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Intracranial artery dissections (IADs) are relatively uncommon. For ruptured IADs and 
unruptured IADs with acute large artery occlusion, the size increases significantly 
during follow-up, or there are signs of compression with mass occupation. 
Intervention can be suggested. Currently, endovascular treatment (EVT) is the 
choice for treating IADs. However, the understanding of EVT for IADs remains 
limited; therefore, a thorough review is necessary on the basis of a literature 
review and our experience. In this review, the following issues are discussed: the 
incidence and natural history of IADs, angiography of IADs, EVT indications for 
IADs, EVT techniques to treat IADs, the prognosis and complications of EVT for 
IADs, and EVT techniques for each IAD. After reviewing the literature and on the 
basis of our experience, the review revealed that when IADs need intervention, 
deconstructive or reconstructive EVTs can be chosen as an effective option on 
case-by-case basis to achieve a good prognosis.
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1 Introduction

Intracranial arteries are characterized by an absence of elastic fibers in the media, little 
adventitial tissue, no external elastic lamina and weaker supporting tissues (1). Therefore, after 
the internal elastic lamina is injured, the blood can invade the arterial wall through an entry 
to cause an intramural hematoma in the subintima, media or subadventitia, resulting in 
intracranial artery dissections (IADs) (2). IADs can occur at the location of intracranial 
arteries spontaneously or via trauma.

Spontaneous IADs may be underdiagnosed causes of stroke, which occurs in young 
and middle-aged East Asians (3). Most spontaneous IADs are asymptomatic. 
Symptomatic lesions can present with brain ischemia in 30–78% of cases, subarachnoid 
hemorrhage (SAH) in 50–60% of cases, and prodromal headache in 80% of cases (4). 
Uncommonly, large or giant lesions can cause brainstem or cranial nerve compression 
(1). Currently, the optimal management for spontaneous IADs is still unclear. Only 
certain IADs may need interventions, such as ruptured or symptomatic or 
progressive lesions.

IADs are difficult to treat with open surgery because of their broad and often shallow 
anatomical characteristics. Currently, endovascular treatment (EVT) plays an important 
role in treating IADs by restoring the lumen of the stenoses or occluded vessel, repairing 
a dilated thin artery or occluding the rupture point. However, EVT for IADs is 
challenging and complex due to its weak structure and distal location, among other 
factors. The current understanding of the utility of the EVT technique for spontaneous 
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IADs is limited; therefore, a thorough review based on a literature 
review and our experience is necessary.

2 Methods and results of data 
collection

2.1 Literature search and strategy

In the review, the literature search was conducted in accordance 
with the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses 2020 statement (5). The PubMed database was searched for 
eligible studies written in English and published until February 1, 
2025. On the PubMed website, the following keywords were input: 
(intracranial) AND [dissection(Title)] and (intracranial) AND 
[dissecting(Title)]. The types of eligible articles included case reports, 
case series, cohort studies, randomized controlled trials and prior 
systematic reviews and meta-analyses. The reference lists of the 
identified articles were also manually searched for additional 
significant articles that may have been missed. In addition, data from 
the past 5 years (February 1, 2020 to February 1, 2025) was procured 
in the database of our institute.

2.2 Inclusion and exclusion criteria

The inclusion criteria were as follows: articles about “spontaneous 
intracranial dissection” and articles for which the full text and 
sufficient information could be obtained. The exclusion criteria were 
as follows: articles without sufficient information and articles about 
traumatic intracranial dissection. In our database, inclusive cases need 
to have sufficient clinical, therapeutic and follow-up angiographic data.

2.3 Results

After screening and selecting eligible studies, 113 articles were 
included and cited. A flow chart displaying the literature collection 
process is shown in Figure 1. At our institute, 5,889 patients with 
intracranial vascular diseases who received EVT were identified and 
screened, and 650 spontaneous IADs were identified, and their data 
were read.

3 Incidence and natural history of 
IADs

3.1 Incidence

The incidence of spontaneous IADs is unknown (1, 6). Its 
proportion among all cranio-cervical dissections is estimated to 
be approximately 11% in European populations, 27% in Latin America, 
and 67–78% in East Asia (7–9). Most reports of spontaneous IADs are 
from Asia, and a male preponderance was noted (1). Spontaneous 
IADs tend to affect the posterior circulation more than the anterior 
circulation. The intracranial vertebral artery (VA) is the most common 
location (10). Among those that occur in the anterior circulation, the 
most common site is the middle cerebral artery (MCA) (11).

3.2 Natural history

The natural history of spontaneous IADs should vary. There 
should be differences between the anterior circulation and posterior 
circulation, main trunks and branches, proximal and distal segment 
of branches, large and small types, ruptured and unruptured types, 
fusiform and sidewall shapes, or flow-related or not. Until now, no 
reports with clear conclusions have been published. It was feasible to 
consider that the following IADs were stable: unruptured, small, 
fusiform, not flow-related, and distal (12–15). For these spontaneous 
lesions, close follow-up and conservative medication can 
be recommended first.

In 2011, Mizutani et  al. summarized four clinical and 
pathological courses of IADs: (a) occurrence and healing with no 
manifestation, (b) occurrence with headache and healing with no 
manifestation, (c) occurrence and subsequent infarction, and (d) 
occurrence and subsequent SAH (9). The first and second courses 
may account for most cases. The third course can occur in the 
MCA and basilar artery (BA). The fourth course occurs in the 
posterior circulation more commonly (16, 17). Ruptured IADs 
can have high mortality under medical treatment only, with a rate 
of approximately 8.3% (18). The rebleeding rate is high at 55% 
(18–75%), and rebleeding usually occurs within 24 h of the initial 
rupture (7, 19).

4 Angiography and magnetic 
resonance of IADs

4.1 Angiography

When both the entry and exit can be visualized via angiography, 
a double lumen is considered (1). When IADs extend inward with no 
exit on angiography, narrowing or occlusion of the vessel should 
be  considered. When the media penetrates the subadventitia on 
angiography, aneurysmal dilatation of the outer wall of the vessel 

FIGURE 1

Flow chart of the literature search.
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should be considered. When the adventitia has penetrated, SAH is 
likely (Figure 2A) (20–22).

Therefore, according to the European Stroke Organization 
(ESO) guidelines and a review in Lancet Neurology (2015), IADs 
are confirmed on the basis of at least one of the following: (a) 
angiography reveals stenosis or occlusion of an intracranial 
artery secondarily developing toward a fusiform or irregular 
aneurysmal dilation at a nonbranching site; (b) angiography 
revealing an intramural hematoma, intimal flap, or double lumen; 
and (c) pathological examination confirming the IAD 
(Figure 2B) (1, 7).

4.2 Magnetic resonance

Vessel wall magnetic resonance (MR) has emerged as pivotal 
imaging for diagnosing IADs. On high-resolution three-
dimensional pre- and post-Gd black blood T1WI images and 
T2WI images from a 3 Tesla MR machine, direct critical features 
for dissection can be  found, such as the intimal flap, double 
lumen, intramural hematoma, and abnormal arterial wall 
thickening and enhancement (23). The following MR images are 
useful tools for the diagnosis of IADs: susceptibility-weighted 
images, three-dimensional simultaneous noncontrast 
angiography, intraplaque hemorrhage, three-dimensional phase-
sensitive inversion recovery, three-dimensional improved 
motion-sensitized driven equilibrium preparation, proton-
density weighted images, high-resolution compressed-sensing 
time-of-flight MR angiography, and noncontracting three-
dimensional time-of-flight magnetic resonance angiography 
(24–29). High-resolution vessel wall MR wall enhancement has 
been reported to be  useful in predicting the rupture point of 
dissecting aneurysms (30). In addition, wall enhancement after 
EVT can predict the progression and delayed rupture of 
IADs (31).

5 EVT indications for IADs

In 2021, ESO released a specific guideline for the 
management of dissections. It is the first attempt at a 
comprehensive guideline dedicated to arterial dissections (7). 
Furthermore, in 2022, the American Stroke Association (ASA) 
proposed more specific guidelines amid uncertainty about the 
ESO guidelines (32).

5.1 ESO guidelines

For ruptured IADs with SAH, early intervention is recommended, 
and various EVT techniques can be used. For unruptured IADs with 
acute ischemia, intravenous thrombolysis is suggested. For unruptured 
IADs with acute large artery occlusion, EVT within 4.5 h of onset is 
suggested. For unruptured IAD patients with acute ischemia or TIA, 
antiplatelet agents may have a better risk/benefit ratio than 
anticoagulants do. For unruptured IAD patients with an intracranial 
dissecting aneurysm and isolated headache, the benefits and risks of 
EVT or surgical treatment are unclear unless the size of the aneurysm 
has increased significantly on follow-up imaging or if there are signs 
of compression (7).

5.2 ASA guidelines

According to the ASA acute stroke guidelines, the benefits of 
thrombolytics such as recombinant tissue-type plasminogen activators 
in patients with IADs are unclear. According to the ASA secondary 
prevention guidelines, rescue EVT techniques may be used for IADs 
with recurrent or progressive symptoms. It is necessary to perform 
multidisciplinary assessments to ascertain the best therapeutic 
approaches for IADs (32).

FIGURE 2

IAD appearance on angiography and open surgery. (A) Left panel: CT 
showing the hemorrhage in the fourth ventricle (arrow). Middle and 
right panels: CT images showing a typical VA dissection (arrow in 
middle panel) presenting with dilatation with stenosis (arrowheads in 
right panel). (B) Panel 1: CT showing subarachnoid hemorrhage into 
temporal horn of lateral ventricle. Panel 2: CTA (left panel) and DSA 
(right panel) images showing a protrusion (arrows) on the left 
supraclinoid ICA above the PcomA and opposite to the AchA, 
indicating that the lesion was a dissection or blood blister-like 
aneurysm. Panel 3: Intraoperative image showing that supraclinoid 
ICA had subadventitia hemorrhage (arrow), confirming to the 
dissection not a blood blister-like aneurysm. Panel 4: Intraoperative 
image (left panel) showing the clipping was performed, 
intraoperative fluoroscopy (right panel) showing that intracranial ICA 
was patent. AchA, anterior choroidal artery; CT, computed 
tomography; CTA, CT angiography; DSA, digital subtraction 
angiography; IAD, intracranial arterial dissection; ICA, internal carotid 
artery; PcomA, posterior communicating artery; VA, vertebral artery.
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5.3 Other suggestions

Other suggestions included the safety and effect of intravenous 
thrombolysis, antiplatelet therapy and EVT on IADs.

In 2025, on the basis of a retrospective matched-pair cohort study 
that used a nationwide inpatient database in Japan, Egashira et al. (33) 
performed a study that enrolled 242 patients, and the safety and 
outcomes of intravenous thrombolysis in acute ischemic stroke 
patients with IAD were assessed. This study revealed that patients with 
underlying IAD may face an increased risk of intracranial hemorrhage 
and a reduced chance of functional recovery following intravenous 
thrombolysis compared with those without IAD. This study indicated 
that intravenous thrombolysis was not suggested for managing acute 
ischemic stroke with IAD.

However, antiplatelet therapy may be useful for treating ischemic 
IADs, and EVT may be used in select patients with IAD. For example, 
in 2023, Shimizu et al. (34) performed a Japanese nationwide survey 
of treatments for IAD causing cerebral ischemia within 2 weeks at 35 
neurological centers, and the results revealed that patients with 
intracranial carotid dissection causing cerebral ischemia who 
underwent stenotic dissection were at risk of further aggravation and 
that EVT could improve or prevent aggravation. In 2019, Al-Mufti 
et al. (35) performed a systematic review of 82 studies, including a 
total of 669 patients with anterior circulation IADs [492 (74%) with 
ischemia] and 2,948 patients with posterior circulation IADs [960 
(33%) with ischemia]. In this review, researchers suggested antiplatelet 
therapy for patients with ischemic IADs and considered EVT for 
patients with SAH.

However, these studies were retrospective, the evidence level was 
low, and randomized controlled trials are necessary.

6 EVT techniques to treat IADs

The optimal EVT strategy for IADs remains unclear. In the 
absence of randomized controlled trials and considering the limited 
data from observational studies with a high risk of bias, all experts 
recommend selecting the optimal intervention on the basis of a 
multidisciplinary assessment (7). The elimination of IADs and 
reconstruction of the parent artery must be the prime objective (36, 
37). The flowchart of the EVT choice for IADs is shown in Figure 3, 
which can provide some suggestions for doctors.

6.1 Ischemic IAD

Angioplasty or stenting to restore blood flow is useful. 
Reconstructive EVT should use stents with good radial force to 
improve dissecting healing (10). In 2015, Kim et al. (38) evaluated the 
efficacy of a self-expanding stent for ischemic anterior circulation 
IADs and confirmed a positive outcome for lesions presenting with 
acute/crescendo-type stroke or recurrent ischemia despite adequate 
medication. In addition, mechanical thrombectomy may be used to 
recanalize occluded large vessels (39).

6.2 Hemorrhagic, symptomatic or 
progressive IADs

Four types of EVT techniques can be used to treat these IADs: (a) 
isolation of the IAD to exclude blood flow from the dissected region, (b) 
parent artery occlusion (PAO) at the proximal IAD to reduce blood flow 

FIGURE 3

Flow chart of the EVT choice for IADs. *Indicated that the reconstruction EVT was recommended to use traditional self-expanding stents with low-
metal coverage rate. **Indicated that the reconstructive EVT was recommended to use braided stents priorly. The red roads mean that the PAO can 
also be an EVT choice for chronic IADs. ACA, anterior cerebral artery; AchA, anterior choroidal artery; A1, first segment of ACA; BA, basilar artery; EVT, 
endovascular treatment; FD, flow diverter; IAD, intracranial arterial dissection; ICA, internal carotid artery; MCA, middle cerebral artery; M1, first 
segment of MCA; PCA, posterior cerebral artery; P1, first segment of PCA; SCA, superior cerebellar artery; AICA, anterior inferior cerebellar artery; PAO, 
parent artery occlusion; PcomA, posterior communicating artery; PICA, posterior inferior cerebellar artery; VA, vertebral artery.
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in the dissected region, (c) isolation of both the IAD and PAO, and (d) 
occlusion or isolation of aneurysmal dilatation by stenting with/without 
coiling but preservation of the parent artery (1). Options 1, 2 and 3 are 
reconstructive EVT techniques; option 4 is a reconstructive 
EVT technique.

When performing deconstructive EVT, the collateral should 
be assessed with a balloon-occlusion test (BOT) or amobarbital infusion 
during angiography with simultaneous monitoring of the patient’s 
neurological function (1). When a patient passes the BOT, deconstructive 
EVT can be used. Alternatively, reconstructive EVT must be employed, 
including traditional stent-assisted coiling, multiple stenting, and flow 
diverter (FD) usage (2, 40). For hemorrhagic IADs, coiling the rupture 
point is necessary.

Currently, there is a growing trend in the use of FDs to reconstruct 
IADs (41). Braided FDs with a >30% rate of metal coverage can offer 
sufficient support to the arterial wall and prevent further IAD progression 
by acting as scaffolding, redirecting blood flow and inducing thrombosis. 
The new generation of FDs with surface modifications may reduce the 
use of antiplatelet therapy, which may be promising (42).

7 Prognosis and complications of EVT 
for IADs

For patients with IADs treated by EVT, the clinical outcome can 
be assessed via the modified Rankin Scale (mRS), and an mRS score of 
0–2 is considered a good outcome (17). On angiography, adequate 
aneurysm occlusion was defined as complete occlusion or near complete 
occlusion with a small residual neck. For FD deployment, adequate 
aneurysm occlusion was defined as O’Kelly Marotta grade C or D (41).

7.1 Prognosis

According to previous reports, deconstructive and reconstructive 
EVT for IADs can result in good clinical outcomes and adequate 

aneurysm occlusion (Table 1). Deconstructive EVT may lead to a 
higher complete aneurysm occlusion rate; however, reconstructive 
EVT may lead to a higher rate of good clinical outcomes (43). 
Reconstructive EVT by traditional stenting and FD deployment are 
effective in treating IADs (44). However, for large and complex IADs, 
FD deployment can be  a promising approach to reduce IAD 
recurrence (45). For example, in Amoukhteh’s et al. (41) meta-analysis, 
after FD deployment for IADs, at the last follow-up, the aneurysm 
recurrence/rebleeding rate was only 0.1%.

7.2 Complications

For EVT for IADs, complications are unavoidable, including 
hemorrhagic or ischemic types, such as intraoperative rupture of the 
IAD, perforator occlusion, in-stent thrombosis, and postoperative 
ischemia due to hemodynamic alterations from PAO. In Essibayi’s 
et  al. (43) meta-analysis, procedure-related complications were 
reported in 12.6% of patients who underwent reconstructive EVT and 
16.9% of patients who underwent deconstructive EVT, and there was 
no difference between these two approaches.

8 EVT techniques for each type of IAD

8.1 Anterior circulation IADs

8.1.1 IADs of the supraclinoid ICA, posterior 
communicating artery and anterior choroidal 
artery

Supraclinoid ICA dissections are infrequent and can be divided 
into chronic and acute types (46). Chronic lesions are slow growing 
and often have a large and fusiform dilated shape. Acute lesions often 
rupture suddenly, causing SAH or ICA stenosis or occlusion, which 
can cause cerebral ischemia. Supraclinoid ICA dissections are difficult 
to manage via deconstructive EVT because of the need to preserve the 

TABLE 1 EVT outcomes for IADs in a recent systematic review and meta-analysis.

Author, year Outcomes

Prestes et al., 2024 (2) In 17 studies, comparing 173 solo stenting and 377 stent-assisted coiling procedures for posterior circulation IADs, the findings 

suggest there is no substantial basis for favoring stent-assisted coiling over solo stenting across all cases

Amoukhteh et al., 2024 (41) In 20 studies with 329 patients, FD in the treatment of IADs revealed an 89.7% rate of favorable clinical outcome, an adequate 

occlusion rate of 88.3% and a mortality rate of 2.4%. The aneurysm recurrence/rebleeding rate was 0.1%, in-stent stenosis/

thrombosis occurred at a rate of 1.14%, and ischemic events/infarctions were seen in 3.3% of cases. The need for retreatment was 

0.9%, and the technical success rate was impressively high at 99.1%

Essibayi et al., 2024 (43) In 56 studies with 1,095 cases with intracranial VA and ICA dissections, deconstructive EVT was applied in 40.9% cases and had a 

rate of complete aneurysm occlusion of 86.4%, a rate of a good clinical outcomes of 72.1% and a mortality rate of 15.1%, compared to 

70.2, 83.3, and 9.5%, respectively, for reconstructive EVT. For reconstructive EVT, procedural complication was in 12.6% patients. 

For deconstructive EVT, procedural complication was in 16.9% patients

Amoukhteh et al., 2024 (44) In 6 studies involving 131 patients in the FD group and 199 patients in the traditional stent group, the rates of favorable functional 

outcomes (86.8% vs. 86%), mortality (3.9% vs. 6%), adequate aneurysms occlusion (79.7% vs. 86.3%), aneurysm recurrence (1.3% vs. 

13.3%), in-stent stenosis/thrombosis (7% vs. 6.9%), ischemic events/infarctions (6.7% vs. 7.8%), retreatment (7% vs. 8.6%), and 

technical success (100% vs. 98.7%) were comparable in individuals treated with FD and traditional stent

Brenner et al., 2024 (45) In 10 studies, 195 and 222 patients were included in the FD and the stent-assisted coiling group, and both techniques achieved 

similar postoperative complete aneurysmal occlusion rates in angiographic follow-up. The techniques had similar complication rates

EVT, endovascular treatment; FD, flow diverter; IAD, intracranial arterial dissection; ICA, internal carotid artery; VA, vertebral artery.
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anterior choroidal artery (AchA) or posterior communicating artery 
(PcomA) (11).

For chronic unruptured dissections, FD deployment without/with 
coiling is more effective than traditional stent-assisted coiling is 
(Figures 4A,B). For chronic ICA dissections with a ruptured bleb, 
selective coiling of the ruptured point is necessary (Figure 4C) (47). 
For acute stenotic ICA dissections with progressive neurologic deficits 
due to cerebral hyperperfusion syndrome, the use of stenting to 
reconstruct the ICA and close the entry point of the dissection is 
needed. According to previous reports, traditional self-expanding 
stenting is effective (38, 48, 49). If EVT fails or cannot be performed, 
extracranial–intracranial bypass must be the last resort (34, 50). For 
ruptured acute ICA dissections with aneurysm formation, traditional 
stenting may be insufficient, and FD deployment with coiling rupture 
points is a good choice (Figure  4D). However, in acute SAH, FD 
deployment to reconstruct the ICA may be associated with ischemic 
complications, which should be considered (Figure 4E).

As branches of the supraclinoid ICA, rarely, the AchA and PcomA 
trunks can undergo spontaneous dissections, and PcomA trunk 
dissection can be  performed selectively or completely by coiling 
(Figures 5A,B) (51). AchA trunk dissections are often flow related to 
arteriovenous malformation (AVM) and moyamoya disease. For distal 
AchA dissection, deconstructive EVT via a liquid embolic agent can 
be used (Figure 5C). For proximal AchA dissection, because of its thin 
diameter, stenting is difficult, and deconstructive EVT has to be the 
last resort.

8.1.2 MCA dissection
For acute unruptured MCA dissections, even with aneurysm 

formation, antithrombotic treatment should be prioritized (52, 53). 
Thrombectomy with/without stenting can be attempted only for acute 
occluded dissection (54). EVT can be recommended for hemorrhage 
and confirmed dissecting aneurysms (55). M1 occlusion or isolation 
of the dissection without efficient bypass poses a significant risk of 
MCA territory infarct. Although bypass to the distal MCA is often 
successful, lenticulostriate artery infarction is often inevitable (55). 
Therefore, preventing rupture and stabilizing the dissected wall while 
preserving arterial continuity seems to be  optimal, allowing 
subsequent healing via endothelialization.

In selective hemorrhagic MCA dissection without severe stenosis, 
stent-assisted coiling may be effective (55, 56). For acute dissection, 
the rupture site is very fragile, and excessive coil packing should 
be avoided due to the risk of rupture (Figure 6). FDs can decrease 
blood flow into the rupture site. However, for stenotic MCAs, 
delivering the FD through a thick microcatheter is often difficult. For 
hemorrhagic MCA dissection with severe stenosis, conservative 
treatment had to be the last resort (Figure 7A).

Chronic MCA dissections can present with fusiform or sidewall 
aneurysmal dilatation. For M1 dissections, FD deployment to 
reconstruct the M1 segment is an option (Figures  7B,C). For M2 
dissections, reconstructive EVT is recommended (Figures  7D,E). 
However, complications associated with FD deployment must 
be considered (Figures 6, 8A). If the dissections of the M2 segment of 
the inferior trunk are giant with thrombi, the distal MCA may 
experience ischemic preconditioning, and deconstructive EVT is 
acceptable (57). PAO for M3–M4 dissections can be  performed 
because of adequate leptomeningeal and pial collaterals from the 
anterior cerebral artery (ACA) and posterior cerebral artery (PCA) 

(57). In addition, for flow-related distal MCA dissections, 
deconstructive EVT can be  aggressively performed. However, if 
branches are supplied to important functional areas, such as the 
central sulcal artery, precentral sulcal artery and postcentral sulcal 
artery, PAO should be performed cautiously (Figure 8B) (58).

8.1.3 ACA dissection
ACA dissections are rare. Most ischemic dissections occur at the 

A2 segment (59, 60). However, hemorrhagic dissections can occur at 
any segment of the ACA (60, 61). ACA dissections with only ischemic 
onset can usually be successfully treated conservatively, although there 
are reports that stenting successfully treats these ischemic lesions (62, 
63). For ruptured dissections, if there is a high risk of rebleeding under 
conservative treatment or if unruptured symptomatic ACA dissections 
grow progressively, EVT can be proposed. For ruptured stenotic ACA 
dissections, it may be sufficient to close the entry of the dissection by 
stenting (Figure 9A). For sidewall dissections, coiling with/without 
assistance from traditional stents may be sufficient (64). However, for 
chronic unruptured large fusiform ACA dissections, FDs alone or 
with coiling can be more effective (Figure 9B) (65).

EVT to reconstruct the ACA is the prime objective. However, 
when reconstructive EVT is difficult, deconstructive EVT must 
be used (66). For A1 dissections, when there is a competent anterior 
communicating artery, PAO and aneurysm isolation can be performed 
(Figure 9C) (64). For A2 dissections, when bypass of the ipsilateral A2 
from the contralateral A2 or extracranial arteries cannot be performed, 
deconstructive EVT can be the last resort (Figure 9D). For A3–A5 
dissections, deconstructive EVT can be considered (67–69). For flow-
related dissections, deconstructive EVT can be aggressive (70).

8.2 Posterior circulation IADs

8.2.1 BA dissections
Little is known about the clinical manifestations of spontaneous 

BA dissections; these lesions may be asymptomatic and silent or may 
present with SAH, brainstem compression, or ischemia (71). For BA 
dissections with brain ischemia, conservative anticoagulation 
treatment is the standard approach. Chronic occluded BA dissection 
can have no or minor symptoms (Figure 10A) (72). However, acute 
occluded BA dissection may be associated with high rates of mortality 
and morbidity. Intervention may be  necessary. After aspiration, 
emergency stenting to reconstruct the BA lumen can be performed 
(73, 74).

For ruptured BA dissection, if the treatment is considered high 
risk, follow-up can be considered first. When the lesion progresses, 
aggressive EVT can be used. Chronic BA dissections can present with 
sidewall, circumferential, or fusiform shapes. For chronic lesions, the 
optimal management method is unclear. In general, for symptomatic 
or progressive chronic BA dissections, after the risks and potential 
benefits of the intervention are balanced, EVT can be considered. 
Various EVT techniques, including traditional coiling, overlapping 
stenting, FD deployment or even PAO, can be options (75).

For small or sidewall BA dissections, traditional stenting may 
be feasible (Figures 10B,C). However, for large or fusiform lesions, the 
use of FDs seems promising (Figure  10D). Adjunctive coiling for 
aneurysmal dilatation can prevent rebleeding or aggravate thrombosis; 
however, mass effects should be  considered. In addition, FD 
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FIGURE 4

EVT of supraclinoid ICA dissections. (A) Left panel: DSA showing multiple dissecting aneurysms (arrows) on supraclinoid ICA. Right panel: one-year 
follow-up DSA showing the embolization was incomplete after traditional stent-assisted coiling (arrow). (B) Left panel: DSA showing multiple 
dissecting aneurysms (arrows) on supraclinoid ICA. Middle panel: X-ray image showing the FD in supraclinoid ICA. Right panel: DSA showing the ICA 
reconstruction. (C) Panel 1: CT (left panel) showing SAH; CTA (right panel) showing a PcomA aneurysm (arrow) and vertebrobasilar dilatation 
(arrowhead). Panel 2: DSA (left panel) showing a supraclinoid ICA dissection with a PcomA aneurysm (frame); X-ray image (right panel) showing FD 
deployment with coiling to treat the dissection. Panel 3: Six-month follow-up DSA showing that the supraclinoid ICA was reconstructed (frame). 
(D) Panel 1: CT showing SAH. Panel 2: DSA showing a supraclinoid ICA aneurysm (arrow). Panel 3: DSA (left panel) showing that the aneurysm was 
dissecting, the arrow indicated the entry of the dissection; X-ray image (middle panel) showing the entry of the dissection was coiled (arrow) under the 
assistance of FD deployment; DSA (right panel) showing the dissection cannot be seen. (E) Panel 1: CT showing SAH. Panel 2: DSA showing a large 
supraclinoid ICA dissecting aneurysm (arrow). Panel 3: DSA (left panel) showing that the aneurysm was coiled, X-ray image (right panel) showing the 
coiling under the assistance of FD deployment. Panel 4: Diffuse weighted image of magnetic resonance showing acute ischemia (frame) of the region 
supplied by anterior choroidal artery. CT, computed tomography; CTA, CT angiography; DSA, digital subtraction angiography; EVT, endovascular 
treatment; FD, flow diverter; ICA, internal carotid artery; PcomA, posterior communicating artery; SAH, subarachnoid hemorrhage.
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deployment can yield hemorrhagic/ischemic complications and an 
occupying effect. When reconstructive EVT is ineffective for giant BA 
dissection, flow reversal by occluding bilateral VAs or BA trunk 
occlusion can be  applied in highly selective cases (76). For 
vertebrobasilar junction dissections below the BA, either FD or 
traditional stent-assisted coiling can be used (75). The hypoplastic VA 
can be occluded to avoid contralateral inflow into the dissection site.

8.2.2 Intracranial VA dissections
Owing to contralateral VA compensation, even if the dissection 

results in intracranial VA stenosis or even occlusion, hypoperfusion 
syndrome is uncommon. Therefore, acute dissections are often 
found in patients with SAH. Ruptured lesions have a high rate of 
rebleeding, especially for those with “stenosis and dilation” and 
“lateral protrusion” (77, 78). Chronic dissections often present with 
fusiform or lateralized dilatation of the intracranial VA that may 
coexist with stenosis (79). For ruptured or unruptured intracranial 
VA dissections with mass effects, growth, lateral aneurysm 
protrusion, a size >10 mm, or symptomatic lesions, EVT may 
be  needed. The key to EVT is preserving the posterior inferior 
cerebellar artery (PICA) and brainstem perforators. Reconstructive 
EVT is the primary goal.

In VA dissections with no PICA involvement, when the 
contralateral VA has sufficient collateral to the BA, deconstructive 
EVT, including PAO and trapping of the dissection, can be  used 
(Figure 11A) (80, 81). During reconstructive EVT, traditional stent-
assisted EVT may be sufficient for small sidewall lesions (82). For large 
lesions, reconstructive EVT with FDs may be helpful (79). During FD 
deployment, adjunctive coiling may be necessary for large or fusiform 
ruptured dissections (Figure 11B).

In VA dissections with PICA involvement, PAO of the VA under 
dissection can be  used. However, the PICA territory can suffer 
ischemia due to insufficient retrograde blood flow. Trapping dissection 
is the most reliable treatment, but patients who can tolerate PICA 
obliteration must be carefully selected. Reconstructive EVT to prevent 
dissection and preserve the PICA is an ideal option (83). During 
reconstructive EVT with traditional stenting, while preserving the 
PICA, dense coiling of the aneurysm is necessary. FD can decrease the 
necessity of coiling. In unruptured lesions, FDs can be used alone 
(Figure 11C).

8.2.3 PCA dissection
PCA dissections are uncommon (84). They can present with 

ischemic symptoms in the PCA territory, mass effects, or SAH 

FIGURE 5

EVT of PcomA and AchA dissections. (A) Panel 1: DSA (left panel) showing a PcomA trunk dissecting aneurysm (arrow), unsubtracted DSA (right panel) 
showing that the aneurysm was coiled (arrow), the PcomA was preserved. Panel 2: Four-year follow-up DSA showing the aneurysm had no 
recurrence. (B) CTA showing a PcomA trunk dissecting aneurysm (asterisk), the lesion can be treated by parent artery occlusion. (C) Panel 1: CT 
showing subarachnoid hemorrhage. Panel 2: DSA (left panel) and microcatheter angiography (right panel) showing a dissecting aneurysm (arrow) at 
distal AchA. Panel 3: DSA showing that the dissection was occluded by casting liquid embolic agent and the proximal AchA trunk (arrow) was 
preserved. AchA, anterior choroidal artery; CT, computed tomography; CTA, CT angiography; DSA, digital subtraction angiography; EVT, endovascular 
treatment; PcomA, posterior communicating artery.
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(84). For ischemic lesions, even occluded PCAs, conservative 
anticoagulation management can be chosen, and EVT should not 
be  routinely recommended (85–87). For acute ruptured PCA 
dissections or chronic symptomatic dissections, EVT may 
be  necessary (88). Both reconstructive and deconstructive  
EVT can be used. Deconstructive EVT is relatively safe even in 
the absence of a BOT due to rich collaterals, which especially 
benefit critically ill patients with ruptured PCA  
dissecting aneurysms or cases of difficult access or 
financial constraints.

For P1 and P1–P2 junction dissections, because of the 
presence of thalamic perforating arteries, acute occlusion of the 
proximal PCA can be  life-threatening (89). However, chronic 
occlusion was safe (Figure 12A). The potential collateral supply 
and hemodynamic balance between the anterior and posterior 
choroidal arteries, pericallosal vessels, and ACA and MCA to the 
distal PCA make P2 occlusion safe (90, 91). The P2 segment of 
the fetal-type PCA can send out more perforating arteries, and 
anastomosis between the MCA and PCA tends to result in less 
development of collaterals (92). At this time, PAO should 
be performed cautiously. Owing to the rich collateral circulation, 
PAO of aneurysms in the P3–P4 segment can be  performed 
(Figure  12B) (88, 93, 94). For PCA flow-related aneurysms, 
reconstructive EVT is often difficult, and PAO can be performed 
(Figure 12C). However, PAO is associated with a nonnegligible 

rate of complications, even though most are minor events such as 
hemianopsia (95).

Compared with deconstructive EVT, reconstructive EVT is 
promising because current new devices have good clinical and 
safety profiles (91). In a report by Tang et al. (96) in 2022, braided 
stent-assisted coiling resulted in a high occlusion rate and a 
relatively low complication rate in treating PCA dissecting 
aneurysms. In addition to braided stents such as LVIS 
(Microvention, Tustin, California, United States) and LEO stents 
(Balt, Montmorency, France) (Figure  12D), FDs have 
revolutionized EVT for dissections (Figure 12E). However, FD 
deployment for PCA dissection is fraught with the risk of 
thromboembolic complications owing to side branch coverage by 
the FD (96).

8.2.4 Superior cerebellar artery dissection
Most superior cerebellar artery (SCA) dissections do not 

require treatment; even rarely, ruptured dissections can resolve 
spontaneously (97). However, in general, for ruptured and large 
symptomatic SCA dissections or flow-related SCA dissections 
with AVMs, EVT can be  suggested. The SCA is so thin that 
reconstructive EVT is often difficult (98, 99). Therefore, PAO 
must be performed in most SCA dissections. The proximal S1 
segment of the SCA can send off perforators to the brainstem, 
and occlusion of the S1 segment can result in brainstem infarction 

FIGURE 6

Rebleeding after EVT of an MCA dissection. Panel 1: CT showing subarachnoid hemorrhage and parenchymal hematoma (arrow). Panel 2: CT 
angiography showing a left MCA trunk aneurysm (arrow). Panel 3: DSA showing that the aneurysm (arrow) was an MCA trunk dissection involving the 
origin of lenticulostriate artery. Panel 4: Vaso-reconstructive image showing that MCA dissection was coiled by FD assistance. Panel 5: Postoperative 
1-h CT images showing increased hemorrhage (asterisks), indicating the MCA dissection reruptured. Panel 6: Postoperative 3-h CT images showing 
the bleeding (asterisks) continued to increase, the patient fell into coma. CT, computed tomography; DSA, digital subtraction angiography; EVT, 
endovascular treatment; FD, flow diverter; MCA, middle cerebral artery.
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(100). PAO should be the last resort. With the development of 
equipment, in recent reports, small braided stents such as LVISs 
and LEO stents and small-sized FDs have been used to reconstruct 

the SCA successfully in select cases with a thick SCA (101, 102). 
However, PAO for dissections of distal S2–S4 segments is 
safe (103).

FIGURE 7

Treatment of MCA dissections. (A) Panel 1: CT showing SAH. Panel 2: DSA images showing a dissection (frames) at MCA trunk with stenosis and 
dilatation (arrow). Panel 3: Three-month follow-up DSA showing that the dissection (arrow) regressed. (B) Panel 1: DSA (left panel) and X-ray image 
(right panel) showing a fusiform MCA dissection (arrow) was coiled under the assistance of traditional stenting (asterisks). Panel 2: One-year follow-up 
DSA showing that the dissecting aneurysm (arrow) was stable and did not grow. Panel 3: Three-year follow-up CT showing fatal intracranial 
hemorrhage, indicating the dissection ruptured. (C) Panel 1: CT (left panel) showing SAH, DSA (right panel) showing an MCA dissecting aneurysm 
(arrow). Panel 2: X-ray image showing the FD-assisted coiling. Panel 3: DSA showing that the dissecting aneurysm (arrow) was embolized. (D) Panel 1: 
DSA (left panel) and X-ray image (right panel) showing a supraclinoid ICA aneurysm was coiled by the assistance of FD deployment (frames), there was 
a M2 dissection. Panel 2: Roadmap image showing the M2 dissection was stented by LEO baby (long arrow). Panel 3: DSA showing the reconstructed 
M2 (long arrow). (E) Panel 1: CT angiography showing a M2 dissection. Panel 2: X-ray image showing the dissection was stented by FD deployment 
(asterisks). Panel 3: DSA (left panel) and its reconstructive image (right panel) of six-month follow-up showing that the M2 segment was reconstructed 
with less residual dissection (arrows). CT, computed tomography; DSA, digital subtraction angiography; EVT, endovascular treatment; FD, flow diverter; 
MCA, middle cerebral artery; M2, second segment of MCA; SAH, subarachnoid hemorrhage.
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8.2.5 AICA dissection
For ruptured AICA dissections with a risk of rebleeding or flow-

related dissection with AVMs, EVT may be suggested. The AICA is a 
small artery that can be divided into the a1–a4 segments (104, 105). 
The proximal a1 segment sends off brainstem perforators, and the a2 
segment sends off the internal auditory artery. Proximal PAO can 
result in brainstem infarction and hearing loss, and it is the last resort 
(104, 106). Reconstructive EVT was the preferred choice. Owing to 
the limitation of the AICA diameter, stenting in the AICA can 
be  employed only for a thick AICA or the common trunk of the 
AICA-PICA (107). For example, in 2024, Kass-Hout et  al. (108) 
treated AICA dissection with FD [a silk vista baby device (Balt, 
Montmorency, France)]. PAO is acceptable for distal AICA dissections 
(Figure 13A).

8.2.6 PICA
For unruptured PICA dissections, conservative treatment can 

be recommended for those without obvious angiographic risk factors 
for hemorrhage, such as pseudoaneurysm (109). However, for 
ruptured PICA dissections with a high risk of rebleeding, recurrence, 
or flow-related AVM, EVT may be suggested (Figures 13B,C). Ideal 

EVT comprises complete embolization of the PICA dissections while 
preserving the PICA and perforating arteries (110–112). However, 
reconstructive EVT is difficult to perform because the diameter of the 
PICA trunk is not thick. Therefore, PAO had to be employed.

For proximal P1 aneurysms, PAO is dangerous because of 
brainstem infarction (113–115). However, Malcolm et  al. (116) 
reported in 2020 that the risk of brainstem stroke from proximal PICA 
sacrifice may not be as high as expected. PAO for proximal PICA 
dissection can be used only as a last resort for poor surgical candidates 
or those with good collateral perfusion. However, owing to the good 
possibility of collateral flow, PAO for distal P2–P5 dissections can 
be safely performed (117, 118). For PICAs with a double origin or with 
PICA communicating arteries, aggressive PAO can be  performed 
(118, 119).

Recently, with the advancement of small low-profile stents, a 
proximal PICA trunk that is not too thin can be reconstructed by 
stenting. In 2022, Lim et  al. (109) reported that a ruptured 
proximal PICA dissection was reconstructed via an LIVS junior 
stent, and follow-up angiography confirmed that the dissection was 
cured. In addition, small very low-profile FDs, such as the silk 
Vista Baby device, are suitable for use with a 0.017-inch 

FIGURE 8

Complication from EVT for MCA dissections. (A) Panel 1: DSA showing a sidewall dissection at M1–M2 junction (arrow). Panel 2: Roadmap image (left 
panel) and DSA (right panel) showing the dissection was covered by FD. Panel 3: Six-month follow-up DSA showing that the dissection was cured and 
there was a stenosis of M2 (arrow). (B) Panel 1: DSA (left panel) and microcatheter angiography (right panel) showing a small dissection of M3 (arrows). 
Panel 2: DSA showing the dissection was embolized by casting liquid embolic agent. Panel 3: Postoperative magnetic resonance image showing that 
the acute infarction of parietal lobe (frame). DSA, digital subtraction angiography; EVT, endovascular treatment; FD, flow diverter; MCA, middle cerebral 
artery; M1, first segment of MCA; M2, second segment of MCA; M3, third segment of MCA.
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FIGURE 9

EVT of ACA dissections. (A) Panel 1: DSA showing a typical ruptured dissection (arrow) at A2 segment trunk and an AcomA aneurysm (asterisk). Panel 2: 
Roadmap image (left panel) and DSA (right panel) showing that the AcomA aneurysm was coiled (asterisks) and the dissection was reconstructed by 
LEO baby stenting. Panel 3: Postoperative X-per CT showing the LEO stent (arrow) was in the hematoma of anterior longitudinal fissure, indicating the 
ACA dissection was ruptured. (B) Panel 1: DSA (left panel) showing a fusiform A3 dissection (arrow), X-ray image (right panel) showing that the A3 
dissection was covered by FD. Panel 2: Four-month follow-up DSA (left panel) showing the A3 dissection regressed, DSA showing the previous MCA 
occlusion. (C) Panel 1: DSA showing a small dissection at right A1 origin (arrow). Panel 2: Roadmap image showing that the contralateral trans-
circulation approach to treat the dissection by occluding A1 origin. Panel 3: Six-month follow-up DSA (left and right panels) showing that right A1 
origin was occluded, left ACA supplied the bilateral ACAs. (D) Panel 1: CT showing a lesion (arrow) in the anterior longitudinal fissure. Panel 2: DSA 
showing a giant A2 dissecting aneurysm (arrow). Panel 3: DSA showing the aneurysms was trapped and the proximal A2 was occluded (arrow). Panel 4: 
Postoperative CT showing no ischemic finding in the frontal lobe. ACA, anterior cerebral artery; A1, first segment of the ACA; A2, second segment of 
the ACA; A3, third segment of the ACA; AcomA, anterior communicating artery; CT, computed tomography; DSA, digital subtraction angiography; EVT, 
endovascular treatment; FD, flow diverter; ICA, internal carotid artery; L, left; R, right.
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FIGURE 10

Treatment of BA dissections. (A) Panel 1: Magnetic resonance image showing a lesion (arrow) in front of brainstem. Panel 2: DSA showing the BA 
was occluded (arrow), the BA tip was supplied by posterior communicating artery. Panel 3: DSA images showing that bilateral VAs only supplied 
to the PICAs, lower BA and AICA. In the patient, the medication was given. (B) Left panel: DSA showing an unruptured BA dissection (arrow). 
Right panel: DSA showing delayed appearance of BA dissection after LEO stent deployment. (C) Left panel: Roadmap image showing a ruptured 
sidewall BA dissecting aneurysm. Right panel: DSA showing the aneurysm (arrow) was coiled under the assistance of traditional stent. (D) Panel 
1: CT images (left and right panels) showing subarachnoid hemorrhage and intraventricular hemorrhage. Panel 2: DSA showing a giant BA 
dissecting aneurysm (arrow). Panel 3: X-ray image showing FD assisted coiling the aneurysm. Panel 4: DSA (left panel) and Vaso-reconstructive 
image (right panel) showing that the aneurysm was embolized. Panel 5: X-ray image showing the FD (arrows) and coils. Panel 6: Postoperative 
CT showing the external ventricular drainage (arrow) was performed due to acute hydrocephalus. AICA, anterior inferior cerebellar artery; BA, 
basilar artery; CT, computed tomography; DSA, digital subtraction angiography; EVT, endovascular treatment; FD, flow diverter; PICA, posterior 
inferior cerebellar artery; VA, vertebral artery.
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FIGURE 11

EVT of VA dissections. (A) Panel 1: CT showing SAH and intraventricular hemorrhage. Panel 2: DSA showing a ruptured VA dissection (arrow) above the 
PICA. Panel 3: DSA images (left and right panels) showing that the dissection was trapped and the PICA was stented by LEO deployment (long arrow). 
(B) Panel 1: CT showing SAH and intraventricular hemorrhage. Panel 2: DSA of aorta showing a right aberrant subclavian artery (arrow). Panel 3: DSA 
(left panel) showing a ruptured VA dissection (arrow) above the PICA, and DSA (right panel) showing the dissection (arrow) was embolized. Panel 4: 
X-ray image (left panel) and reconstructive Xper-CT (right panel) showing the FD and coils. Panel 5: Postoperative CT images (left and right panels) 
showing that intracranial hemorrhage absorbed. (C) Panel 1: DSA images showing that left VA was well-developed (left panel) and there was a right VA 
dissection (arrow) with PICA involvement (right panel). Panel 2: Reconstructive CT showing the FD deployment from PICA to VA. Panel 3: DSA showing 
the PICA obtained sufficient blood flow from the proximal VA, and the distal VA (arrow) occluded beyond the PICA after the FD deployment from PICA 
to VA. CT, computed tomography; DSA, digital subtraction angiography; EVT, endovascular treatment; FD, flow diverter; L, left; PICA, posterior inferior 
cerebellar artery; R, right; SAH, subarachnoid hemorrhage; VA, vertebral artery.
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FIGURE 12

EVT of PCA dissections. (A) Panel 1: DSA showing a P1 dissection (arrow). Panel 2: DSA (left panel) showing that the dissection (arrow) was coiled by 
stent assistance, and X-ray image (right panel) showing the coils and stent (asterisks). Panel 3: Six-month follow-up DSA showing that the P1 segment 
of the PCA was nearly occluded (arrow). (B) Panel 1: X-ray image (left panel) showing the microcatheter went into the giant distal PCA dissection 
aneurysm (asterisk) to wait for the coiling, DSA and unsubtracted DSA (middle and right panels) images showing the aneurysm (arrows) and the parent 
PCA were occluded. Panel 2: Diffuse weighted image of magnetic resonance showing no ischemia of PCA region. (C) Panel 1: CT showing left 
temporal hemorrhage. Panel 2: DSA (left panel) showing an AVM supplied by the branch of PCA with a flow-related dissecting aneurysm (arrow), and 
unsubtracted DSA (right panel) showing the dissection was embolized by casting Onyx (frame). Panel 3: DSA showing the AVM was obliterated. 
(D) Panel 1: DSA showing a sidewall dissecting aneurysm (arrow) of distal PCA. Panel 2: X-ray image (left panel) showing the design of the EVT by LEO 
stent assisted-coiling, and DSA (right panel) showing the aneurysm was embolized. Panel 3: Six-month follow-up DSA showing the aneurysm (arrow) 
had no recurrence. (E) Panel 1: DSA (left panel) showing the moyamoya disease and well-developed PCA, and DSA (right panel) showing a distal PCA 
dissecting aneurysm and an ophthalmic aneurysm (arrowhead). Panel 2: Vaso-reconstructive image showing that the FD covered two aneurysms. 
Panel 3: DSA showing the PCA was patent. AVM, arteriovenous malformation; CT, computed tomography; DSA, digital subtraction angiography; EVT, 
endovascular treatment; FD, flow diverter; PCA, posterior cerebral artery; P1, first segment of PCA.
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FIGURE 13

EVT of AICA and PICA dissections. (A) Left panel: DSA showing a ruptured AICA dissection (arrow). Middle panel: Unsubtracted DSA showing the 
dissection (arrow) was coiled. Right panel: DSA showing the AICA was patent, and chronic occlusion was worthy to expected. (B) Left panel: CT 
showing SAH. Middle panel: DSA showing a ruptured PCA sidewall dissecting aneurysm (arrow). Right panel: DSA showing the aneurysms (arrow) was 
coiled selectively. (C) Panel 1: CT showing the fourth ventricle hemorrhage. Panel 2: DSA (left panel) and its reconstructive image (right panel) showing 
an AVM that supplied by PICA with flow-related dissecting aneurysms (arrows). Panel 3: DSA (left panel) showing the aneurysms were embolized 
(arrow), unsubtracted DSA (right panel) showing the Onyx in the aneurysm. Panel 4: Diffuse weighted image of magnetic resonance showing 
asymptomatic acute ischemia of cerebellar hemisphere. AICA, anterior inferior cerebellar artery; AVM, arteriovenous malformation; CT, computed 
tomography; DSA, digital subtraction angiography; EVT, endovascular treatment; PICA, posterior inferior cerebellar artery; SAH, subarachnoid 
hemorrhage; VA, vertebral artery.
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microcatheter and can be  deployed without the need for more 
support; thus, they can be used to treat proximal PICA dissection 
(120). In addition, unruptured dissection of the proximal PICA, 
covering the PICA orifice with an FD, or even the use of a 
low-metal-coverage stent, can result in dissection regression by 
reducing arterial flow (121, 122).

9 Conclusion

It was feasible to consider that the following IADs were stable: 
unruptured, small, fusiform, and not flow related. Ruptured IADs 
and unruptured IADs with acute large artery occlusion and 
aneurysms that increased in size or caused compression and 
therefore a mass effect during the follow-up period required 
intervention. EVT is currently the treatment of choice for IADs. 
Because IADs are relatively complex diseases, a personalized 
choice of deconstructive or reconstructive EVT is necessary 
depending on the type of dissection, symptoms, and location. 
Then, good outcomes can be obtained.
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