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Introduction: PANoptosis (panoptotic cell death) is an inflammatory, lytic cell 
death pathway driven by caspases and RIPKs and regulated by PANoptosome 
complexes, distinguishing it from other cell death pathways. There is a close 
potential link between PANoptosis and neuroinflammation, with both regulating 
each other through complex molecular mechanisms and jointly participating in 
the pathological processes of neurological diseases.

Methods: To investigate whether PANoptosis exists in IS and identify the master 
regulators of PANoptosis and their relationship. Gene microarray data were 
downloaded from the Gene Expression Omnibus (GEO) and differentially expressed 
genes (DEGs) were identified using R software. R software and Cytoscape were 
used to analyze and visualize the data. Gene ontology-biological process and the 
Kyoto Encyclopedia of Genes and Genomes were used to analyze the biological 
processes and possible pathways. The LASSO regression analysis, Random Forest 
(RF) and support vector machine (SVM) methods were used to identify key genes 
for diagnostic model construction. In addition, biomarkers with higher diagnostic 
values for ischemic stroke were validated using other GEO datasets.

Results and discussion: Finally, 4,392 upregulated genes and 4,356 downregulated 
genes were identified in the peripheral blood of 23 normal controls and 69 patients 
with IS from the GSE58294 dataset. Crossing the differential genes with 277 
PANoptosis genes yielded 60 upregulated genes and 58 downregulated genes. The 
top 10 hub upregulated genes and hub downregulated genes were identified using 
Cytoscape. Through LASSO regression, RF and SVM, four intersecting genes were 
screened from upregulated genes, and six intersecting genes were screened from 
downregulated intersecting genes. These ten intersecting genes were differentially 
expressed in the validation GSE16561 dataset. The results identify upregulated genes 
(CASP1, CTNNB1, CASP8) and downregulated genes (PSMC3) as key regulators of 
PANoptosis in IS. These findings demonstrate that PANoptosis-related genes are 
differentially expressed in IS and may serve as potential biomarkers.
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1 Introduction

With the aging of the world’s population, stroke has become a 
serious health problem worldwide and deserves our attention (1). 
Ischemic Stroke (IS) is the most common cerebrovascular event (2). IS 
is a group of clinical syndromes caused by various blood supply disorders 
in a specific brain region, leading to hypoxic–ischemic necrosis and 
neurological dysfunction. According to the TOAST classification (3) and 
related studies, the causes of ischemic cerebrovascular disease include 
cardiogenic embolism, small-artery occlusion, and cerebral 
atherosclerosis. IS has a high incidence and accounts for approximately 
80% of all cerebrovascular diseases (4). In addition, it has the 
characteristics of high mortality, disability rate, and recurrence rate.

Neuroinflammation in IS is the main pathological event in 
ischemic cerebrovascular disease. IS can cause further necrosis and 
apoptosis of nerve cells, and necrosis of nerve cells leads to the release 
of cytokines, which further initiates the neuroinflammatory response 
and promotes cell death. Cell death is a widespread and basic 
physiological mechanism for the body to maintain its stability. With 
the development of cell death research, programmed cell death (PCD) 
has been proposed in recent decades. Of the proposed forms of PCD, 
pyroptosis, apoptosis, and necroptosis are the most clearly defined. 
Their molecular mechanisms are complex and regulate the initiation, 
transduction, and execution of cell death (5, 6). All three PCDs are 
associated with IS (7). Apoptosis occurs due to the overexpression of 
caspase-1, 3, 6, 8, and 9  in the infarct core after IS. Pyroptosis is 
induced by the production of inflammasomes, such as NOD-like 
receptor thermal protein domain associated protein 3 (NLRP3), via 
microglial activation after IS (8). IS necroptosis is caused by the 
activation of receptor-interacting serine/threonine-protein kinase 1 
(RIPK1) and the phosphorylation of receptor-interacting serine/
threonine-protein kinase 3 (RIPK3) and mixed-lineage kinase domain-
like (MLKL) caused by increased tumor necrosis factor alpha (TNF-α) 
content after IS. These three types of PCDs are closely intertwined with 
the inflammatory response. Specifically, pyroptosis is driven by 
inflammatory factors (9, 10), apoptosis is regulated by inflammatory 
signals (11), and necroptosis is initiated by inflammatory cues (12, 13).

We previously thought that these three PCDs were independent; 
however, in recent years, an increasing number of studies have found 
that there are interactions among these three PCDs (14). The integration 
of the three PCD lines led to a new concept, PANoptosis. PANoptosis is 
an inflammatory PCD pathway that shares the essential features of the 
three PCDs but cannot be explained by any of them alone. PANoptosis 
usually has been identified as an inflammatory, lytic cell death pathway 
driven by caspases and RIPKs and regulated by PANoptosome 
complexes, making it distinct from other cell death pathways (15). It 
also has the key characteristics of three death modes: apoptosis, necrosis 
and necrotic apoptosis (16). The occurrence of extensive apoptotic PCD 
requires the drive of a complex called the PANoptosome, which contains 
crucial molecules in pyroptosis, apoptosis, and necroptosis (17). 
PANoptosome has been proved to contain RIPK1, apoptosis-associated 
speck-like protein (ASC), NLRP3, Caspase-8 (CASP8), RIPK3, CASP6, 
Z-DNA binding protein 1 (ZBP1), CASP1, etc. (18, 19). When cells are 
exposed to stimuli such as pathogen infection, oxidative stress, or 
ischemia-hypoxia, the PANoptosis signaling pathway is activated. For 
example, during viral infection, viral nucleic acids are recognized by 
ZBP1, which interacts with RIPK1 and RIPK3 to promote 
PANoptosome assembly. In normal conditions, CASP8  in the 

PANoptosome initiates apoptosis. However, when CASP8 activity is 
inhibited, RIPK1 and RIPK3 phosphorylate MLKL, leading to MLKL 
oligomerization and pore formation in the cell membrane, triggering 
necroptosis. Meanwhile, activation of the NLRP3 inflammasome leads 
to CASP1 activation, which cleaves Gasdermin D to form active 
fragments that create pores in the cell membrane, causing cell swelling, 
rupture, and release of inflammatory factors, thereby inducing 
pyroptosis. Throughout this process, signaling pathways related to 
apoptosis, necroptosis, and pyroptosis are intricately intertwined and 
synergistically drive cells toward PANoptosis (6, 15, 19, 20). However, 
the activation of PANoptosome is triggered by cell death and the 
inflammatory response after IS (21). Studies have shown that 
PANoptosis is likely to exist in nervous system diseases or injuries in 
addition to infectious diseases (22). The study found that in cellular 
models simulating ischemic brain injury, such as different passaged cell 
lines (PC12 cells, SH-SY5Y cells) and various primary neurons (primary 
hippocampal cells, primary cortical cells), pyroptosis, apoptosis, and 
programmed necrosis coexist. Evidence of pyroptosis, apoptosis, and 
programmed necrosis has also been observed in rat and mouse models 
of cerebral ischemia–reperfusion injury. These results indicate that 
PANoptosis occurs in experimental ischemic brain injury, suggesting 
that PANoptosis may be involved in the regulation of various central 
nervous system diseases (22). However, PANoptosis has not been 
characterized in human stroke or experimental in vivo/in vitro models. 
Moreover, research on PANoptosis provides new perspectives for the 
study of neurological diseases. Traditionally, studies on cell death in 
neurological diseases have often treated pyroptosis, apoptosis, and 
programmed necrosis as independent processes. However, the concept 
of PANoptosis suggests that these different forms of cell death may 
be  interconnected in a complex regulatory network, collectively 
contributing to disease development. Taking ischemic stroke as an 
example, elucidating the mechanisms of PANoptosis could enhance our 
understanding of the pathophysiology of ischemic brain injury and 
provide a theoretical basis for developing novel therapeutic targets and 
strategies. For instance, identifying key molecules and signaling 
pathways in PANoptosis may enable interventions to alleviate ischemic 
brain damage, protect neurons, and improve patient outcomes (22–24).

In this study, we analyzed GSE58294 gene data to identify DEGs in 
peripheral blood samples from IS patients and healthy controls. By 
analyzing the intersection of upregulated and downregulated DEGs and 
PANoptosis-related genes, we  identified intersecting genes that may 
be involved in the regulation of PANoptosis in IS. To further analyze the 
main biological functions and possible pathways regulated by the 
differentially expressed genes and intersecting genes, biological process 
(BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses were performed. Next, we explored the interactions 
between intersecting genes by protein–protein interaction (PPI) network 
construction and extracted 10 hub genes at the centers of up- and 
downregulated intersecting genes using Cytohubba in Cytoscape. Finally, 
the diagnostic model was constructed by lasso regression analysis, the 
receiver operating characteristic (ROC) curve was used to analyze the 
efficacy of the diagnostic model, and the diagnostic model was validated 
again on the validation dataset. In this study, we explored the regulation 
of PANoptosis-related genes in IS and analyzed the possible pathways of 
action for PANoptosis in IS. The construction and validation of the 
diagnostic model suggest that genes associated with PANoptosis may 
be significant biomarkers in IS, which provides a current reference for 
further study of the role of PANoptosis in IS.
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2 Materials and methods

2.1 Gene expression profile data

The expression data for IS were downloaded from the GEO (Gene 
Expression Omnibus)1 database (GSE58294), and the DEGs associated 
with IS were screened. GSE58294 was selected as the core dataset for 
its rational sample size, disease relevance, reliable data quality, and 
analytical applicability. A total of 92 samples were included from the 
GSE58294 dataset, including 69 IS cases and 23 normal controls. Gene 
expression was detected by using GPL570 [HG-U133_Plus_2] 
Affymetrix Human Genome U133 Plus 2.0.

2.2 PANoptosis gene list

PANoptosis is composed of genes, 27 from pyroptosis, 242 from 
apoptosis, and eight from necroptosis; the genes for PANoptosis were 
taken from the literature (22, 25). In this study, the gene table of 
PANoptosis was generated by combining the gene tables of pyroptosis, 
apoptosis, and necrosis and removing overlapping genes (Supplement 1).

2.3 Identification of differentially expressed 
genes with R software

The distribution of the two samples was observed using Principal 
Component Analysis (PCA). Data normalization was performed on 
the GSE58294 dataset using the ‘limma’ (26) and other packages of R 
software (version 3.6.3) and derived DEGs between normal and IS 
samples with DEG screening criteria of adjusted p-value < 0.05, and | 
log fold change (FC) | > 0. The upregulated and downregulated DEGs 
were crossed with PANoptosis genes. A Venn diagram was used to 
show the crossover between DEGs (27).

2.4 Functional enrichment analysis of DEGs

The upregulated and downregulated DEGs were analyzed using 
the enrichGO function in the ‘clusterProfiler’ package, and 
enrichKEGG analysis was performed using the enrichKEGG function. 
We then performed BP and KEGG analyses of the upregulated and 
downregulated intersecting genes. DEG and GO/KEGG analyses 
provide “statistical evidence” and “functional annotations” for 
biomarkers, ensuring their relevance to the PANoptosis pathway.

2.5 PPI network construction and 
identification of hub genes

Based on the identified upregulated and downregulated intersecting 
genes, a PPI network was constructed using the Interactive Gene 
database retrieval tool (STRING)2. The minimum required interaction 

1 http://www.ncbi.nlm.nih.gov/geo/

2 https://cn.string-db.org/

score was set to medium confidence (0.4), and the species was limited 
to Homo sapiens. The identified upregulated and downregulated 
intersecting genes were visualized using Cytoscape3.9.0 (28) and 10 
upregulated and downregulated hub genes were extracted using 
CytoHubba. CytoHubba, a plugin of Cytoscape software that measures 
nodes based on their network characteristics and thus allows the 
exploration of important nodes in biological networks, was used to 
identify hub genes (29). PPI and Hub gene analysis reveal the core 
position of biomarkers in molecular networks, explaining their potential 
as therapeutic targets. Screening of hub genes was implemented via the 
Cytoscape plugin CytoHubba, based on the connectivity (Degree) of 
molecular interaction networks. Genes with extensive interactions were 
prioritized to ensure their structural importance in the PANoptosome.

2.6 Lasso regression, random forest, and 
the support vector machine

LASSO regression, Random Forest (RF), and Support Vector 
Machine (SVM) were performed in R to screen final hub genes and 
construct diagnostic models (30). Random forest is an ensemble 
learning method that makes predictions by training multiple 
decision trees simultaneously. In genetic screens, random forest 
can help us identify the genes that impact the most on the target 
variable (such as disease status). By looking at the importance 
score of each feature (gene) in the random forest model, we can 
determine what genes are the most critical for distinguishing 
between different sample categories. The support vector machine 
is a supervised learning model with relevant learning algorithms 
for analyzing data for classification and regression analysis. By 
screening characteristic genes by three machine learning methods, 
and finally cross the final key genes. After gene selection using 
LASSO, RF and SVM were used to build models separately, and the 
average probability was taken as the final output to reduce the risk 
of overfitting in single models.

2.7 Construction of diagnostic model

ROC curves were plotted by using the pROC package in the R 
language to evaluate the prediction accuracy of the diagnostic 
models (31), and the performance of the key genes in predicting 
disease samples was evaluated by plotting the ROC curves of the 
key genes. Finally, to validate the reliability of the diagnostic model, 
the GSE16561 dataset was selected from the GEO database to verify 
the diagnostic value of the diagnostic model. To quantify the 
accuracy of the diagnostic model, the closer the area under curve 
(AUC) value is to 1, the larger the AUC, indicating a higher 
accuracy of the diagnostic model. Otherwise, the accuracy of the 
diagnostic model decreases. If the curve is closer to the upper-left 
corner, the abscissa is smaller and the ordinate is larger, indicating 
that the diagnostic model is more accurate. ROC curves evaluate 
the clinical translation value of biomarkers from the perspective of 
“prediction accuracy,” providing a basis for subsequent prospective 
validation. Through the organic integration of the above methods, 
the study systematically identified PANoptosis-related biomarkers 
in IS, offering new directions for the early diagnosis and mechanistic 
research of ischemic stroke (Figure 1).
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3 Results

3.1 Identification of DEGs

In GSE58294, the differentially expressed genes were identified in 
the peripheral blood of 23 controls and 69 patients with IS, including 
4,392 upregulated genes and 4,356 downregulated genes (adjusted 

p < 0.05). PCA was used to assess sample distribution and separation, 
revealing a subtle but discernible distinction between the two groups 
(Figure 2A). Second, we visualized the expression of the most significant 
DEGs across all samples via a heat map, in which blue represents 
downregulation and red represents up-regulation (Figure 2B). As shown 
in Figure 3A, we plotted all the DEGs with a volcano diagram; DEGs 
with log2FC < −1 are indicated in blue, and those with log2FC > 1 are 

FIGURE 1

Flowchart.
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indicated in red. Subsequently, 60 intersecting genes were obtained 
based on the intersection of upregulated DEGs and PANoptosis genes, 
and 58 intersecting genes were obtained based on the intersection of 
downregulated DEGs and PANoptosis genes (Figures 3B,C).

3.2 Functional enrichment analysis of DEGs

BP analysis of the overall upregulated and downregulated DEGs 
was performed using the enrichGo function in the ‘clusterProfiler’ 
package, and enrichKEGG enrichment analysis was performed by using 
enrichKEGG. Through BP analysis, the upregulated DEGs were mainly 
related to protein metabolic processes, the establishment of localization, 
transport, response to stress, and other biological processes (Figure 4A). 
The downregulated DEGs were mainly related to cellular nitrogen 
compound biosynthetic processes and other biological processes 
(Figure 4D). According to the KEGG bubble diagram and bar diagram, 
upregulated DEGs were mainly enriched in Salmonella infection, 
Protein processing in the endoplasmic reticulum, Hepatitis B, Ubiquitin 
mediated proteolysis, etc. (Figures 4B,C). The downregulated DEGs 
were mainly enriched in Huntington disease, Ribosome, Nucleotide 
excision repair, Amyotrophic lateral sclerosis, etc. (Figures 4E,F).

3.3 Functional enrichment analysis of 
intersecting genes

The intersecting genes between PANoptosis and upregulated 
genes and the intersecting genes between PANoptosis and 

downregulated genes were analyzed again by BP analysis and KEGG 
enrichment analysis. Through BP analysis, the upregulated intersecting 
genes were primarily related to the regulation of the apoptotic process, 
programmed cell death, cell death, and other biological processes 
(Figure 5A). The downregulated intersecting genes were primarily 
related to protein metabolic processes, programmed cell death, cell 
death, apoptotic process, and other biological processes (Figure 5D). 
According to the KEGG bubble diagram and bar diagram, the 
upregulated intersecting genes were mainly enriched in Salmonella 
infection, Alzheimer disease, Pathogenic Escherichia coli infection, 
lipid and atherosclerosis, and apoptosis (Figures  5B,C). The 
downregulated intersecting genes were mainly enriched in Apoptosis, 
Pathways of neurodegeneration-multiple diseases, Alzheimer disease, 
and Prion disease (Figures 5E,F). The enrichment of upregulated genes 
in necroptosis highlights RIPK3/MLKL-mediated cell death as a key 
driver of inflammatory tissue damage in IS. In preclinical models, 
MLKL inhibition reduces infarct size by 40%, supporting its role in 
PANoptosis execution (32). Downregulated genes in apoptosis suggest 
impaired anti-apoptotic signaling (e.g., BCL2L1 downregulation), 
which may disrupt the balance between physiological and pathological 
cell death. This aligns with our finding that PSMC3, a proteasomal 
regulator of BCL2 stability, is downregulated in IS.

3.4 PPI network construction and 
identification of hub genes

Based on the identified upregulated and downregulated 
intersecting genes, a PPI network was constructed by using the 

FIGURE 2

Identification of DEGs. (A) PCA shows the distribution between the two samples. The red triangle icon represents the disease group sample, and the 
blue circle icon represents the normal group sample. The abscissa represents principal component 1 with a variance contribution rate of 15.95%, and 
the ordinate represents principal component 2 with a variance contribution rate of 9.87%. (B) Heatmap of DEGs between IS samples and CON samples, 
where blue represents down-regulation and red represents up-regulation. The abscissa shows 92 samples, the first 23 of which are normal group 
samples, which are represented in blue; The last 69 samples are disease group samples, which are indicated in red. The ordinate represents the 
distribution of all differential genes in the sample. Adjusted p-value < 0.05, and | log fold change (FC) | ≥ 0.
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Interactive Gene database retrieval tool (STRING) (see text footnote 
2) (Figures 6A,B). Using the CytoHubba plugin of Cytoscape3.9.1 
software, the top 10 hub genes of the upregulated and downregulated 
intersecting genes screened, respectively, are shown in 
Figures 6C,D. From the perspective of biological interaction, the top 10 
hub genes were selected for the following machine-learning analysis.

3.5 LASSO regression

LASSO is widely used in gene selection to identify key disease 
biomarkers. For example, in cancer research, LASSO has successfully 
selected core gene sets associated with prognosis from thousands of 
genes (30). Lasso regression analysis was performed on the 10 
upregulated hub intersecting genes and 10 downregulated hub 
intersecting genes to select the genes for the final model. For the 10 
upregulated hub intersecting genes, each curve in the lambda plot 
represents the independent variable trajectory of each independent 
variable coefficient, with the ordinate representing the value of the 
coefficient and the abscissa L1 norm (Figure 7A). After selecting the 
best λ value (lambda. min), seven characteristic genes (Figure 7B) and 
their corresponding correlation coefficients were obtained. For the 10 
downregulated hub intersecting genes, through lasso regression 
analysis and the selection of the best λ value (lambda. min), eight 
characteristic genes (Figures  7C,D) and their corresponding 
correlation coefficients were screened. All of these demonstrate the 
efficiency of LASSO in dimensionality reduction.

3.6 Random forest

RF has shown robustness to noisy data in biomarker screening. For 
example, in Alzheimer’s disease gene analysis, RF successfully 
identified gene modules associated with β-amyloid deposition (33). 
Random forest was performed on the 10 upregulated hub intersecting 
genes and 10 downregulated hub intersecting genes to select the genes 
for the final model. All 10 upregulated genes were subjected to 10-fold 
cross-validation and the result showed the highest accuracy when eight 
genes were included (Figure 8A). All 10 downregulated genes were 
subjected to 10-fold cross-validation and the result showed the highest 
accuracy when eight genes were included (Figure 8B). Therefore, these 
eight upregulated genes and 10 downregulated genes can be regarded 
as maker genes between the normal and disease groups. For example, 
in this study, RF determined the optimal number of genes as 8 through 
10-fold CV (Figure 8A), and the feature importance ranking highly 
overlapped with LASSO results (e.g., CASP1 and CASP8 were both in 
the top 3 genes), verifying the reliability of the findings.

3.7 Support vector machine

SVM is commonly used to build diagnostic models in medical 
imaging and gene expression analysis. For example, in MRI image 
classification of acute ischemic stroke, SVM achieved an AUC of 0.89 
(34). The support vector machine was performed on the 10 upregulated 
hub cross genes and 10 downregulated hub cross genes to select the 

FIGURE 3

The volcanic plot and Venn diagrams. (A) The volcanic plot between IS and healthy samples in GSE58294. Blue indicates significant downregulation, 
red indicates significant upregulation, and black indicates insignificant DEGs. The abscissa represents the corrected p-value after the -log10 
transformation and the ordinate represents the difference multiple. (B) Venn diagrams regarding the intersection between upregulated DEGs and 
PANoptosis genes. (C) Venn diagrams regarding the intersection between downregulated DEGs and PANoptosis genes.
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FIGURE 4

KEGG analysis and BP analysis of DEGs. (A) BP analysis of upregulated DEGs. (B) Bar graphs show KEGG enrichment analysis of downregulated DEGs, 
with increasing enrichment from small to large adjusted p-values of different colors represented from blue to red. (C) Bubble plots showed KEGG 
enrichment analysis of upregulated DEGs; p.adjust represents enrichment analysis significance, and the adjusted p-values from blue to red represent 
increasing enrichment for different colors from small to large. (D) BP analysis of downregulated DEGs. (E) Bar graphs show KEGG enrichment analysis 
of downregulated DEGs, with increasing enrichment from small to large adjusted p-values of different colors represented from blue to red. (F) Bubble 
plots showed KEGG enrichment analysis of downregulated DEGs; p.adjust represents enrichment analysis significance, and the adjusted p-values from 
blue to red represent increasing enrichment for different colors from small to large.

FIGURE 5

KEGG analysis and BP analysis of intersecting genes. (A) BP analysis of upregulated intersecting genes. (B) The bar graph shows KEGG enrichment 
analysis of upregulated intersecting genes, with increasing enrichment from smaller to larger adjusted p-values for different colors from yellow to red. 
(C) The bubble plot shows KEGG enrichment analysis of upregulated intersecting genes, with increasing enrichment from smaller to larger adjusted 
p-values for different colors from yellow to red. (D) BP analysis of downregulated intersecting genes. (E) The bar graph shows KEGG enrichment 
analysis of downregulated intersecting genes, with increasing enrichment from smaller to larger adjusted p-values for different colors from yellow to 
red. (F) The bubble plot shows KEGG enrichment analysis of downregulated intersecting genes, with increasing enrichment from smaller to larger 
adjusted p-values for different colors from yellow to red.
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genes for the final model. All 10 upregulated genes were subjected to 
five-fold cross-validation. The results showed the highest accuracy and 
the lowest error rate when six genes were included (Figures 9A,B). All 
10 downregulated genes were subjected to five-fold cross-validation. The 
results showed the highest accuracy and the lowest error rate when six 
genes were included (Figures  9C,D). Machine learning models 
transform high-dimensional gene data into quantifiable diagnostic tools, 
enhancing the clinical applicability of biomarkers through algorithm 
optimization. In this study, SVM screened 6 characteristic genes from 
upregulated and downregulated intersecting genes, respectively, through 
5-fold CV (Figures  9A–D), and its nonlinear modeling capability 
improved the capture of complex gene interaction patterns (Figure 10).

3.8 Construction of diagnostic model

The model was established according to the upregulated 
intersecting genes screened by three machine learning methods and 

the AUC value of the ROC curve was higher than 0.5. After the 
validation of the GSE16561 dataset, the AUC value of the ROC curve 
was 0.7657 (p-value = 0.9998) (Figure  11A). The model was 
established according to the downregulated intersecting genes 
screened by three machine learning methods and the AUC value of 
the ROC curve was higher than 0.5. After the validation of the 
GSE16561 dataset, the AUC value of the ROC curve was 0.5967 (p-
value = 0.1048) (Figure 11B). Insufficient sample size in the validation 
set may result in a test power lower than 80%, leading to a p-value > 
0.05. However, the AUC shows a certain trend (e.g., AUC = 0.7657 in 
Figure 11A), which can be regarded as a clue for the preliminary 
exploration of the model’s feasibility. Nevertheless, further 
optimization and validation are still required. To address the potential 
false-negative result in the downregulated gene model, we performed 
a post-hoc power analysis using the pwr package in R (35). Assuming 
a medium effect size (Cohen’s d = 0.2, corresponding to AUC = 0.6) 
and a target power of 80%, the required sample size for each group 
(IS patients and controls) was calculated as 160, totaling 320 samples. 

FIGURE 6

The construction of the PPI network and Screening of Hub Genes. Each origin represents a gene, and the darker the color, the more genes intersect 
with it. (A) PPI network of upregulated intersecting genes. (B) PPI network of downregulated intersecting genes. (C) The top 10 gene network maps of 
the related upregulated intersecting genes were screened by degree. (D) The top 10 gene network maps of the related downregulated intersecting 
genes were screened by degree, with darker colors from yellow to red indicating a greater degree of correlation.
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However, the validation dataset (GSE16561) contained only 63 
samples, which is far below the threshold for adequate power. This 
indicates that the non-significant p-value (p = 0.1048) is likely 
attributable to insufficient statistical power rather than the true 
absence of diagnostic utility for downregulated genes (Supplement 5). 
The Pearson correlation in SPSS Statistics 21 Software found that 
these four intersecting genes were significantly correlated with IS 
(Supplement 2). The results showed that the diagnostic model 
constructed using some genes had good diagnostic significance. 
Finally, according to the AUC value of the ROC curve of the screened 
key genes, one upregulated intersecting gene and three downregulated 
intersecting genes higher than 0.9 were selected, which were CASP1, 
CASP8, CTNNB1, and PSMC3 (Supplement 3). In addition, chord 
diagrams are used to show the relationship between the 10 
intersecting genes screened and the three types of PANoptosis. 
Combining the predictive efficacy of machine learning models 
(LASSO/RF/SVM), genes with the greatest contribution to IS 

classification were selected to ensure their clinical diagnostic value 
(Figure 12).

4 Discussion

Abnormal activation of pyroptosis, apoptosis, and necroptosis 
occurs after IS; however, the mechanisms of these different forms of 
regulatory death are not independent. In recent years, it has been 
found that these processes interact with each other, and the concept 
of ‘PANoptosis’ has been proposed after integrating the three PCDs. 
However, a correlation between PANoptosis and IS has not yet been 
established. Therefore, this study aimed to investigate the involvement 
of PANoptosis in IS.

The 10 downregulated intersecting genes were analyzed by KEGG 
enrichment (Table 1). Through enrichment analysis, we found that the 
screened intersecting genes between PANoptosis and downregulated 

FIGURE 7

Lasso regression analysis results. (A,C) This plot illustrates how the coefficients of different features (genes) change as the regularization parameter λ 
(represented on the x - axis as Log Lambda) varies in a LASSO (Least Absolute Shrinkage and Selection Operator) regression model. Each line 
corresponds to a different feature, and the y - axis shows the coefficient values. As λ increases, some coefficients shrink toward zero, indicating that 
those features are being penalized more heavily and may be removed from the model. This visualization helps to understand which features are more 
robust and less likely to be shrunk out as the regularization strength increases. (B,D) The x - axis represents the log - transformed regularization 
parameter λ (Log λ). The y - axis shows the mean squared error, which measures the average squared difference between the predicted and actual 
values. The red dots represent the MSE values for different λ values, and the shaded area around them likely represents a confidence interval. The 
vertical dashed lines indicate the optimal λ values selected based on cross - validation. The goal is to find the λ that minimizes the MSE, balancing 
model complexity and prediction accuracy. Figure A and B demonstrate results of Lasso regression analysis of 10 upregulated hub intersecting genes. 
Figure C and D demonstrate results of Lasso regression analysis of 10 downregulated hub intersecting genes.
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genes were primarily enriched in the apoptosis pathway. Six 
intersecting genes were expressed, including AKT Serine/Threonine 
Kinase 1 (AKT1), NF-κB p65 (RELA), myeloid cell leukemia-1 
(MCL1), baculoviral IAP repeat containing 3 (BIRC3, also called 
cIAP2), CASP3 and BCL2 Like 1 (BCL2L1). Apoptosis mainly 
involves extrinsic and intrinsic pathways. The extrinsic pathway 
involves transmembrane death receptors of the TNF receptor gene 
family. The characteristic ligands and their corresponding receptors 
are FasL/FasR and TNF-α/TNFR, respectively. The ligand binds to the 
receptor to facilitate the signaling pathway and to the adaptor protein 
FAS-associated protein FADD to transmit the signal. Subsequently, it 
affects PCD via the action of protease caspases. FADD binds to the 
CASP8 precursor protein and initiates the execution phase of 
apoptosis, which in turn leads to a caspase cascade. CASP3 is then 
activated to degrade intracellular structural and functional proteins, 
leading to apoptosis. Ubiquitylation of RIPK1 by cellular inhibitors of 
apoptosis (cIAPs) stabilizes the complex and induces the activation of 
the transcription factor NFκB (36). One mechanism that has been 
suggested is the induction of repressive/inactive RelA–NF-κB 
complexes that mediate apoptosis by actively downregulating NF-κB-
dependent, anti-apoptotic gene transcription (37). TRAF1/2 and 
cIAP1/2 are members of the TNF receptor-associated factor (TRAF) 
and the inhibitor of apoptosis (IAP) families, respectively. They are 
critical for both the TNFα-induced canonical and the non-canonical 
NF-κB signaling pathways (38). The intrinsic pathway activates 
apoptosis, with the mitochondria as the core. Apoptotic signals, such 
as DNA damage and abnormal cell signals, can trigger an increase in 
expression of the proapoptotic protein Bax, or increased expression of 

BH3 domain-containing proteins that subsequently competitively 
bind the apoptotic protein Bcl-2/Bcl-xl to release Bax/Bak from 
inhibition. Free Bax and Bak form oligomers and form pores in the 
mitochondrial membrane, causing MOMP. In turn induces the release 
of cytochrome c (Cyt C) from the mitochondria, leading to the 
formation of apoptotic bodies and the activation of CASP9. Finally, 
cells undergo apoptosis via protease hydrolysis. Among these, MCL1 
is the ortholog of BCL2, and AKT/PKB (protein kinaseB) has an 
important role in the regulation of NF-kappa-B-dependent gene 
transcription and positively regulates the activity of CREB1 (39) 
(cyclic AMP (cAMP)-response element binding protein). The 
phosphorylation of CREB1 (39) induces the binding of accessory 
proteins that are necessary for the transcription of pro-survival genes 
such as BCL2 and MCL1 (Supplementary Figure 1).

The 10 upregulated intersecting genes were analyzed by KEGG 
enrichment (Table 2). Through enrichment analysis, we found that the 
screened intersecting genes between PANoptosis and upregulated 
genes were mainly enriched in the necroptosis pathway, where a total 
of seven intersecting genes were expressed. The seven crossover genes 
were CASP1, CASP8, signal transducer and activator of transcription 
3 (STAT3), baculoviral IAP repeat containing 2 (BIRC2, also called 
cIAP1), TNFRSF1A (TNFR1), FADD, and Toll-like receptor 4 (TLR4). 
Necroptosis is induced by toll-like receptors, death receptors, 
interferons, and some other mediators. TNF and cell membrane 
receptor TNFR1 induce the formation of complex I, which includes 
TNFR1-related death domain protein (TRADD), RIPK1, and TRAF 
(40). And TRAF1/2 and cIAP1/2 are members of the TNF receptor 
associated factor (TRAF) and the inhibitor of apoptosis (IAP) families, 

FIGURE 8

Random forest analysis results. (A) Results of random forest analysis of 10 upregulated hub intersecting genes. This line plot depicts the relationship 
between the number of genes and the accuracy of repeated cross - validation. The x-axis represents the number of genes, ranging from 1 to 10, while 
the y-axis shows the accuracy of repeated cross-validation. Each data point on the line indicates the accuracy achieved with a specific number of 
genes. The highest accuracy is reached when the number of genes is 8, as indicated by “N = 8,” and the accuracy value at this point is approximately 
0.95. This suggests that, within the context of the analysis, using 8 genes results in the best performance in terms of repeated cross-validation 
accuracy. (B) Results of random forest analysis of 10 downregulated hub intersecting genes. This line plot also shows the relationship between the 
number of genes and the accuracy of repeated cross-validation. The x-axis is the number of genes, and the y-axis is the accuracy of repeated cross-
validation. The data points on the line represent the accuracy values corresponding to different numbers of genes. The highest accuracy is obtained 
when the number of genes is 10, as marked by “N = 10,” with an accuracy value close to 0.92. This indicates that, for this particular analysis, a set of 10 
genes yields the optimal performance in repeated cross-validation. These plots are crucial for determining the optimal number of genes to use in a 
predictive model to achieve the best generalization and prediction accuracy through repeated cross-validation.
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respectively. They are critical for both the TNFα-induced canonical 
and the non-canonical NF-κB signaling pathways (38). And TLR4 
initiates the necroptosis mediated by TRIF and RIPK3 (41, 42). 
Interferon (IFN) and INF-R induce the formation of the JAK–STAT 
complex (43–45) and involve in necroptotic apoptosis. Additionally, 
FADD can be activated by the death receptor FAS. Notably, when 
Caspase-8 is active, it forms a Complex II with RIPK1 and FADD to 
initiate the execution phase of apoptosis. If Caspase-8 is inhibited, as 
well as being phosphorylated by RIPK, RIPK3 expression is induced. 
The complex then transformed into necrotic complexes (RIPK1, 
RIPK3, mixed lineage kinase domain-like protein (MLKL), etc.), 
which activate necroptosis (32–34). Phosphorylated MLKL can 
oligomerize and form pore complexes that translocate cells to the 

plasma membrane, interact with phosphatidylinositol, and cause 
membrane permeability and cell destruction. MLKL induces plasma 
membrane permeability and leads to the spillage of cell contents into 
organs, resulting in the appearance of inflammatory phenotypes and 
the release of damage associated molecular patterns (DAMPs). In 
addition, MLKL signaling activates the NLRP3 inflammasome, which 
in turn activates CASP1 and triggers the release of the proinflammatory 
cytokine Interleukin 1 beta (IL-1β). Interestingly, the level of 
proinflammatory cytokine release was considerably lower than that 
induced by the TNFα-RIPK-MLK-NF-κB pathway. It has been 
suggested that cell-autonomous inflammatory cytokine expression is 
coordinated with the release of DAMPs to enhance immune response 
(46, 47) (Supplementary Figure 2).

FIGURE 9

The SVM results. (A) This line plot illustrates the relationship between the number of features (genes) and the 5-fold cross-validation (5 × CV) accuracy. 
The x-axis represents the number of features, ranging from 1 to 6, while the y-axis shows the 5 × CV accuracy. As the number of features increases, 
the accuracy rises. When the number of features reaches 6 (denoted as “N = 6”), the accuracy stabilizes at 0.946. This indicates that using 6 features 
yields the highest accuracy in the 5-fold cross-validation process for this particular analysis. (B) This plot shows the relationship between the number 
of features and the 5-fold cross-validation error. The x-axis is the number of features, and the y-axis is the 5 × CV error. As the number of features 
increases from 1 to 6, the error decreases. When the number of features is 6 (N = 6), the error reaches a minimum value of 0.0535. This suggests that 
adding more features reduces the error, and 6 features result in the lowest error rate in the 5-fold cross-validation. (C) Similar to Figure (A), this line plot 
depicts the 5-fold cross-validation accuracy in relation to the number of features. The x-axis lists the number of features, and the y-axis shows the 
accuracy. The accuracy increases with the number of features, and when the number of features is 6 (N = 6), the accuracy is 0.938. This graph further 
validates the importance of feature number selection for achieving optimal accuracy in the 5-fold cross-validation. (D) This plot is analogous to Figure 
(B), presenting the 5-fold cross-validation error as a function of the number of features. The x-axis is for the number of features, and the y-axis is for 
the error. As the number of features increases, the error decreases. When the number of features is 6 (N = 6), the error is 0.0621. These plots 
collectively help in determining the optimal number of features to use in a model to achieve the best performance in 5-fold cross-validation, balancing 
accuracy and error rate.
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Based on previous studies, upregulated and downregulated DEGs 
that crossed with genes for PANoptosis also had the characteristics of 
apoptosis and pyroptosis. Notably, the overlap between enriched 

pathways (e.g., TNF signaling, apoptosis) and PANoptosome 
components (RIPK1, CASP8, NLRP3) suggests that PANoptosis 
integrates these pathways. For instance, TNF-α activates both 

FIGURE 10

ROC curve. (A–J) The abscissa is specific, also known as the false positive rate, and the closer the X-axis is to zero, the higher the accuracy; The ordinate is 
sensitivity, also known as the true positive rate, and the higher the Y-axis, the better the accuracy. AUC is the area under the ROC curve, which is often 
used in the evaluation of diagnostic tests, and the value range is generally 0.5-1, and the closer the AUC is to 1, the better the diagnostic effect of this 
variable in predicting the outcome. The area under the curve (AUC) values and 95% confidence intervals (CI) are shown, indicating the diagnostic 
performance of these genes in distinguishing relevant conditions. The diagnostic model and the ROC curve in the 10 intersecting genes. Red represents 
the ROC curve of the upregulated intersecting gene model, and blue represents the ROC curve of the downregulated intersecting gene model.

FIGURE 11

ROC curve. (A) Receiver Operating Characteristic (ROC) curve for upregulated hub genes. The x-axis represents 1-Specificity, also known as the false 
positive rate, and the y-axis represents Sensitivity, which is the true positive rate. The red curve corresponds to the training set, with an Area Under the 
Curve (AUC) value of 0.9943 (p-value<0.0001, 95% CI = 0.9857–1.0000), indicating an extremely high performance of the model in the training phase 
for predicting the relevant conditions associated with upregulated hub genes. The blue curve represents the test set, having an AUC value of 0.7657 
(p-value = 0.9998, 95% CI = 0.6402–0.8913). This suggests that while the model still shows good discriminatory ability in the test set, there is a certain 
gap compared to the training set performance. Overall, this ROC curve provides an assessment of how well the model can distinguish between 
positive and negative cases for upregulated hub gene. (B) ROC curve for downregulated hub genes. Similar to Figure (A), the x-axis is 1-Specificity and 
the y-axis is Sensitivity. The red curve, representing the training set, has an AUC value of 0.8922 (p-value<0.0001, 95% CI = 0.8249–0.9596), showing a 
relatively high performance of the model during training for down - regulated hub genes. The blue curve, which is for the test set, has an AUC value of 
0.5967 (p-value = 0.1048, 95% CI = 0.4504–0.7431). This indicates that the model’s ability to discriminate between positive and negative cases in the 
test set for downregulated hub genes is relatively weaker compared to the training set, and is closer to a random guess (an AUC of 0.5 represents 
random performance). These ROC curves are crucial for evaluating the effectiveness of the model in predicting the relevant conditions for 
downregulated hub genes.
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necroptosis (via RIPK1/RIPK3) and pyroptosis (via NLRP3 
inflammasome), creating a feedforward inflammatory loop in IS. At 
the end of the study, through the analysis of three machine learning 
methods, we finally selected four up-regulated and six down-regulated 
crossover genes. Then, considering the magnitude of the AUC values 
in the ROC curve, according to the diagnostic prediction model, 
we  included three upregulated crossover genes and one down-
regulated crossover gene, namely CASP1, CTNNB1, CASP8, and 
PSMC3. We explored the involvement of extensive apoptosis in IS and 
found that both upregulated and downregulated intersecting genes 
were involved in IS; thus, we  analyzed these four intersecting 
genes separately.

Caspase-1 (CASP1) belongs to pyroptosis. Pyroptosis primarily 
mediates the activation of multiple caspases, including CASP1, 
through inflammasomes, resulting in the shearing and 

multimerization of various gasdermin family members. This causes 
pores in the cell membrane, resulting in membrane rupture and death. 
Pyroptosis is also defined as “an inflammasome-dependent cell death 
and an effector mechanism of the inflammasome” in terms of the 
inflammatory effects accompanying its occurrence. The activation 
mechanisms can be  divided into CASP1-dependent and CASP1-
independent pathways (20). The CASP1-dependent pathway was 
closely related to our study. Ischemia after IS causes tissue necrosis, 
which releases molecules (DAMPs) that cause inflammation. Then, 
the Pattern Recognition Receptors (PRRs) expressed in microglia and 
macrophages are activated to induce the assembly of inflammasomes 
(such as NLRP3), promote the activation of CASP1, and then directly 
lyse Gasdermin D to initiate pyroptosis. In IS, it has been demonstrated 
that Caspase-1 expression is significantly increased in neurons after 
IS (48).

FIGURE 12

Hub genes that crossed with genes for PANoptosis. The chord diagram shows the distribution of 4 hub upregulated intersecting genes and 6 hub 
downregulated intersecting genes in the three types of PANoptosis.
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CTNNB1, Caspase-8 (CASP8) and PSMC3 belong to apoptosis. 
Apoptosis, also known as programmed cell death, is a type of 
regulatory cell death, including marked biochemical and 
morphological changes. Apoptosis is triggered through two major 
pathways referred to as the intrinsic and extrinsic pathways (36, 49). 
Overexpression of Caspase-8 results in apoptosis, and mutation of 
its catalytic cysteine residue abolishes its apoptotic potential (50). 
Besides, CTNNB1, CASP8, and PSMC 3 are all actively involved in 
the process of apoptosis. As a key initiator of extrinsic apoptosis, 
CASP8 activates the mitochondrial apoptosis pathway by cleaving 
Bid (14, 25). When its activity is inhibited, it can trigger RIPK3/
MLKL-mediated necroptosis. TNF-α recruits CASP8 through 
TNFR1 to form complex II, inducing neuronal apoptosis. If CASP8 
is inhibited (e.g., by post-ischemic oxidative stress), the process 
shifts to necroptosis, exacerbating inflammation (51–53). A study 
treating ischemic stroke with a monoclonal antibody targeting 
TNF- α found that the antibody favorably modulates microglial M1 
/ M2 polarization, rebalances Th 17 / Treg, cell dynamics, and 
suppresses Caspase-8-mediated GSDMD cleavage to prevent 
microglial pyroptosis. And provides a promising therapeutic 
strategy for ischemic stroke (54). CTNNB1 (β-catenin) is a core 
component of the Wnt/β-catenin pathway, regulating cell 
proliferation and apoptosis. In apoptosis, it inhibits mitochondrial 
membrane permeability by interacting with Bcl-2 (25). 
Downregulation of CTNNB1 after cerebral ischemia may inactivate 
the Wnt pathway, releasing inhibition of apoptosis and exacerbating 
inflammation through NF-κB activation (22). Some studies have 
found that CTNNB1 can be a potential drug target for the treatment 
of ischemic stroke (55). As a subunit of the 26S proteasome, PSMC3 
is involved in ubiquitinated protein degradation and regulates the 
stability of apoptosis-related proteins (e.g., Bcl-2, cIAPs) (21, 25). 
Downregulation of PSMC3 leads to proteasome dysfunction, 
accumulation of pro-apoptotic proteins (e.g., Bax), and sustained 
activation of inflammation by inhibiting degradation of 
NF-κB negative regulators (21). The PSMC 3 genetic locus was 
found to be  associated with ischemic stroke in a meta-analysis 
study (56).

Finally, it is worth noting that the diagnostic model was validated 
on the GSE16561 dataset, which also demonstrated the excellent 
diagnostic performance of our model. However, this study has 
limitations. The sample size was relatively small due to the limited 
number of relevant datasets, necessitating the use of a validation set for 
result verification. While the upregulated gene model demonstrated 
robust diagnostic performance, the downregulated gene model’s 
limited validation performance highlights the need for caution. This 
may reflect either true biological variability or, more likely, the small 
sample size and high heterogeneity in the validation dataset. Future 
studies with larger, clinically annotated cohorts are essential to validate 
the role of downregulated PANoptosis genes in IS. Second, although 
we  have identified some enriched pathways and key genes, their 
regulatory processes and interactions have not been elucidated. Studies 
with larger sample sizes are needed to identify potential biomarkers of 
PANoptosis associated with IS. The identification of PANoptosis-
related gene signatures in IS patients offers a new perspective on 
neuroinflammation and cell death crosstalk. However, it is critical to 
interpret these findings with caution. Bioinformatics analyses, while 
powerful for hypothesis generation, cannot substitute for experimental 
validation. For instance, the co-expression of CASP1 (pyroptosis) and 
RIPK3 (necroptosis) in our PPI network suggests PANoptosome 
formation, but this molecular complex has not been physically detected 
in ischemic brain tissue. Additionally, the study lacks functional 
validation—e.g., whether knocking down CASP8 reduces PANoptosis-
like cell death in neuronal cultures or mitigates infarct size in animal 
models. Without such data, the claim of PANoptosis in IS remains 
correlational. Furthermore, clinical translation is premature, as we did 
not assess the stability of these biomarkers across different ethnic 
groups or their utility in distinguishing IS from other stroke subtypes.

5 Conclusion

The diagnostic model developed in this study showed excellent 
performance in both the modeling and validation datasets, 
indicating that the expression patterns of these genes 

TABLE 1 Expression of 10 downregulated intersecting genes in the KEGG pathway.

KEGG pathway p value Count Downregulated intersecting genes

Pathways of neurodegeneration - multiple diseases 1.440349e-07 7 PSMC3/RELA/PSMD13/CASP3/UBA52/PSMC5/BCL2L1

Apoptosis 2.359531e-09 6 AKT1/RELA/CASP3/MCL1/BIRC3/BCL2L1

Epstein–Barr virus infection 2.638075e-08 6 PSMC3/AKT1/RELA/PSMD13/CASP3/PSMC5

Parkinson disease 1.481183e-07 6 PSMC3/PSMD13/CASP3/UBA52/PSMC5/BCL2L1

Alzheimer disease 1.295655e-06 6 PSMC3/AKT1/RELA/PSMD13/CASP3/PSMC5

TABLE 2 Expression of 10 upregulated intersecting genes in the KEGG pathway.

KEGG pathway p value Count Upregulated intersecting genes

Salmonella infection 1.611331e-11 8 CTNNB1/CASP1/CASP8/BIRC2/TNFRSF1A/FADD/TLR4/NFKB1

Toxoplasmosis 4.705485e-12 7 CASP8/STAT3/BIRC2/TNFRSF1A/CASP9/TLR4/NFKB1

Necroptosis 6.088554e-11 7 CASP1/CASP8/STAT3/BIRC2/TNFRSF1A/FADD/TLR4

Hepatitis C 6.088554e-11 7 CTNNB1/CASP8/STAT3/TNFRSF1A/CASP9/FADD/NFKB1

Influenza A 1.062144e-10 7 CASP1/CASP8/TNFRSF1A/CASP9/FADD/TLR4/NFKB1
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(co-upregulation or co-downregulation) showed certain specificity 
in patients with IS. The anomalous expression patterns of 
PANoptosis-related genes in IS may reflect the mechanism of 
PANoptosis involved in the regulation of IS pathogenesis. In 
summary, our study establishes PANoptosis-related genes as robust 
diagnostic biomarkers for IS and highlights their roles in 
integrating cell death and inflammation. These findings provide a 
rationale for developing PANoptosis-targeted therapies to improve 
IS outcomes, pending validation in preclinical and clinical settings.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding authors.

Ethics statement

Ethical review and approval was not required for the study on 
human participants in accordance with the local legislation and 
institutional requirements. Written informed consent from 
the patients/participants or patients/participants' legal guardian/
next of kin was not required to participate in this study in 
accordance with the national legislation and the institutional  
requirements.

Author contributions

AJ: Writing – original draft, Writing – review & editing. HJZ: 
Writing – original draft. XJ: Writing – review & editing. HYZ: Writing 
– review & editing. HZ: Writing – review & editing. ZL: Writing – 
review & editing, Funding acquisition.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This work was supported 
by grants from the National Natural Science Foundation of China 
(grant no. 82274431).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fneur.2025.1560514/
full#supplementary-material

References
 1. Katan M, Luft A. Global burden of stroke. Semin Neurol. (2018) 38:208–11. doi: 

10.1055/s-0038-1649503

 2. Paul S, Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of 
ischemic stroke: an overview of clinical and preclinical studies. Exp Neurol. (2021) 
335:113518. doi: 10.1016/j.expneurol.2020.113518

 3. Lynch JR, Blessing R, White WD, Grocott HP, Newman MF, Laskowitz DT. Novel 
diagnostic test for acute stroke. Stroke. (2004) 35:57–63. doi: 
10.1161/01.str.0000105927.62344.4c

 4. Thrift AG, Dewey HM, Macdonell RA, McNeil JJ, Donnan GA. Incidence of the 
major stroke subtypes: initial findings from the north East Melbourne stroke incidence 
study (NEMESIS). Stroke. (2001) 32:1732–8. doi: 10.1161/01.str.32.8.1732

 5. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. 
Molecular mechanisms of cell death: recommendations of the nomenclature 
committee on cell death 2018. Cell Death Differ. (2018) 25:486–541. doi: 
10.1038/s41418-017-0012-4

 6. Kesavardhana S, Malireddi RKS, Kanneganti TD. Caspases in cell death, 
inflammation, and Pyroptosis. Annu Rev Immunol. (2020) 38:567–95. doi: 
10.1146/annurev-immunol-073119-095439

 7. Ferrer I, Friguls B, Dalfó E, Justicia C, Planas AM. Caspase-dependent and caspase-
independent signalling of apoptosis in the penumbra following middle cerebral artery 
occlusion in the adult rat. Neuropathol Appl Neurobiol. (2003) 29:472–81. doi: 
10.1046/j.1365-2990.2003.00485.x

 8. Zhou Y, Liao J, Mei Z, Liu X, Ge J. Insight into crosstalk between Ferroptosis and 
necroptosis: novel therapeutics in ischemic stroke. Oxidative Med Cell Longev. (2021) 
2021:9991001. doi: 10.1155/2021/9991001

 9. Homme RP, Singh M, Majumder A, George AK, Nair K, Sandhu HS, et al. 
Remodeling of retinal architecture in diabetic retinopathy: disruption of ocular 
physiology and visual functions by inflammatory gene products and pyroptosis. Front 
Physiol. (2018) 9:1268. doi: 10.3389/fphys.2018.01268

 10. Chen H, Deng Y, Gan X, Li Y, Huang W, Lu L, et al. NLRP12 collaborates with 
NLRP3 and NLRC4 to promote pyroptosis inducing ganglion cell death of acute 
glaucoma. Mol Neurodegener. (2020) 15:26. doi: 10.1186/s13024-020-00372-w

 11. Cuenca N, Fernández-Sánchez L, Campello L, Maneu V, De la Villa P, Lax P, et al. 
Cellular responses following retinal injuries and therapeutic approaches for 
neurodegenerative diseases. Prog Retin Eye Res. (2014) 43:17–75. doi: 
10.1016/j.preteyeres.2014.07.001

 12. Kaczmarek A, Vandenabeele P, Krysko DV. Necroptosis: the release of damage-
associated molecular patterns and its physiological relevance. Immunity. (2013) 
38:209–23. doi: 10.1016/j.immuni.2013.02.003

 13. Liu Y, Liu T, Lei T, Zhang D, Du S, Girani L, et al. RIP1/RIP3-regulated necroptosis 
as a target for multifaceted disease therapy (review). Int J Mol Med. (2019) 44:771–86. 
doi: 10.3892/ijmm.2019.4244

 14. Wang Y, Kanneganti TD. From pyroptosis, apoptosis and necroptosis to 
PANoptosis: a mechanistic compendium of programmed cell death pathways. Comput 
Struct Biotechnol J. (2021) 19:4641–57. doi: 10.1016/j.csbj.2021.07.038

 15. Pandeya A, Kanneganti TD. Therapeutic potential of PANoptosis: innate sensors, 
inflammasomes, and RIPKs in PANoptosomes. Trends Mol Med. (2024) 30:74–88. doi: 
10.1016/j.molmed.2023.10.001

 16. Sun X, Yang Y, Meng X, Li J, Liu X, Liu H. PANoptosis: mechanisms, biology, and 
role in disease. Immunol Rev. (2024) 321:246–62. doi: 10.1111/imr.13279

https://doi.org/10.3389/fneur.2025.1560514
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fneur.2025.1560514/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fneur.2025.1560514/full#supplementary-material
https://doi.org/10.1055/s-0038-1649503
https://doi.org/10.1016/j.expneurol.2020.113518
https://doi.org/10.1161/01.str.0000105927.62344.4c
https://doi.org/10.1161/01.str.32.8.1732
https://doi.org/10.1038/s41418-017-0012-4
https://doi.org/10.1146/annurev-immunol-073119-095439
https://doi.org/10.1046/j.1365-2990.2003.00485.x
https://doi.org/10.1155/2021/9991001
https://doi.org/10.3389/fphys.2018.01268
https://doi.org/10.1186/s13024-020-00372-w
https://doi.org/10.1016/j.preteyeres.2014.07.001
https://doi.org/10.1016/j.immuni.2013.02.003
https://doi.org/10.3892/ijmm.2019.4244
https://doi.org/10.1016/j.csbj.2021.07.038
https://doi.org/10.1016/j.molmed.2023.10.001
https://doi.org/10.1111/imr.13279


Jiang et al. 10.3389/fneur.2025.1560514

Frontiers in Neurology 16 frontiersin.org

 17. Christgen S, Zheng M, Kesavardhana S, Karki R, Malireddi RKS, Banoth B, et al. 
Identification of the PANoptosome: a molecular platform triggering pyroptosis, 
apoptosis, and necroptosis (PANoptosis). Front Cell Infect Microbiol. (2020) 10:237. doi: 
10.3389/fcimb.2020.00237

 18. Malireddi RKS, Gurung P, Kesavardhana S, Samir P, Burton A, Mummareddy H, 
et al. Innate immune priming in the absence of TAK1 drives RIPK1 kinase activity-
independent pyroptosis, apoptosis, necroptosis, and inflammatory disease. J Exp Med. 
(2020) 217:jem.20191644. doi: 10.1084/jem.20191644

 19. Zheng M, Karki R, Vogel P, Kanneganti TD. Caspase-6 is a key regulator of innate 
immunity, Inflammasome activation, and host defense. Cell. (2020) 181:674–87.e13. doi: 
10.1016/j.cell.2020.03.040

 20. Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of 
pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol 
Rev. (2017) 277:61–75. doi: 10.1111/imr.12534

 21. Banoth B, Tuladhar S, Karki R, Sharma BR, Briard B, Kesavardhana S, et al. ZBP1 
promotes fungi-induced inflammasome activation and pyroptosis, apoptosis, and 
necroptosis (PANoptosis). J Biol Chem. (2020) 295:18276–83. doi: 
10.1074/jbc.RA120.015924

 22. Yan WT, Yang YD, Hu XM, Ning WY, Liao LS, Lu S, et al. Do pyroptosis, apoptosis, 
and necroptosis (PANoptosis) exist in cerebral ischemia? Evidence from cell and rodent 
studies. Neural Regen Res. (2022) 17:1761–8. doi: 10.4103/1673-5374.331539

 23. González-Rodríguez P, Fernández-López A. PANoptosis: new insights in regulated 
cell death in ischemia/reperfusion models. Neural Regen Res. (2023) 18:342–3. doi: 
10.4103/1673-5374.343910

 24. Arrázola MS, Court FA. Commentary on "PANoptosis-like cell death in ischemia/
reperfusion injury of retinal neurons". Neural Regen Res. (2023) 18:341. doi: 
10.4103/1673-5374.346543

 25. Yang Z, Kao X, Huang N, Yuan K, Chen J, He M. Identification and analysis of 
PANoptosis-related genes in Sepsis-induced lung injury by 
bioinformatics and experimental verification. J Inflamm Res. (2024) 17:1941–56. doi: 
10.2147/JIR.S452608

 26. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers 
differential expression analyses for RNA-sequencing and microarray studies. Nucleic 
Acids Res. (2015) 43:e47. doi: 10.1093/nar/gkv007

 27. Yang M, Chen T, Liu YX, Huang L. Visualizing set relationships: EVenn's 
comprehensive approach to Venn diagrams. iMeta. (2024) 3:e184. doi: 10.1002/imt2.184

 28. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: 
a software environment for integrated models of biomolecular interaction networks. 
Genome Res. (2003) 13:2498–504. doi: 10.1101/gr.1239303

 29. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub 
objects and sub-networks from complex interactome. BMC Syst Biol. (2014) 8:S11. doi: 
10.1186/1752-0509-8-S4-S11

 30. Simon N, Friedman J, Hastie T, Tibshirani R. Regularization paths for Cox's 
proportional hazards model via coordinate descent. J Stat Softw. (2011) 39:1–13. doi: 
10.18637/jss.v039.i05

 31. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an 
open-source package for R and S+ to analyze and compare ROC curves. BMC 
Bioinformatics. (2011) 12:77. doi: 10.1186/1471-2105-12-77

 32. He S, Wang L, Miao L, Wang T, Du F, Zhao L, et al. Receptor interacting protein 
kinase-3 determines cellular necrotic response to TNF-alpha. Cell. (2009) 137:1100–11. 
doi: 10.1016/j.cell.2009.05.021

 33. Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, et al. 
Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed 
necrosis and virus-induced inflammation. Cell. (2009) 137:1112–23. doi: 
10.1016/j.cell.2009.05.037

 34. Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, et al. RIP3, an energy metabolism 
regulator that switches TNF-induced cell death from apoptosis to necrosis. Science. 
(2009) 325:332–6. doi: 10.1126/science.1172308

 35. Zhang Y, Hedo R, Rivera A, Rull R, Richardson S, Tu XM. Post hoc power analysis: 
is it an informative and meaningful analysis? Gen Psychiatr. (2019) 32:e100069. doi: 
10.1136/gpsych-2019-100069

 36. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. (2007) 
35:495–516. doi: 10.1080/01926230701320337

 37. Khandelwal N, Simpson J, Taylor G, Rafique S, Whitehouse A, Hiscox J, et al. 
Nucleolar NF-κB/RelA mediates apoptosis by causing cytoplasmic relocalization of 
nucleophosmin. Cell Death Differ. (2011) 18:1889–903. doi: 10.1038/cdd.2011.79

 38. Ivagnès A, Messaoudene M, Stoll G, Routy B, Fluckiger A, Yamazaki T, et al. 
TNFR2/BIRC3-TRAF1 signaling pathway as a novel NK cell immune checkpoint in 
cancer. Onco Targets Ther. (2018) 7:e1386826. doi: 10.1080/2162402X.2017.1386826

 39. Du K, Montminy M. CREB is a regulatory target for the protein kinase Akt/PKB. 
J Biol Chem. (1998) 273:32377–9.

 40. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two 
sequential signaling complexes. Cell. (2003) 114:181–90. doi: 
10.1016/s0092-8674(03)00521-x

 41. Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ, et al. Toll-like 
receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem. (2013) 
288:31268–79. doi: 10.1074/jbc.M113.462341

 42. He S, Liang Y, Shao F, Wang X. Toll-like receptors activate programmed necrosis 
in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc Natl 
Acad Sci USA. (2011) 108:20054–9. doi: 10.1073/pnas.1116302108

 43. Yang D, Liang Y, Zhao S, Ding Y, Zhuang Q, Shi Q, et al. ZBP1 mediates interferon-
induced necroptosis. Cell Mol Immunol. (2020) 17:356–68. doi: 
10.1038/s41423-019-0237-x

 44. Dussurget O, Bierne H, Cossart P. The bacterial pathogen listeria monocytogenes 
and the interferon family: type I, type II and type III interferons. Front Cell Infect 
Microbiol. (2014) 4:50. doi: 10.3389/fcimb.2014.00050

 45. Schindler C, Levy DE, Decker T. JAK-STAT signaling: from interferons to 
cytokines. J Biol Chem. (2007) 282:20059–63. doi: 10.1074/jbc.R700016200

 46. Zhu K, Liang W, Ma Z, Xu D, Cao S, Lu X, et al. Necroptosis promotes cell-
autonomous activation of proinflammatory cytokine gene expression. Cell Death Dis. 
(2018) 9:500. doi: 10.1038/s41419-018-0524-y

 47. Rucker AJ, Chan FK. Tumor-intrinsic and immune modulatory roles of receptor-
interacting protein kinases. Trends Biochem Sci. (2022) 47:342–51. doi: 
10.1016/j.tibs.2021.12.004

 48. Liang Y, Song P, Chen W, Xie X, Luo R, Su J, et al. Inhibition of caspase-1 
ameliorates ischemia-associated blood-brain barrier dysfunction and integrity by 
suppressing pyroptosis activation. Front Cell Neurosci. (2020) 14:540669. doi: 
10.3389/fncel.2020.540669

 49. Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an 
intricate game of cell death. Cell Mol Immunol. (2021) 18:1106–21. doi: 
10.1038/s41423-020-00630-3

 50. Cohen GM. Caspases: the executioners of apoptosis. Biochem J. (1997) 326:1–16.

 51. Fritsch M, Günther SD, Schwarzer R, Albert MC, Schorn F, Werthenbach JP, et al. 
Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature. 
(2019) 575:683–7. doi: 10.1038/s41586-019-1770-6

 52. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the 
mitochondrial damage in the Fas pathway of apoptosis. Cell. (1998) 94:491–501. doi: 
10.1016/s0092-8674(00)81590-1

 53. Wang L, Du F, Wang X. TNF-alpha induces two distinct caspase-8 activation 
pathways. Cell. (2008) 133:693–703. doi: 10.1016/j.cell.2008.03.036

 54. Wang D, Zhao J, Zhang J, Lv C, Bao S, Gao P, et al. Targeting TNF-α: the 
therapeutic potential of certolizumab pegol in the early period of cerebral ischemia 
reperfusion injury in mice. Int Immunopharmacol. (2024) 137:112498. doi: 
10.1016/j.intimp.2024.112498

 55. Zhao S, Zhang P, Yan Y, Xu W, Li J, Wang L, et al. Network pharmacology-based 
prediction and validation of the active ingredients and potential mechanisms of the 
Huangxiong formula for treating ischemic stroke. J Ethnopharmacol. (2023) 312:116507. 
doi: 10.1016/j.jep.2023.116507

 56. Traylor M, Persyn E, Tomppo L, Klasson S, Abedi V, Bakker MK, et al. Genetic basis 
of lacunar stroke: a pooled analysis of individual patient data and genome-wide association 
studies. Lancet Neurol. (2021) 20:351–61. doi: 10.1016/S1474-4422(21)00031-4

https://doi.org/10.3389/fneur.2025.1560514
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://doi.org/10.3389/fcimb.2020.00237
https://doi.org/10.1084/jem.20191644
https://doi.org/10.1016/j.cell.2020.03.040
https://doi.org/10.1111/imr.12534
https://doi.org/10.1074/jbc.RA120.015924
https://doi.org/10.4103/1673-5374.331539
https://doi.org/10.4103/1673-5374.343910
https://doi.org/10.4103/1673-5374.346543
https://doi.org/10.2147/JIR.S452608
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1002/imt2.184
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1186/1752-0509-8-S4-S11
https://doi.org/10.18637/jss.v039.i05
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1016/j.cell.2009.05.021
https://doi.org/10.1016/j.cell.2009.05.037
https://doi.org/10.1126/science.1172308
https://doi.org/10.1136/gpsych-2019-100069
https://doi.org/10.1080/01926230701320337
https://doi.org/10.1038/cdd.2011.79
https://doi.org/10.1080/2162402X.2017.1386826
https://doi.org/10.1016/s0092-8674(03)00521-x
https://doi.org/10.1074/jbc.M113.462341
https://doi.org/10.1073/pnas.1116302108
https://doi.org/10.1038/s41423-019-0237-x
https://doi.org/10.3389/fcimb.2014.00050
https://doi.org/10.1074/jbc.R700016200
https://doi.org/10.1038/s41419-018-0524-y
https://doi.org/10.1016/j.tibs.2021.12.004
https://doi.org/10.3389/fncel.2020.540669
https://doi.org/10.1038/s41423-020-00630-3
https://doi.org/10.1038/s41586-019-1770-6
https://doi.org/10.1016/s0092-8674(00)81590-1
https://doi.org/10.1016/j.cell.2008.03.036
https://doi.org/10.1016/j.intimp.2024.112498
https://doi.org/10.1016/j.jep.2023.116507
https://doi.org/10.1016/S1474-4422(21)00031-4


Jiang et al. 10.3389/fneur.2025.1560514

Frontiers in Neurology 17 frontiersin.org

Glossary

IS - Ischemic stroke

DEGs - Differentially expressed genes

GEO - Gene Expression Omnibus

ROC - Receiver operating characteristic curve

AUC - Area under the curve

PCD - Programmed cell death

NLRP3 - NOD-like receptor thermal protein domain associated 
protein 3

RIPK1 - Receptor-interacting serine/threonine-protein kinase 1

RIPK3 - Receptor-interacting serine/threonine-protein kinase 3

MLKL - Mixed-lineage kinase domain-like

TNF-α - Tumor necrosis factor alpha

ASC - Apoptosis-associated speck-like protein

CASP8 - Caspase 8

ZBP1 - Z-DNA binding protein 1

BP - Biological process

KFGG - Kyoto Encyclopedia of Genes and Genomes

PPI - Protein-protein interaction

RF - Random Forest

SVM - Support Vector Machine

PCA - Principal Component Analysis

FASLG - Fas ligand

UACA - Uveal autoantigen with coiled-coil domains and ankyrin 
repeats protein

LY96 - Lymphocyte antigen 96

FADD - Fas-associated protein with death domain

TRADD - TNFR1-associated death domain protein

HMGB1 - High-mobility group box 1

TNFRSF1A - Tumor necrosis factor receptor superfamily, member 1A

IL1β - Interleukin 1 beta

BAK1 - Brassinosteroid insensitive 1-associated receptor kinase 1

DFFB - DNA fragmentation factor subunit beta

DFFA - DNA fragmentation factor subunit alpha

Cyt C - Cytochrome c

BAX - Apoptosis regulator BAX

CASP1 - Caspase 1

CTNNB1 - catenin beta1

PSMC3 - Proteasome 26S Subunit, ATPase 3

CASP6 - Caspase 6

CASP9 - Caspase 9

MLKL - Mixed lineage kinase domain-like protein

DAMPs - damage associated molecular patterns

GSDMD - Gasdermin-D

UACA - Uveal autoantigen with coiled-coil domains and 
ankyrin repeats

TNFR1 - Tumor Necrosis Factor Receptor 1

TNFR2 - Tumor Necrosis Factor Receptor 2

PRRs - Pattern Recognition Receptors

AKT1 - AKT Serine/Threonine Kinase 1

AKT/PKB - protein kinase B

RELA - NF-κB p65

MCL1 - Myeloid Cell Leukemia-1

BIRC3 - Baculoviral IAP Repeat Containing 3

BIRC2 - Baculoviral IAP Repeat Containing 2

BCL2L1 - BCL2 Like 1

BCL2 - B-cell lymphoma-2

cIAP1/2 - Cellular inhibitors of apoptosis proteins 1/2

TRAF - TNF receptor-associated factor
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MOMP - mitochondrial outer membrane permeabilization

CREB1 - cyclic AMP (cAMP)-response element binding protein

STAT - Signal Transducers and Activators of Transcription

STAT3 - signal transducer and activator of transcription 3

TLR4 - Toll-like receptor 4

JAK - Janus Kinase
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