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Introduction: Digital technologies have significantly advanced the detection

of emotional disorders (EmD) in clinical settings. However, their adoption for

long-term monitoring remains limited due to reliance on fixed testing formats

and active user participation. This study introduces a novel approach utilizing

common ball game videos–table tennis–to implicitly capture eye movement

trajectories and identify EmD through natural viewing behavior.

Methods: An eye movement data collection system was developed using VR

glasses to display sports videos while recording participants’ eye movements.

Based on prior research and collected data, four primary eye movement

behaviors were identified, along with 14 associated features. Statistical

significance was assessed using t-tests and U-tests, and machine learning

models were employed for classification (SVM for single-feature analysis and

a decision tree for significant features) with k-fold validation. The reliability of

the proposed paradigm and extracted features was evaluated using intraclass

correlation coe�cient (ICC) analysis.

Results: Significance tests revealed 11 significant features in table tennis videos,

encompassing exploration, fixation, and saccade behaviors, while only 3 features

in tennis videos, which served as a supplemental stimulus, were salient in the

re-testing. GazeEntropy emerged as the most predictive feature, achieving an

accuracy of 0.88 with a significance p-value of 0.0002. A decision tree model

trained on all significant features achieved 0.92 accuracy, 0.80 precision, and an

AUC of 0.94. ICC analysis further confirmed the high reliability and significance

of key features, including GazeEntropy and fixation metrics (average, maximum,

and standard deviation).

Discussion: This study highlights the potential of ball game video viewing as

a natural and e�ective paradigm for EmD identification, particularly focusing on

two key characteristics of EmD: curiosity exploration and psychomotor function.

Additionally, participant preferences for video content significantly influenced

diagnostic performance.We propose that future in-home, long-termmonitoring

of psychological conditions can leverage interactions with daily digital devices,

integrating behavioral analysis seamlessly into everyday life.
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1 Introduction

Neurological Disorders (ND) are the leading cause of disability-

adjusted life years and the second leading cause of death globally,

with over 3 billion people-about 43% of the world’s population-

affected reported in 2021 (1, 2). While medications combined

with treatment strategies could effectively manage the severity of

ND, alleviate symptoms, and enhance patient quality of life (3).

However, as a major by-effect of prevailing medicines, emotional

disorders (EmD) such as anxiety and depression are frequently

observed as comorbid complications, particularly in people who

manage multiple conditions and undergo polypharmacy (4). These

psychological disturbances can significantly exacerbate preexisting

conditions or trigger the development of new health issues, thereby

complicating disease management (5–7). Addressing patients’

emotional well-being is therefore critical, enabling clinicians to

make informed adjustments to treatment plans. Timely recognition

and effective management of these emotional complications

enhance treatment outcomes and reduce the risk of further health

deterioration. This highlights the integral role of mental health care

within comprehensive disease management strategies.

Currently, the clinical diagnosis of EmD predominantly relies

on psychological behavioral scales, such as the Hamilton Anxiety

Scale (HAMA) (8), the Hamilton Depression Scale (HAMD) (9),

and the Pittsburgh Sleep Quality Index (PSQI) (10). While widely

used, the subject must undergo professional training before the

assessment (11). Additionally, during the assessment, the subject

must recall and describe situations from the past month, a process

that may introduce bias (12). The interval between follow-up

visits, ranging from 2 to 6 weeks, is unsuitable for frequent or

prolonged monitoring of the medication’s effects on the disease

(13). Fortunately, advancements in innovative digital diagnostic

methods offer promising solutions to these challenges. These

approaches could enhance the consistency and efficiency of EmD

assessment and enable more reliable long-term monitoring.

Eye movement (EM) signals have gained increasing attention

as a valuable physiological data source in the study of EmD, in

recent years. Compared to other biological signals, EM signals

offer distinct advantages, including low-cost, robustness to noise,

ease of acquisition, and independence from spatial constraints,

making them a powerful tool for investigating individual visual

behavior (14). These signals not only capture an individual’s visual

tracking patterns but also provide insights into visual preference

characteristics through time-series data. Eye movement behaviors

(EMBs), such as fixation, saccades, and smooth pursuit, are

primarily regulated by the frontal eye field (15) and superior

colliculus (16)–key brain regions whose functional abnormalities

have been linked to EmD (17). Research has shown that individuals

with EmD often exhibit atypical saccade patterns and impaired

smooth pursuit abilities (18). Therefore, the design of experimental

paradigms plays a critical role in EM research. By carefully

structuring specific visual stimuli, experimental paradigms can

effectively elicit emotional responses, enabling researchers to more

precisely examine the relationship between EM patterns and EmD.

Tasks such as pro-saccade and anti-saccade are commonly utilized

for detecting EmD. Individuals with depression demonstrated an

increased error rate in the anti-saccade task (19–21). Building

on this, compared to the pro-saccade task, the anti-saccade task

elicited similar results, including prolonged reaction times, which

correlated with the severity of the disorder (22). These findings

have also been observed in anxiety detection studies using the same

task (23).

In contrast to intentionally induced EMs, recent studies have

emphasized the importance of natural EMs–those detectable in

everyday life. Significant differences have been identified between

patients with major depression and healthy controls in smooth

pursuit and free-viewing tasks, with variations observed in peak

tracking speed, number of fixations, fixation duration, number

of saccades, and saccade density (24). Additionally, anxiety and

depression patients have been assessed using free-viewing tasks

involving a matrix of 16 images from two distinct stimulus

categories (25). Notably, fixation behaviors in free-viewing tasks

were associated with greater prefrontal involvement compared to

task-related settings (26). Some research suggests that emotion

elicitation through photographs is relatively constrained, whereas

emotional experiences evoked by aesthetic appreciation tend to

be more profound (27). Major depression was assessed through

the natural observation of oil paintings, achieving an accuracy

rate of 79.88% by analyzing EM patterns, including heatmaps,

trajectories, and statistical vectors (28). However, these tasks or

the observation of static images often fail to sustain engagement,

with even innovative approaches like observing oil paintings

quickly inducing fatigue. For effective emotional monitoring,

it is essential to develop a method that supports long-term

use, ensures high user compliance, and aligns closely with

everyday activities.

Task paradigms with dynamic visual stimulation have

demonstrated effectiveness in research but are constrained by their

rigid formats, limiting their practicality for long-term monitoring

in daily life. While natural EM offers distinct differential

characteristics and is better suited for everyday integration, static

paradigms fail to generate sufficient cognitive arousal compared to

task-based approaches. To address these shortcomings, this study

investigates the use of round-based ball game videos, such as table

tennis and tennis, as a novel experimental paradigm for EmD

recognition. Ball game videos are common and widely accepted

in daily life. They typically feature fixed camera angles with rapid

ball movements across the video frame, mimicking the stimulation

patterns of saccadic EMs. Despite the potential of dynamic video

paradigms, only a limited number of studies have utilized them

to explore ND, and none have specifically focused on EmD from

our literature review. Therefore, this study aims to evaluate

whether round-based ball game videos can serve as an effective

dynamic, natural paradigm for eliciting EM patterns characteristic

of EmD.

To explore the proposed paradigm, we developed an EM

acquisition system for dynamic video playback using virtual

reality (VR) glasses. VR devices offer immersive visual-spatial

environments and are increasingly adopted for home use.

Additionally, many VR systems now integrate eye-tracking

technology to enhance user interaction, providing a reliable tool

for capturing ocular movements and trajectories. It is worth

noting that although VR devices were employed in this study to

create a controlled and independent experimental environment,
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TABLE 1 The demographic information table of participants.

EmD HC Sig

n (total = 25) 12 13 /

Demographics

Female #(%) 6 (50%) 10 (76.92%) /

Age #(std) 47.33 (10.53) 48.31 (11.18) /

Education yrs #(std) 12 (3.05) 9.08 (3.17) <0.05

Clinical characteristic

HAMA avg (std) 14.42 (7.09) 4.31 (2.55) <0.001

HAMD avg (std) 18.08 (9.03) 4 (5.25) <0.001

PSQI avg (std) 13.67 (3.89) 8.38 (7.18) <0.05

this paradigm is theoretically adaptable to any device equipped

with eye-tracking capabilities. For the experiment, we curated 22

table tennis and tennis game videos from publicly available online

sources and edited them to retain segments with fixed camera

perspectives. Participants were exposed to 8 randomly selected

videos, during which their EM data were recorded for subsequent

analysis. The study extracted features characterizing four aspects of

EM and conducted significance tests to evaluate their effectiveness

in distinguishing individuals with EmD (IEmD) from healthy

controls (HC). Furthermore, a Machine Learning (ML) model was

implemented to validate the paradigm, achieving accurate EmD

recognition rates and demonstrating the feasibility of this approach

for EmD assessment.

2 Materials and methods

2.1 Participant information

A total of 11 IEmD and 12 HC participated in this study1.

Patients were recruited from the Department of Neurology

outpatient clinic at The First Hospital of Hebei Medical

University and were diagnosed and screened by experienced

clinicians. HC were recruited from the local community. All

participants underwent assessments using the 24-item Hamilton

Depression Rating Scale (HAMD-24), Hamilton Anxiety Scale

(HAMA), and Pittsburgh Sleep Quality Index (PSQI). The

demographic characteristics of the participants are presented in

Table 1. The Ethics Committee of The First Hospital of Hebei

Medical University reviewed and approved the study protocol.

All participants provided written informed consent before their

inclusion in the study.

The inclusion and exclusion criteria for this study were as

follows:

1 A de-identified version of the dataset generated from the experiments,

including demographic information, clinical scale scores, and raw eye-

tracking data, has been prepared under a controlled access protocol.

Researchers interested in accessing the data may request it by contacting

the first or corresponding author via email.

• Inclusion criteria: (1) Participants aged 65 years or younger

were all native speakers. (2) For the patient group, a confirmed

diagnosis of depression or anxiety.

• Exclusion criteria: (1) Inability to complete the required

examinations. (2) The presence of diseases causing

bradykinesia, such as Parkinson’s disease (PD), progressive

supranuclear palsy (PSP), or multiple system atrophy (MSA).

(3) Co-existing ocular conditions, such as glaucoma or

cataracts, leading to blurred vision or visual field loss. (4)

Disorders affecting ocular movement, such as oculomotor

nerve damage or myasthenia gravis. (5) Recent use (within

three months) of medications like amantadine, diazepam,

or levodopa, accompanied by visual hallucinations. (6)

Major systemic diseases, including tumors, cardiovascular

or pulmonary conditions, or neurological disorders. (7)

Diagnosed dementia conditions, including Parkinson’s

disease dementia (PDD), frontotemporal dementia (FTD),

dementia with Lewy bodies (DLB), or normal pressure

hydrocephalus (NPH).

2.2 Experimental

The study investigates whether EMB during natural video

viewing can effectively detect EmD. Ball sports, commonly

observed in daily life, often exhibit repetitive and cyclic motions,

with the ball moving back and forth between players, as seen in

table tennis. Given its popularity as a recreational activity, table

tennis was chosen as a video paradigm to evoke EMs. In addition,

to investigate whether the video content influenced EMs, we used

tennis, an internationally popular ball sport, as a complementary

stimulus. We opted for highlight reels of high-energy matches

to maximize the natural and effective elicitation of EMs. These

intense and competitive moments are engaging and effective in

drawing attention. High-energy video clips were collected from

official websites. Following screening based on criteria such as video

clarity, duration, ball speed, and movement range, 22 video clips

were finalized for use in the study, consisting of nine table tennis

and 13 tennis.

The experiment was designed in two phases (as illustrated

in Figure 1), with each phase comprising four video clips: two

table tennis clips and two tennis clips. Since each video lasted

an average of less than 20 seconds, the same type of videos

was grouped to ensure participants could fully focus without

being interrupted by frequent transitions. A Latin square design

was employed to arrange the sequence of table tennis and

tennis videos to eliminate order effects, resulting in two possible

viewing orders.

The first phase served as the Test, while the second phase

acted as the Re-test, primarily aimed at validating the hypotheses

established during the test stage. In the re-test phase, the viewing

order of the videos mirrored that of the test phase. Each video clip

in both phases was randomly selected from a predefined collection,

ensuring that the second video of the same content within a stage

differed from the first. This design focused on the influence of video

content on EMs rather than the specific content of individual video

clips.
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FIGURE 1

The experimental procedure for each participant.

The experimenter managed all tasks throughout the

experiment, ensuring participants remained fully immersed

in the video experience. The experimental procedure was as

follows: (1) The experimenter assisted participants in wearing

the VR headset and instructed them to watch the videos as

they would typically watch television. (2) Once participants

were ready, the experimenter initiated the test by pressing

the controller’s trigger. The test began with an eye calibration

process, after which the system automatically transitioned to the

video playback screen. Upon completing the playback of four

videos, participants were given a 1-minute break. (3) After the

break, the experimenter triggered the second round of video

playback using the controller. Once playback was complete, the

experimenter removed the headset from the participants, marking

the experiment’s conclusion.

The visual environment for the experiment was created using

virtual reality technology (detailed implementation in Section 2.5).

All videos were presented in a completely dark environment on

a 21.5-inch screen with a resolution of 1,280 × 720, positioned

one meter from the participant’s eyes. The experiment location

was flexible but required a quiet setting to minimize distractions.

Participants remained seated on a chair throughout the experiment

to ensure comfort and stability.

2.3 Features definition

To effectively differentiate between HC and IEmD, researchers

have investigated distinctions in daily behaviors between the two

groups. However, describing human behavior poses significant

challenges, often necessitating the extraction of behavioral

characteristics to explore their relationship with disease status.

These characteristics can be potential behavioral biomarkers for

diagnosing and monitoring emotional disorders.

This study focuses on analyzing subjects’ EMBs while

watching videos. Initially, we review commonly used EM

characteristics identified in previous research. Building on this

foundation, we introduced several supplementary features to

enhance behavioral analysis fitting the proposed novel paradigm.

By categorizing and summarizing representative behavioral

characteristics, we classified them into distinct behavioral types

and analyzed their potential links to emotional disorders.

Specifically, we identified four primary categories of behavior

during video watching: Exploration, Fixation, Saccade, and

Attention. Table 2 shows a detailed summarized table of

features catalog.

2.3.1 Exploration behavior
Exploration behavior refers to the overall watching patterns

exhibited by video viewers throughout the video-watching process

(29). This behavior captures how viewers engage with and visually

interact with the video content.

Two key features are used to describe exploratory behavior:

GazeEntropy: This feature reflects the randomness or

dispersion of gaze points during video watching. Using Peye denote

as the distribution of gaze points during a whole video watching.

The probability of a gaze point located on an independent point

(xi) on the screen is p(xi). The entropy could be calculated as:

H(X) = −

n∑

i=1

p(xi) log p(xi) (1)

Higher entropy indicates broad, exploratory behavior, while

lower entropy suggests more focused or restricted exploration (30).

This measure aligns with psychological theories of exploration,

where individuals seek new information or broadly scan their

environment (31).

KL-divergence: This feature quantifies the difference between

the viewer’s EM distribution and the distribution of an expected

object of interest, such as a moving ball in sports videos. The

ball distribution Pball works as the target distribution and the Peye
comparison distribution. For an independent point (xi) on the

screen, the probability of gaze or ball appearing at this point is pe(xi)

and pb(xi) respectively. So the KL-Divergence is denoted as:

DKL(Peye‖Pball) =

n∑

i=1

pe(xi) log
pe(xi)

pb(xi)
(2)

The ball, as a salient visual point, often influences gaze behavior.

A low KL-divergence indicates that the viewer’s gaze closely follows

the expected object, suggesting alignment with the anticipated

pattern of attention.

2.3.2 Fixation behavior
When processing visual information, individuals’ gaze

points often remain focused within a specific area for a
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TABLE 2 Features extracted based on di�erent EMBs and their description.

Features Definition Interpretation

Exploration

Fixation entropy The entropy of gaze point during one video watching.

Measures the randomness or unpredictability of gaze

points during one video watching.

High entropy indicates dispersed and unpredictable gaze behavior,

while low entropy suggests more restricted exploratory behavior.

KL-Divergence The KL-divergence of eye distribution to ball

distribution during one video watching.

Quantifying how eye-gaze distribution deviates from the ball

distribution. Low divergence indicates goal-directed exploration

with gaze aligned to task objectives, while high divergence suggests

inefficiency or disengagement from task-relevant stimuli.

Fixation

Number of fixation points The number of distinct fixation behaviors during one

video watching.

Fewer fixation behaviors reflect reduced exploration or interest in the

video content.

Duratiuon_Avg The average duration of individual fixation behaviors

during one video watching.

Longer fixation durations and extended fixations may indicate

difficulty disengaging or perseveration, while variability reflects rigid

attention (low) or fluctuating focus (high).
Duratiuon_Max The maximum duration of individual fixation

behaviors during one video watching.

Duratiuon_Std The duration standard deviation of individual fixation

behaviors during one video watching.

Saccade

Speed_Avg The average speed of saccades during one video

watching.

Reduced mean or maximum saccade speed may indicate

psychomotor slowing or reduced engagement, while variability in

speed reflects inconsistent focus (high variability) or uniformly

restricted saccade (low variability).Speed_Max The maximum speed of saccades during one video

watching.

Speed_Std Standard deviation of saccade speeds during one video

watching.

Amplitude_Avg The average saccades moving Amplitude of the eyeball

during one video watching.

Changes in saccade amplitude may indicate differences in

exploratory behavior, with narrower or lower maximum amplitude

reflecting reduced curiosity or engagement, while variability reveals

fluctuating focus (high) or restricted saccade (low).Amplitude_Max The maximum saccades moving Amplitude of the

eyeball during one video watching.

Amplitude_Std The standard deviation of saccades moving Amplitude

of eyeball during one video watching.

Attention

Player1 attention ratio The proportion of time spent looking at the upper

player during the video.

Skewed attention ratios could indicate preferential focus or

avoidance of specific visual regions, potentially tied to emotional

processing or interest levels.
Player2 attention ratio The proportion of time spent looking at the lower

player during the video.

while. This behavior, known as fixation, occurs when the

eyes are relatively stable, concentrating on a particular point.

Fixation behavior provides valuable insights into how individuals

allocate attention, process information, and engage with videos

(32, 33). By analyzing fixation patterns, researchers can infer

cognitive strategies, emotional responses, and levels of task

engagement. In this study, we focused on two key aspects of

fixation behavior:

Number of fixations: The total number of fixations during one

video-watching indicates how visual attention is distributed over

time (34). This feature provides insights into cognitive processing,

task engagement, and emotional states.

Fixation duration: This feature measures the time

spent focusing on a specific area of interest. It is crucial

for understanding the allocation of visual attention and

cognitive resources (35). Fixation duration was assessed

using the mean, maximum value, and standard deviation.

The mean and maximum values reflect the efficiency of

information processing in areas of interest, while the standard

deviation indicates variability in focus depth and consistency

of engagement.

2.3.3 Saccade behavior
In ball game videos, where objects often move rapidly,

viewers’ areas of interest shift frequently, prompting significant

saccadic activity throughout the watching process. Saccade

behavior refers to the rapid EMs that occur between fixations

(36). This behavior provides insights into changes in a viewer’s

area of interest during video watching. Two features-speed and

amplitude-serve as indicators of EM dynamics and underlying

cognitive functions.
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FIGURE 2

The process of calculating the distribution of moving gaze points on the screen. (a) shows the original eye movement trajectory. A circle with a fixed

radius will move along the trajectory, and the area it passes through will accumulate 1, as shown in (b). When moving to the final gaze point the final

heat map is obtained, as shown in (c).

Saccade speed: Saccades are among the fastest movements

produced by the human body, with speeds reaching up to 900◦/s

(37). During video watching, multiple saccadic movements are

recorded. Key features derived from saccade speed include the

mean, maximum value, and standard deviation. The mean and

maximum values reflect physical and cognitive capabilities, while

the variability (standard deviation) indicates the adaptability of eye

behavior.

Saccade amplitude: Amplitude refers to the distance between

the start and end points of a saccade, measured in degrees of

visual angle (38). Similar to speed, we analyze the mean, maximum

value, and standard deviation of amplitude during video watching.

The mean and maximum values reveal the extent of spatial

exploration on the screen, while variability also serves as a measure

of adaptability.

2.3.4 Attention behavior
In the context of video watching, attention reflects how

individuals allocate their focus to specific elements within the

video (39). In this study, attention is defined as the proportion

of time spent focusing on the players and balls, which are key

visual elements that draw the viewer’s attention in sports videos. To

supplement the attention distribution, we calculate the time viewers

spend fixating on the players.

Player attention ratio: In ball games, players are typically

positioned in the upper and lower halves of the screen withminimal

overlap. Using an object recognition algorithm, we identify each

player’s bounding box. From the start of the video, the total time

that the gaze points fall within the bounding box of a specific player

is recorded. This value is then divided by the total video-watching

time to compute the Player Attention Ratio, which represents the

proportion of attention dedicated to a given player.

2.4 Features computation

Each feature was extracted from the original EM trajectory,

ball movement trajectory, and player bounding box. For gaze

entropy and KL-divergence, the first step is to convert both

the EM and ball movement trajectories into two-dimensional

probability distributions on the screen. For saccades and fixations,

concentrated gaze points are identified from the EM time series,

representing fixation behavior, while saccades are defined as the

movements between these fixations. To calculate PlayerAttention,

the number of fixation points within the player’s bounding box is

counted.

2.4.1 Distribution
To calculate the distributions of gaze and ball movement,

each collected point is treated as the center of a circle with an

adjustable radius. The circle moves along the trajectory of the

target point, incrementing the value of the corresponding area on

a screen-sized canvas by 1 for each position it covers. Once the

entire trajectory is processed, the screen is represented as a two-

dimensional distribution. The cumulative value at each point on

the canvas is then normalized by dividing it by the total cumulative

value across the entire canvas. This process yields the probability

distribution of the target point on the screen (see Figure 2 for

illustration).

Gaze entropy and KL-Divergence are computed using Formula

1 and Formula 2, respectively. It is important to note that the

calculation of KL-Divergence involves division and logarithmic

operations. These processes are sensitive to floating-point precision

errors, which can cause problems when dealing with extremely

small probabilities. For example, tiny numerical errors during

summation or logarithmic operations may result in unexpected

negative numbers due to rounding. To address these concerns, a

minor constant (e.g., 1e-10) is added to the distribution to preclude

division by zero or logarithmic operations on zero.

2.4.2 Saccade and fxation
Eye-tracking data consists of a sequence of gaze points (x, y, t),

where x, y are the screen coordinates of the gaze, and t is the

corresponding timestamp. Clustering algorithms can effectively

group these gaze points into clusters, each representing a fixation.

A saccade is defined as the EM occurring between two consecutive

fixations. The key features of a saccade, such as amplitude and

speed, are derived from the spatial and temporal transitions

between fixations.
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FIGURE 3

The process of clustering the fixation points using the raw gaze trajectory. From a 2D perspective, the eye movement trajectory exhibits overlapping

gaze points over time, as illustrated in (a). By introducing an additional time dimension, a 3D eye movement trajectory is generated, as depicted in (b).

Finally, clustering is applied to the 3D trajectory, resulting in distinct fixation points, as shown in (c).

FIGURE 4

(a) Illustrates the gaze movement trajectory during video viewing, with a fixed eye-to-screen distance of 1 m (denoted as d). (b) Presents the method

for calculating the gaze movement angle. The eye’s flat (neutral) position is defined at the coordinate origin, corresponding to the center of the

screen. Given the known start and end points of the gaze, the gaze movement distance (D) can be computed. The distances Ds and De are derived

using the Pythagorean Theorem. With all three sides of the triangle determined, the gaze movement angle (θ ) can be calculated using the Law of

Cosines.

This study employs the Density-Based Spatial Clustering of

Applications with Noise (DBSCAN) algorithm to group gaze

points into fixations (40). By setting appropriate parameters for

spatial distance (15 pixels, approximately equivalent to 1◦ of visual

angle) and the minimum number of points (5 points), DBSCAN

clusters closely spaced gaze points as fixations. Unlike algorithms

that require a predefined number of clusters, DBSCAN identifies

clusters based on point density, making it particularly suitable

for scenarios where the number of fixations varies. This density-

based approach also effectively handles the irregular and variable

distribution of gaze points. This process is illustrate in Figure 3.

Since the collected data consists of pixel coordinates within

a VR environment, it is necessary to convert these coordinates

into real-world EM angles. This process begins by transforming

the pixel coordinates into real-world distances, utilizing the scale

parameter specified in the VR settings. Given the fixed one-meter

distance between the video canvas and the viewer’s eyes in the VR

setup, the distances from the viewer’s eyes to the start and end

points of a saccade (denoted as Ds and De, respectively) can be

determined using the Pythagorean theorem. Using these distances

and the Euclidean distance between the start and end points (D),

the saccade amplitude, represented as the angle of EM, can then be

calculated using the law of cosine (see Figure 4):

cos(θ) =
D2
s + D2

e − D2

2DsDe
(3)

2.4.3 Player attention
To calculate the proportion of time a viewer’s gaze falls within

an athlete’s range, it is first necessary to identify the bounding

box of the active athlete in the video. This study uses Deep-

EIoU (41) to extract the bounding box for each athlete in every

video frame, recording the coordinates of the upper-left and
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lower-right corners. Next, the algorithm identifies and counts the

gaze points that overlap with the bounding box in each frame.

Given the fixed sampling rate of eye-tracking data, the number

of gaze points within the bounding boxes of the two athletes is

multiplied by the time interval (20 ms) to calculate the total gaze

duration for each player. Finally, the total gaze time for each

player is divided by the overall eye-tracking duration to derive the

attention ratio.

2.5 Implementation

We utilized Unity3D (Version 2021.3.26)2 to develop a VR-

based video playback application, which was integrated into an

intelligent eye movement analysis and evaluation system known

as “EyeKnow.” This system is a medical device approved by

the National Medical Products Administration and supports eye-

tracking data acquisition at frequencies of up to 90 Hz (50 Hz in

this study), with integrated real-time eye-tracking functionality.

Data processing was conducted primarily using Python

(version 3.11),3 with several third-party libraries employed for

specific tasks. The DBSCAN algorithm for fixation identification

was implemented using Scikit-learn,4 while Deep-EIoU5 was used

to extract player bounding boxes.

To validate the proposed features, we employed a parameter

significance testing approach. The Shapiro-Wilk test was used

to assess the normality of these features. Features following a

normal distribution were evaluated using a t-test, while those

deviating from normality were analyzed with a U-test. These

statistical methods were implemented using the SciPy library.6

Additionally, we developed machine learning models to classify

individuals into different groups based on the extracted features.

For single-feature classification, a Support Vector Machine (SVM)

with a linear kernel was employed. This excels in portraying the

distinction between the two types directly through a linear method,

offering simplicity, efficiency, and interpretability. Incorporating

all significant features, a decision tree model with a maximum

depth of 5 was used. Both models were implemented using

Scikit-learn.

3 Results

This section presents the analysis of data collected during the

experiments. The primary focus is on evaluating the significance of

the extracted features to investigate behavioral differences between

IEmD and HC during video watching. To further validate the

effectiveness of the proposed paradigm, we also examine the

performance of ML models. These models demonstrate potential

for clinical decision support and automated in-home alert systems,

enhancing the practical applicability of this paradigm.

2 https://unity.com/releases/editor/whats-new/2021.3.26

3 https://www.python.org/downloads/release/python-31111/

4 https://scikit-learn.org/1.4/index.html

5 https://github.com/hsiangwei0903/Deep-EIoU

6 https://docs.scipy.org/doc/scipy/

3.1 Features significance

The significance test could determine whether the observed

differences or relationships in the data are statistically meaningful

or merely attributable to chance. These tests provide a quantitative

basis for validating hypotheses, reducing uncertainty, and guiding

data-driven conclusions in research. Generally, if the p-value in

the significance test is less than 0.05, the feature is considered

significant, and the smaller the value, the stronger the significance.

The results of the significance test are shown in Table 3, and the

distributions of individual features are shown in Figure 5.

Overall, during the table tennis video watching, most features

demonstrated strong statistical significance, with 11 features

proving effective in both the test and re-test phases. The subsequent

content provides a detailed analysis of each feature type.

3.1.1 Exploration
The Exploration behavior category includes two features:

GazeEntropy and KL-Divergence.

GazeEntropy exhibited the highest significance, with a p-value

of 0.0002 in the test phase and 0.0013 in the re-test phase. The

GazeEntropy values for HC were higher than IEmD. This finding

suggests that HC exhibited more active exploration behavior

compared to IEmD when watching these videos.

KL-divergence was significant only during the re-test

phase, with a generally similar distribution between HC and

IEmD. However, when KL-Divergence reached significance (see

Supplementary Figure 1), HC participants exhibited lower values

than those in the IEmD group. Comparable KL-Divergence

values between groups suggest that both directed their attention

toward similar regions of interest, primarily aligned with the

ball’s movement in the video. When significant, the lower KL-

Divergence values observed in HC participants indicate a more

focused and consistent attention toward the ball’s trajectory.

Regarding exploratory behavior, HC were more active,

exploratory, and conformed to the movement of the ball, whereas

the opposite was true for IEmD.

3.1.2 Fixation
Fixation behavior consists of the Number and the Duration of

Fixations.

Number of fixation points of HC were larger than that of

IEmD, indicating that HC were more engaged.

Fixation duration (Avg. and Max) of HC had shorter than

that of IEmD, indicating a greater involvement with table tennis’

rapid pace. In contrast, the longer average fixation lengths seen

in IEmD may represent issues adjusting to the game’s fast-paced

nature (related to cognitive function) or a loss of interest in the

material (associated with depression). Fixation duration (std) of

HC had a reduced standard deviation, indicating more uniform

fixation behaviors during gameplay.

These findings of the fixation behavior suggest that HC are

more likely to follow the rhythm of the game, indicating higher

engagement and alignment with the video content across both

video types.
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TABLE 3 The evaluation and re-evaluation results of all EMB features for the EmD across the two video types.

Features Test Re-test

Table tennis Tennis Table tennis Tennis

Acc p_value Acc p_value Acc p_value Acc p_value

Exploration

GazeEntropy 0.88 0.0002 0.36 0.5679 0.64 0.0013 0.64 0.0307

KL-Divergence 0.68 0.0513 0.40 0.7373 0.68 0.0266 0.64 0.2419

Fixation

Number of

Fixation Points

0.68 0.0498 0.36 0.9850 0.76 0.0018 0.64 0.0633

Duratiuon_Avg 0.72 0.0083 0.32 0.7900 0.68 0.0025 0.60 0.3992

Duratiuon_Max 0.76 0.0208 0.56 0.2107 0.80 0.0046 0.36 0.8917

Duratiuon_Std 0.76 0.0083 0.48 0.3013 0.80 0.0018 0.40 0.2648

Saccade

Speed_Avg 0.64 0.0120 0.36 0.8933 0.64 0.0064 0.48 0.1996

Speed_Max 0.76 0.0082 0.32 0.7238 0.68 0.0244 0.64 0.2621

Speed_Std 0.64 0.0212 0.40 0.8309 0.64 0.0382 0.68 0.1573

Amplitude_Mean 0.64 0.0471 0.40 0.8311 0.56 0.0412 0.56 0.2235

Amplitude_Max 0.72 0.0022 0.52 0.6521 0.60 0.0128 0.68 0.0083

Amplitude_Std 0.72 0.0072 0.60 0.3257 0.68 0.0535 0.64 0.0414

Attention

Player1 Attention

Ratio

0.56 0.4484 0.36 0.7606 0.28 0.8995 0.48 0.7217

Player2 Attention

Ratio

0.44 0.9350 0.36 0.6238 0.52 0.1632 0.44 0.7237

Bolded content indicates that the p-value is significant, i.e., less than 0.05.

3.1.3 Saccade
Saccade behavior is characterized primarily by two features:

speed and amplitude.

The results revealed differences in Saccade speed (Avg. and

Max) between the groups, with higher values observed in HC

compared to IEmD. The reduced saccade speed in individuals with

IEmD may suggest decreased motor system efficiency, potentially

indicating psychomotor slowing. Additionally, Saccade speed

(Std.) was greater in HC, suggesting higher engagement and a

greater ability to adapt to rapid changes in game pacing. This

increased variability in saccadic movements further reflects the

stronger psychomotor capabilities of HC in tracking the dynamic

nature of table tennis.

Saccade amplitude (Avg. and Max) also showed different

distribution. HC exhibiting greater amplitudes than those in

IEmD. This finding suggests that HC engaged in a broader

visual exploration of the screen, whereas the more restricted gaze

exploration observed in IEmD may reflect diminished curiosity,

a characteristic often associated with EmD. Similarly, during

the test phase, Saccade amplitude (Std) with HC displayed

greater variability. This increased variability may be attributed

to a combination of heightened exploratory curiosity and active

observation. A stronger curiosity enables participants to scan a

larger area of the video, while more engagement results in more

diverse EMs as they track dynamic changes in the video.

3.1.4 Attention
Attention behavior was assessed based on the proportion of

time participants focused on the athlete’s area while watching the

game. The experimental results indicated no significant differences

between groups during the video-watching or test phases. However,

the data showed that the Player1AttentionRatio was consistently

higher, suggesting that both HC and IEmD participants directed

more attention toward the athletes at the top of the screen. Given

the simplicity of the attention measurement method employed in

this study, further differentiation of attentional behaviors could not

be derived from this observation.

3.2 Recognition result

The SVM with a linear kernel complements the significance

tests by assessing the predictive power of each feature. The accuracy

of the SVM offers additional evidence of the features’ ability

to distinguish between classes, highlighting their practical utility

beyond statistical validation. To further assess the discriminative

capacity of this new paradigm, we constructed a decision tree with

a maximum depth of 5 using all significant features to develop

a recognition model. In the analysis, K-Fold validation (k = 5)

was used. K-fold cross-validation is a resampling method used to

evaluate model performance by dividing the dataset into k equally
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FIGURE 5

The violin plot of features of di�erent participant groups during table tennis video watching (test phase).

sized folds, testing on one fold, and training on the remains. This

approach ensures that every data is used for both training and

testing, reducing overfitting and providing a more reliable estimate

of model generalization. Given the lack of a standardized accuracy

metric and the study’s focus on binary classification, we propose the

following accuracy benchmarks: values below 0.5 are considered

poor, 0.5–0.7 moderately good, 0.7–0.9 good, and above 0.9 very

good.

3.2.1 Single feature classification
In table tennis watching, no single feature achieved a “very

good” accuracy level, though most features reached the “good”

level. During the test phase, seven features demonstrated good

recognition performance, with GazeEntropy achieving the highest

accuracy of 0.88. The remaining six features were categorized as

“moderately good,” with only one classified as “poor.” In the re-

test phase, overall recognition performance declined, with three

features classified as “good,” ten as “moderately good,” and one as

“poor.”

Overall, the results of single-feature recognition for IEmD

largely align with the findings of the significance tests, as significant

features consistently provided better recognition performance. The

highest recognition accuracy, 0.88, further validates GazeEntropy

as an effective biomarker in video watching differentiating IEmD.

Between the two paradigms, table tennis outperformed tennis

in recognition accuracy–a difference explored in subsequent

discussions.

3.2.2 Overall recognition capacity
In classification tasks, several key metrics are used to evaluate

model performance. Accuracy (Acc.) measures the proportion of

correctly classified instances over the total, offering an overall

correctness. Precision (Pre.) measures the proportion of true

positives among predicted positives, while Recall quantifies the

proportion of true positives correctly identified by the model.

The F1 score, a harmonic mean of precision and recall, balances

these two metrics. Lastly, the Area Under the Curve (AUC) of the

Receiver Operating Characteristic (ROC) curve assesses themodel’s
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TABLE 4 The metrics of the Decision Tree recognition model training on

significant features (Tennis video watching in the test phase used all

features).

Acc. Pre. Recall F1 AUC

Table

tennis

Test 0.92 0.80 0.69 0.74 0.94

Re-test 0.80 0.73 0.63 0.65 0.76

Tennis Test 0.60 0.42 0.60 0.47 0.70

Re-test 0.76 0.83 0.67 0.71 0.77

Bolded content indicates the best result in each assessment metric.

ability to distinguish between classes across various threshold

settings, offering a robust measure of discriminative power. The

results of evaluating the model are listed in Table 4.

As for the table tennis watching, the test phase demonstrates

strong performance across all metrics, with high accuracy (0.92),

F1-score (0.74), and AUC (0.94). This indicates that the model can

distinguish between classes effectively during this phase. However,

recall (0.69) is lower than precision (0.80), suggesting that while

positive predictions are mostly correct, some true positives are

beingmissed. The re-test phase shows a drop in performance across

all metrics compared to the test phase. Accuracy drops to 0.80, and

AUC falls to 0.76, reflecting reduced discriminative ability during

re-testing. This may point to variability in model performance over

time or participant inconsistency in behavior.

To gain deeper insight into the factors shaping the model’s

classification performance, we used the Gini importance to

determine which features play the most important role in

distinguishing between groups. This metric quantifies the extent

to which features influence the model’s decision-making process,

by calculating the (normalized) total reduction of the criterion

brought by that feature. The analysis revealed that GazeEntropy,

SaccadeSpeed (Max) and GazeDuration (Std) were the top three

influential features, with the values of 0.3915, 0.1704, and 0.1693,

respectively. Notably, these features also exhibited significant

differences in our earlier feature analyses, reinforcing the relevance

of the extracted features in classification.

3.3 Video content influences

This section extends the analysis of gaze behavior in tennis

video to examine the impact of video content influences on visual

behavior. It was discovered that the number of features with

significant differences in the tennis video was substantially lower

than the procedure for the table tennis video, and no features with

significant differences were extracted during the test phase of the

tennis video. Tennis is less familiar to Chinese people than table

tennis, which could explain why. The Section 4 will go into greater

detail and explain everything.

3.3.1 Feature significance
Watching the tennis videos, GazeEntropy and Saccade

Amplitude exhibited significant differences in the re-test phase,

while no features differed significantly in the test phase, as

illustrated in Figure 6 and Supplementary Figure 2.

GazeEntropy showed statistical significance (p = 0.0083), with

HC having higher entropy values than IEmD in the re-test phase.

This conclusion is congruent with the results obtained in the

table tennis video, implying that HC participated in more active

exploratory behavior than their IEmD counterparts while watching

the videos.

Saccade amplitude (Max) and Saccade amplitude (Std)

showed differences in the distribution of the two populations at p

= 0.0307 and p = 0.0438, respectively. The significance of Saccade

Amplitude (Std) is in line with the results obtained for the table

tennis video, where the HC showed a higher degree of variability in

the re-testing phase of the tennis video viewing compared to that of

the IEmD.

3.3.2 Recognition result
Single Feature Classification: In the tennis matches, only two

features reached the “moderately good” level during the test

phase, while the remaining features showed accuracies below 0.5.

However, recognition accuracy improved in the re-test phase, with

nine features achieving “moderately good” levels and the highest

accuracy reaching 0.68.

Overall Recognition Capacity: The tennis watching shows

weaker performance in the test phase, with accuracy (0.60),

F1-score (0.47), and AUC (0.70) being relatively low. Precision

(0.42) is notably poor compared to recall (0.60), indicating a

tendency to produce false positives. The re-test phase shows

improved performance, with accuracy increasing to 0.76 and

AUC reaching 0.77. Precision (0.83) surpasses recall (0.67),

suggesting a stronger ability to classify positive predictions

with fewer false positives during re-testing correctly. The

model performs significantly better on the table tennis task in

the test phase, indicating that the task’s features or dynamics

may align better with the model’s discriminative capabilities.

Additionally, we employed Gini importance to quantify

the contribution of each feature to the classification. The

analysis revealed that GazeEntropy, GazeDuration (Max), and

Player2AttentionRatio were the most influential features in the

tennis video.

3.4 Test and re-test

The Intraclass Correlation Coefficient (ICC) is a statistical

measure used to assess the reliability or consistency of

measurements across different circumstances. ICC values

range from 0 to 1, with higher values indicating stronger reliability;

commonly, ICCs above 0.75 are considered excellent, while values

between 0.5 and 0.75 indicate moderate reliability, and those below

0.5 suggest poor reliability. In this study, ICC3k was used in the

assessment. ICC3k is a specific type of ICC used to assess the

consistency or agreement of measurements when the same raters

(the rater means the feature-extracting method in this study) are

applied to all subjects and the focus is on reliability across multiple

measurements.
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FIGURE 6

The violin plot of features of di�erent participant groups during tennis video watching (test phase).

The results of ICC analysis are listed in Table 5. In table

tennis watching, the ICC results suggest that GazeEntropy and

KL-Divergence are the most reliable features for distinguishing

gaze behavior, as evidenced by their high ICC values and narrow

confidence intervals. In contrast, features such as attention ratio

for Player2AttentionRatio and Saccade Speed (Std) demonstrated

lower reliability, indicating potential variability or measurement

inconsistencies.

In tennis watching, KL-Divergence, Player2AttentionRatio, and

GazeDuratiuon (Avg., Max, Std.) are reliable features in the ICC

analysis. The remaining features seem to be unreliable. In general,

the features describing the two behaviors of Exploration and

Fixation are reliable in two different video watching.

The model performs significantly better on the table tennis

task in the test phase, indicating that the task’s features or

dynamics may align better with the model’s discriminative

capabilities. These results suggest task type and participant

engagement significantly impact model performance over

repeated sessions.

4 Discussion

This study leverages the rapid movement of the ball in turn-

based sports, such as table tennis and tennis, as a visual stimulus

to induce the gaze movement of participants. By analyzing 4 kinds

of behaviors in video watching, we extracted effective features

from the significance tests and facilitated the detection of EmD

ML models. Experiments involving 25 participants identified 11

significant features in table tennis video watching, encompassing

three behavioral categories. A decision tree model trained on all

significant features achieved an accuracy of 0.92. Additionally,

ICC analysis further confirmed that four features–GazeEntropy

and Fixation (Average, Maximum, and Standard Deviation)-

exhibited both high significance and reliability. These findings

demonstrate the potential of behavioral analysis during video

watching of ball games as an effective paradigm for identifying

IEmD. This work aims to advance the application of EMBs in

everyday contexts, ultimately supporting long-term, in-home EmD

monitoring through advanced computational technologies. There
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TABLE 5 Results of ICC analysis of individual features across di�erent game watching.

Features Table tennis Tennis

ICC p_value CI 95% ICC p_value CI 95%

Exploration

Fixation Entropy 0.89 0.0000 [0.75 0.95] 0.41 0.1003 [-0.33 0.74]

KL-Divergence 0.79 0.0001 [0.53 0.91] 0.54 0.0318 [-0.05 0.8 ]

Fixation

Number of Fixation

Points

0.53 0.0335 [-0.06 0.79] 0.26 0.2368 [-0.69 0.67]

Duratiuon_Avg 0.69 0.0031 [0.29 0.86] 0.79 0.0001 [0.53 0.91]

Duratiuon_Max 0.65 0.0059 [0.21 0.85] 0.55 0.0283 [-0.02 0.8 ]

Duratiuon_Std 0.69 0.0029 [0.3 0.86] 0.61 0.0129 [0.11 0.83]

Saccade

Speed_Avg 0.79 0.0002 [0.52 0.91] 0.43 0.0851 [-0.28 0.75]

Speed_Max 0.52 0.0400 [-0.09 0.79] 0.35 0.1486 [-0.47 0.71]

Speed_Std 0.40 0.1096 [-0.36 0.74] 0.35 0.1476 [-0.47 0.71]

Amplitude_Mean 0.65 0.0061 [0.21 0.85] 0.43 0.0855 [-0.29 0.75]

Amplitude_Max 0.62 0.0107 [0.14 0.83] 0.17 0.3277 [-0.89 0.63]

Amplitude_Std 0.62 0.0099 [0.15 0.83] 0.46 0.0684 [-0.22 0.76]

Attention

Player1 Attention Ratio 0.67 0.0040 [0.26 0.86] 0.24 0.2556 [-0.73 0.66]

Player2 Attention Ratio 0.16 0.3401 [-0.91 0.63] 0.66 0.0057 [0.22 0.85]

are a few insights that could further enrich the future of this realm

of research.

4.1 Key characters of EmD revealed in ball
game watching: curiosity exploration and
psychomotor

Our experimental findings indicate that key features for

detecting EmD are closely linked to two primary characteristics

of EmD: reduced curiosity exploration and psychomotor slowing.

Specifically, GazeEntropy, Saccade Amplitude, and Gaze Duration

are associated with curiosity exploration, as EmD often leads

to decreased motivation and engagement with the environment.

Meanwhile, Saccade Speed is related to psychomotor function,

with EmD frequently causing psychomotor slowing, reflected in

slower saccadic movements as an indicator of impaired motor and

cognitive processing. Building on these insights, we can design

more naturalistic paradigms for EmD detection. For instance, a

video-based task requiring participants to explore a scene for

specific objects could combine exploratory behavior and saccadic

efficiency, thus assessing curiosity and psychomotor functioning.

Additionally, adaptive paradigms that increase in complexity

over time could challenge participants to balance curiosity-driven

exploration with efficient psychomotor responses. Furthermore,

integrating eye-tracking data with physiological measures such

as heart rate variability (HRV) (42) or skin conductance (43)

could enhance detection by linking psychomotor and curiosity

patterns with emotional arousal or stress levels. These multi-modal

approaches would offer a more comprehensive understanding of

EmD and improve detection capabilities.

4.2 The e�ects of participants’ preference
of video contents to the diagnosis
performance

The experiment revealed that features’ significance, recognition

accuracy, and reliability were notably higher for table tennis videos

than tennis videos. Discussions with participants indicated that

this discrepancy might stem from their familiarity with the sports.

Several participants reported being unfamiliar with tennis, which

hindered their ability to focus and engage with the content. In

contrast, their familiarity with the rules and gaming strategy in

table tennis allowed for greater concentration during watching.

These findings suggest that using video content aligned with

participants’ preferences or familiarity could yield more accurate

diagnostic information. However, unfamiliar content is not without

diagnostic value. In the short test and re-test process, some

features became significant during the re-test phase, indicating

that the ability to adapt and learn from novel video content could

itself serve as a potential biomarker for EmD. Further research

is needed to explore this hypothesis. In practical applications,

exposing participants to a variety of video content may enhance
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the robustness and usability of this method, accommodating both

familiar and unfamiliar stimuli to capture a broader range of

diagnostic indicators.

4.3 The future of in-home long-term
monitor for psychology disease: daily
digital devices interaction

This study, alongside recent research, highlights a growing

shift from traditional digital medical paradigms to naturalistic

paradigms in various fields, not only EmD but also other

neurological conditions. While electronic traditional paradigms

have achieved significant success in clinical testing-offering

quick application, objective indicators, and ease of use during

consultations-they face challenges when applied to daily

monitoring due to their rigid and often unengaging nature.

In response, researchers have explored paradigms based on

common daily behaviors, such as reading tasks (44) or oil painting

viewing (28). However, these still require active participation,

limiting their practicality for passive, everyday use. A promising

alternative is leveraging interactions with electronic devices

commonly used in daily life. For example, prior studies have

demonstrated the potential of mobile phone gestures for detecting

Parkinson’s disease (45). This study adopts a similar approach,

using EM trajectories during video watching for EmD detection.

Furthermore, this method can be extended to a variety of devices,

including smartphones and smart TVs, enabling seamless,

unobtrusive monitoring. By integrating disease detection into

routine interactions, this approach minimizes disruption to daily

life and enhances the feasibility of long-term monitoring.

4.4 Further improvements

Given that video content preferences significantly influence the

relevance of extracted features, future research could incorporate

content preference as an additional factor to enhance the

performance of the proposed method. Integrating this factor

into passive acquisition techniques may improve classification

accuracy and provide a more effective approach for monitoring

emotional states. For instance, in long-term monitoring, grouping

preference data for detection and prioritizing highly preferred

video content could yield more stable monitoring outcomes.

Additionally, directly incorporating preference scores as features in

machine learning models may enhance predictive performance by

allowing the model to assign different weights to features based on

user preferences, thereby improving overall accuracy.

Watching ball sports videos in a non-intrusive, non-

stimulating, and engaging manner can be seamlessly integrated

into daily life, enabling long-term passive monitoring of an

individual’s emotional state. Furthermore, this method could

incorporate with other established methods for more reliable

performance. For example, electroencephalography (EEG) offers

high temporal resolution by capturing the brain’s electrical activity

in EmD recognition (46); functional MRI (fMRI) provides high

spatial resolution by mapping functional brain activity (47). These

TABLE 6 E�ectiveness of three ensemble models and basic decision tree

in detecting emotional disorders for the table tennis video method.

Acc. Pre. Recall F1 AUC

Decision tree 0.92 0.80 0.69 0.74 0.94

Adaboost 0.88 0.90 0.88 0.86 0.92

Random Forest 0.80 0.90 0.82 0.80 0.84

Gradient

Boosting

Decision Tree

0.88 1.00 0.82 0.87 0.91

modalities could be integrated during the video watching to allow

for a more comprehensive representation of dynamic brain activity

by combining complementary temporal and spatial information.

This study primarily assessed the feasibility of the proposed

paradigm by evaluating accuracy as a key metric. The decision

tree model currently in use meets this criterion. However,

for broader applications in clinical or daily life settings, the

paradigm may encounter increased variability due to larger

and more diverse datasets. To enhance adaptability, future

implementations could incorporate more advanced models,

such as ensemble methods or deep learning approaches, to

achieve a more balanced recognition performance. To explore

this potential, we evaluated three ensemble models—Adaboost,

Random Forest, and Gradient Boosting Decision Tree–as

summarized in Table 6. The results indicate that all three models

achieved accuracy comparable to that of the basic decision

tree. Notably, the Adaboost model exhibited a more balanced

trade-off between precision and recall while maintaining high

overall accuracy, underscoring its effectiveness in improving

classification performance.

4.5 Limitations

While this study has produced promising results, several

limitations should be acknowledged. First, the sample size was

relatively small and predominantly focused on cases of depression

and anxiety. Although these are common forms of EmD,

other EmD types were not included, which limits the study’s

generalizability. Additionally, the small participant group may

not adequately represent broader populations. Nevertheless, the

proposed paradigm and feature extraction method demonstrated

effectiveness and consistency with previous findings. Given the

method’s practicality, it holds significant potential for large-scale

research and applications in the future. From a methodological

perspective, this study utilized only two types of ball game

videos, tennis and table tennis. The applicability of these findings

to other video genres remains uncertain and warrants further

investigation. Lastly, the use of VR glasses in the experiment

provided a controlled environment, reducing external distractions.

However, when applying this method to more commonly used

devices, such as smartphones or computers, users are likely to

encounter environmental interruptions. To ensure the method’s

robustness across various platforms, further optimization will

be necessary.
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