0.897. All differences were statistically 
significant with p < 0.001.

Figures 3, 4 present comparative 10 mm thin-MIP images under 
identical window width/level settings. Panels A/C (without-DRG) and 
B/D (after-DRG) highlight the localized adaptive denoising capability 
of the DRG-integrated method within central regions (delineated by 
white circles), which contrasts with conventional global filtering 
(A/C). The DRG technique significantly improves the SNR and nerve-
to-background contrast in anatomically complex areas, such as the 
cervicothoracic junction and supraclavicular fossa, while maintaining 
structural fidelity.

3.2 Quantitative analysis

Figure  5 illustrates the measurement scheme for the signal 
intensities of the right partial segments of the brachial plexus and the 
background noise in the two groups from another test. Compared 
with those in the control group (Figure 5A), the signal intensities of 
the roots, trunks, and cords of the brachial plexus in the experimental 
group (Figure 5B) were greater, whereas the background noise was 
significantly lower in the experimental group than in the control group.

We statistically analyzed the average SNR and CNR values of each 
segment of the brachial plexus before and after the use of the DRG, and 
the results are shown in Table 3 and Figure 6. The bilateral SNRs and 
CNRs of each anatomical structure (root, trunk, cord, branch) of the 
brachial plexus in the experimental group with DRG were significantly 
greater than those in the control group without DRG (p < 0.05), as 
follows: the SNRs of the bilateral nerve roots increased by 35.1–36.2% 
(e.g., left: 57.506 vs. 42.25; right: 56.917 vs. 42.116), the SNRs of the 
bilateral nerve trunks increased by 40.6–40.8%, and the SNRs of the 
bilateral nerve cords and branches increased by about 40–45%. The 
CNR of the bilateral nerve roots increased by 43.1–44.6%, the CNR of 
the bilateral nerve trunks increased by 41.8–41.7%, and the CNR of the 
bilateral nerve cords and branches increased by 47.3–50.6% (root 
p < 0.001, trunk p < 0.001, cord p = 0.001, branch p = 0.011).

FIGURE 1

Subjective rating of the original image.

TABLE 2 Quality evaluation of root, trunk, cord, and branch segments in two groups of post thin-MIP images [n = 19, e.g., (%)].

Variables 1 point 2 point 3 point 4 point p-value

CG roots 0 (0) 4 (21) 11 (58) 4 (21) <0.001**

EG roots 0 (0) 0 (0) 6 (32) 13 (68)

CG trunks 0 (0) 2 (11) 16 (84) 1 (5) <0.001**

EG trunks 0 (0) 0 (0) 4 (21) 15 (79)

CG cords 0 (0) 12 (63) 7 (37) 0 (0) 0.001**

EG cords 0 (0) 6 (32) 9 (47) 4 (21)

CG branches 1 (5) 11 (58) 7 (37) (0) 0.011*

EG branches 1 (5) 7 (37) 9 (47) 2 (11)

*p < 0.05, **p < 0.01. CG, control group; EG, experimental group.
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4 Discussion

The current approaches to magnetic resonance neuroimaging 
(MRN) involve the use of high-resolution isotropic 3D imaging to 
capture the complex pathways of peripheral nerve structures, and 
sequences with strong T2 weighting or those associated with DWI are 
used to enhance the signal from nerve tissues while minimizing the 
signals from surrounding structures. Furthermore, suitable fat 
suppression techniques are employed to reduce the impact of fat 
signals (18–20):

 1) A brachial plexus nerve display technique based on DWI. This 
method primarily exploits the principle that water molecules 
exhibit restricted diffusion, resulting in high signals after the 

application of a diffusion gradient field, enabling visualization 
of the brachial plexus nerve. However, it has limitations in 
terms of spatial resolution and a low signal-to-noise ratio. The 
diagnostic utility of these images alone is limited, and their 
combination with other TSE sequences is needed to improve 
diagnostic efficacy (4).

 2) 3D TSE STIR combined with fast spin-echo heavy T2-weighted 
imaging is a high-resolution technique that enables clear 
visualization of the brachial plexus nerves and is well-suited for 
both pre- and post-contrast imaging. In contrast, the T1 and 
T2 relaxation times of lymph nodes and blood are reduced, 
potentially affecting their signal characteristics. The 
longitudinal magnetization vectors of these background signals 
are suppressed after inversion, resulting in a strong contrast 

FIGURE 2

MIP score for each segment of the brachial plexus.

FIGURE 3

Comparison of the control and experimental groups after the addition of thin-MIP from a 35-year-old male. A,B present comparative 10 mm thin-MIP 
images under identical window width/level settings. B (post-DRG) highlight the localized adaptive denoising capability of the DRG-integrated method 
within central regions (delineated by white circles), which contrasts with A (without-DRG) a conventional global filter. The DRG technique significantly 
improves the SNR and nerve-to-background contrast in anatomically complex areas, such as the cervicothoracic junction and supraclavicular fossa, 
while maintaining structural fidelity.
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between the brachial plexus and surrounding tissues, which 
enables clear imaging of the nerves (21, 22). This method is 
widely used in clinical practice. However, since it involves the 
administration of a contrast agent, it may not be suitable for 
patients with poor renal function or those who are allergic to 
the agent. Additionally, in the neck and shoulder regions, 
where there is significant anatomical deformation, higher field 
strengths (especially above 3T) can lead to magnetic field 
inhomogeneities. This often results in failure of local fat 
suppression, causing fat signals to obscure the brachial plexus 
nerve, making it difficult to identify (10). The water-fat 
separation Dixon technique is relatively insensitive to magnetic 

field and radiofrequency inhomogeneities, effectively 
suppressing fat signals and thereby minimizing interference 
with brachial plexus nerve visualization. However, conventional 
Dixon sequences are associated with prolonged scan times, 
increasing susceptibility to motion artifacts and potentially 
compromising the clarity of anatomical detail.

The Fast Dixon technique modified by the XA version of the 
manufacturer, which is not sensitive to the inhomogeneity of the 
main magnetic field and the RFF, was used in this study. The fat signal 
was completely suppressed, and the display of the brachial plexus was 
not easily disturbed by the fat signal. Ordinary Dixon (23) completes 

FIGURE 4

Comparison of the control and experimental groups after thin-MIP from a 59-year-old female. C,D present comparative 10 mm thin-MIP images 
under identical window width/level settings. Compared with C (without-DRG), D (post-DRG) has better denoising ability and neural background 
contrast.

FIGURE 5

Comparison of T2WI Fast Dixon measurements before and after DRG combination in displaying partial segments of the brachial plexus. A: without 
DRG; B: with DRG.
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the acquisition of opposed-phase and in-phase echoes in two anterior 
and posterior TRs, which are filled in two independent k-spaces, and 
then water and lipid images are obtained through the automatic 
calculation of the system to realize the separation of water and fat, 
and the overall scanning time is relatively long. In this study, Fast 
Dixon was used to acquire both opposed-phase and in-phase echoes 

after one TR, as shown in Figure  7. It also merged the damage 
gradient and readout gradient, increased the amplitude of the 
gradient, and reduced the ramp time. Therefore, the scanning time of 
T2WI Fast Dixon is almost half that of conventional T2WI Dixon. In 
other words, Fast Dixon can achieve higher spatial resolution and 
average frequency than ordinary Dixon under the same time 

TABLE 3 Comparison of SNR and CNR values for each segment of the brachial plexus between the control and experimental groups (x̄ ± s).

Paired variables x̄±s p-value T value

Control group Experimental group

L roots SNR 42.25 ± 13.526 57.506 ± 25.9 0.002** No T value

R roots SNR 42.116 ± 12.973 56.917 ± 25.516 0.004** No T value

L trunks SNR 33.676 ± 9.846 47.353 ± 15.262 <0.001** −7.868

R trunks SNR 31.381 ± 9.75 44.17 ± 15.233 <0.001** −7.978

L cords SNR 31.622 ± 14.319 45.302 ± 24.607 <0.001** No T value

R cords SNR 27.36 ± 10.509 39.422 ± 17.343 <0.001** No T value

L branches SNR 29.958 ± 9.396 42.54 ± 15.11 <0.001** No T value

R branches SNR 28.982 ± 10.461 40.657 ± 15.322 <0.001** −7.307

L roots CNR 29.972 ± 11.515 42.888 ± 18.457 <0.001** No T value

R roots CNR 30.909 ± 10.803 43.914 ± 17.544 <0.001** No T value

L trunks CNR 21.399 ± 7.459 30.355 ± 11.364 <0.001** −7.132

R trunks CNR 20.174 ± 7.706 28.596 ± 11.771 <0.001** −7.063

L cords CNR 19.344 ± 11.862 28.303 ± 20.325 <0.001** No T value

R cords CNR 16.153 ± 8.519 23.848 ± 13.948 <0.001** No T value

L branches CNR 17.68 ± 7.543 25.541 ± 11.87 <0.001** No T value

R branches CNR 17.775 ± 8.496 25.083 ± 12.073 <0.001** −5.981

*p < 0.05, **p < 0.01.

FIGURE 6

Comparative histogram analysis of the control and experimental groups.
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conditions. Notably, Fast Dixon needs to be activated under high 
bandwidth conditions. The existence of multiple average times, 
higher bandwidths and smaller echo intervals also greatly reduces the 
probability of motion artifacts of the brachial plexus. The same 
application scenarios also include easy movement tissues such as the 
neck and pelvic soft tissue. In fact, the T2WI Fast Dixon sequence 
we used is essentially a 2D sequence, which is less likely to produce 
motion artifacts than 3D volumetric excitation is. T2WI Fast Dixon 
can achieve a slice thickness similar to 3D, with better intra-slice 
resolution than 3D TSE STIR (0.8 × 0.8 m2 vs. 1 × 1 m2) in the 
literature (16, 24, 25) and can provide the same interslice resolution, 
large FOV and post-processing possibilities as 3D STIR TSE. It allows 
clear visualization of the entire brachial plexus and facilitates 
structure recognition and image interpretation (26, 27).

This study demonstrates that the T2WI Fast Dixon sequence, 
integrated with DRG technology, significantly improves brachial 
plexus visualization through a dual-path architecture guided by deep 
learning-based noise modeling and signal enhancement, enabling 
simultaneous noise suppression and enhancement of SNR and 
CNR. As an autonomously developed intelligent denoising solution 
by the MR research team, the core innovations of the DRG are as 
follows: (1) a noise suppression pathway utilizing residual 
convolutional networks (ResNet) to precisely learn noise distributions 
(including electronic noise, motion artifacts, and dielectric effects) in 
low-SNR images (28), achieving joint denoising via synergistic wavelet 
transform (frequency domain) and pixel-level filtering (spatial 
domain), coupled with adversarial training (GAN) to generate noise-
reduced images highly consistent with authentic high-SNR references 
(29); (2) a signal enhancement pathway employing attention gates to 
dynamically amplify local features of critical anatomical structures 
(e.g., brachial plexus perineurium-epineurium interfaces) while 
iteratively restoring noise-obscured microstructures. Some prior 
studies have demonstrated that deep learning via adaptive network 
architectures can address denoising, resolution enhancement, and 
scan time reduction (14, 30–32), which is attributable to 

domain-specific knowledge embedding (e.g., neural pathway patterns) 
and exploitation of interslice spatial correlations (33, 34), thereby 
effectively constraining reconstruction challenges in generating high-
quality images. Our findings align with the denoising part of the 
previous study. To address the persistent issue of MRI noise spatial 
heterogeneity (stemming from SNR depth-dependent attenuation due 
to receiver coil geometry and regional noise fluctuations induced by 
parallel imaging techniques) (35, 36), the DRG innovatively 
incorporates noise maps derived from raw k-space data into the 
reconstruction pipeline. The noninvasive extraction of noise maps 
eliminates additional scan time, enabling localized adaptive 
denoising—targeted suppression in noise-dominant regions (e.g., 
image centers or motion artifact zones)—while ensuring real-time 
processing via optimized computational frameworks. Compared with 
traditional global filters, the DRG markedly improves fat suppression 
uniformity and nerve-background contrast in anatomically complex 
regions. Currently, this technology has been extended to multiple 
domains: optimization of white matter fiber tract visualization in 
neuroimaging (37), microstructural enhancement of articular 
cartilage and tendons in musculoskeletal systems (38, 39), and the 
tissue edge sharpening in body imaging (40). The synergistic 
“denoising-enhancement” mechanism provides high-confidence 
imaging, marking a critical step toward the clinical translation of 
intelligent image reconstruction technologies.

5 Limitations

This study has several limitations. First, the sequence used is a 
non-contrast imaging protocol for the brachial plexus nerve. Some 
background signals from small blood vessels and lymph nodes are 
still present, which can slightly affect the display of certain 
segments of the brachial plexus. In addition, this study employed a 
single-center design with a relatively small sample size. This 
limitation may hinder the detection of intergroup differences due 

FIGURE 7

Timing diagram of the T2WI Fast Dixon sequence. The diagram of the Fast Dixon sequence shows opposed phase and in phase echoes acquired in the 
same repetition time between a pair of refocusing pulses (row 2) and the corresponding readout gradient (row 3). ADC, Analog-to-digital converter.
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to limited sample representativeness, potentially masking true 
biological or clinical variations and diminishing statistical power. 
To overcome these constraints, future research should prioritize 
multicenter collaborations and the inclusion of large-scale cohorts. 
Multicenter frameworks can integrate geographically diverse 
populations, thereby enhancing demographic and phenotypic 
heterogeneity, whereas expanded sample sizes improve statistical 
power and data robustness, ultimately yielding more 
comprehensive, generalizable, and statistically conclusive findings. 
The inclusion of only healthy volunteers also limits its applicability 
to pathological cases, which may also have contributed to bias in 
this study. Deep learning performs better than radiomic features in 
other site case tasks, such as image segmentation, lesion detection, 
prognosis prediction, and multimodal image registration (41–43), 
which also makes us full of expectations for the future brachial 
plexus in processing pathological changes in the brachial plexus. 
Overall, to improve the robustness of the study results, we should 
conduct future long-term follow-up studies in the future and need 
to include more patients with higher acceleration rates and 
pathological types.

6 Conclusion

T2WI Fast Dixon can enhance the visibility of brachial plexus 
segments to a certain extent through DRG denoising technology, 
which may be an effective means to display the brachial plexus without 
contrast agent.
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