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A nomogram for predicting poor 
sleep quality in patients with 
systemic lupus erythematosus
Ling Ma †, Yan-Hong Li †, Xin Guo , Ying Wang , Yin-Lan Wu  and 
Chun-Yu Tan *

Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 
China

Objective: To construct a nomogram for poor sleep quality in patients with 
systemic lupus erythematosus (SLE).

Methods: Clinical data from 218 SLE patients who visited a tertiary hospital’s 
rheumatology and immunology department in Chengdu, Sichuan Province, 
China, between 2021 and 2022 were analyzed. LASSO analysis and multivariate 
logistic regression were used to identify independent risk factors, and a 
nomogram was used to integrate and model the various risk factors. The model 
was evaluated using receiver operating characteristic curves, calibration curves, 
and decision curve analysis (DCA). Internal validation was conducted using the 
bootstrap method, and the clinical impact curve (CIC) was used to assess the 
clinical effectiveness of the predictive model.

Results: In total, 104 patients (47.7%) had poor sleep quality, while 114 patients 
did not have poor sleep quality (52.3%). The nomogram for predicting poor sleep 
quality in patients had an area under the curve of 0.789, a sensitivity of 51.92%, 
and a specificity of 93.86%. The calibration curve closely approximated the ideal 
curve; DCA showed a threshold probability of 35%; the C-index was 0.789; and 
the CIC showed a threshold probability of 60%. These results indicate that the 
nomogram has good predictive accuracy and clinical utility.

Conclusion: We constructed and validated a nomogram for poor sleep quality 
in patients with SLE, providing a convenient and reliable tool for the clinical 
prediction of poor sleep quality in these patients. Further multicenter studies 
are warranted to validate these findings and further elucidate the underlying 
mechanisms of sleep disturbances in SLE.
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1 Introduction

Systemic lupus erythematosus (SLE) is a common autoimmune disease characterized by 
multiorgan involvement, relapses, and remissions (1). Previous studies have shown that the 
prevalence of SLE in China is 30–70 per 100,000 people (2). With the continuous improvement 
in the diagnosis and treatment of SLE, the 5-year survival rate of SLE patients worldwide has 
exceeded 90% (3). Thus, in addition to pharmaceutical treatment, the comprehensive 
management of patients throughout the disease trajectory and the improvement of their 
quality of life have become important focuses of patient care (4). In addition, research has 
shown that sleep quality is severely impaired in SLE patients (5, 6), and more effective 
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intervention requires an understanding of the occurrence and risk 
factors ofsleep disorders in patients with SLE. Currently, most studies 
of sleep disorders in patients with SLE focus on the risk factors for 
SLE-related sleep disorders (7, 8), with different studies focusing on 
different risk factors and populations. One study based on multiple 
patient self-reported outcome measures showed that even 62.9% of 
SLE patients reported poor sleep quality (9). SLE patients with 
comorbid poor sleep quality experience higher levels of fatigue, 
emotional distress, and stress, and their quality of life is also 
compromised (10, 11).

Poor sleep quality also leads to increased disease activity in SLE, 
promoting disease exacerbation (12, 13). Several studies have reported 
that more than 50% of patients with SLE experience sleep problems, 
which are related to disease activity, pain, fatigue, and depression (14). 
Therefore, early identification and intervention of sleep in SLE patients 
is a key focus in improving their quality of life.

Using machine learning methods to develop a clinical 
visualization tool for predicting the risk and patterns of poor sleep 
quality in SLE patients can help reduce the risk of developing poor 
sleep quality by addressing the underlying risk factors, and the 
prediction can be used to plan lifestyle or treatment decisions based 
on the risk of health conditions at specific periods (7). Therefore, 
defining an appropriate risk threshold to recommend interventions 
is a key challenge in translating risk prediction models into clinical 
practice. However, there is a lack of research on nomograms for 
predicting the risk of poor sleep quality in SLE patients 
internationally. Previous studies have shown that nomograms have 
good clinical application prospects (15–17), but there is currently 
no such tool for sleep quality assessment in SLE. Early identification 
and as a part of a comprehensive education on best evidence for 
patients may lead to better disease control and reduced healthcare 
utilization in treating SLE.

Therefore, this study included 218 SLE patients, analyzed their 
demographic and clinical characteristics, fatigue, depression, and 
other data, and used LASSO and to select independent risk factors and 
construct and validate a nomogram for poor sleep quality in patients 
with SLE. This model could provide a reference for clinical practice. 
This study aimed to evaluate sleep quality and construct a nomogram 
for poor sleep quality in patients with SLE with the goal of carrying 
out risk stratification, thereby ensuring that high-risk patients can 
receive the appropriate care. This results can provide evidence to 
design targeted and intervention for improving SLE patients’ 
sleep quality.

2 Methods

2.1 Study participants

This was a cross-sectional study that included SLE patients 
recruited from a tertiary hospital’s rheumatology and immunology 
department between 2021 and 2022. The study included valid clinical 
data from 218 patients. The collected data underwent preprocessing, 
and have complete inspection data, specifically we deleted indicators 
missing more than 10% of values, and then deleted patients with more 
than 10% of missing items. The inclusion criteria were as follows: (a) 
fulfillment of the 1997 American College of Rheumatology and/or the 
2012 Systemic Lupus International Collaborating Clinics classification 

criteria for SLE (8, 18); (b) age between 18 and 70 years, irrespective 
of gender; and (c) ability to understand the study and provide 
informed consent. The exclusion criteria were as follows: (a) presence 
of other rheumatic or autoimmune diseases [such as rheumatoid 
arthritis, Sjögren’s syndrome, ankylosing spondylitis, scleroderma, 
dermatomyositis, fibromyalgia (19)]; (b) comorbid significant organ 
failure or malignancy; (c) severe cognitive impairment, dementia, 
mental illness, or other neurodegenerative diseases; (d) suspected or 
confirmed pregnancy; (e) sleep-related disorders and current use of 
sleeping aids; (f) inability to complete the questionnaire independently 
or with assistance. The flowchart of patient selection is shown in 
Figure 1.

This study was approved by the Ethics Committee on Biomedical. 
Research at the West China Hospital of Sichuan University; and 
complied with the Declaration of Helsinki.

2.2 Data collection

2.2.1 Risk factor selection
See Table 1.

2.2.2 Outcome measures
The main outcome measure of this study was the presence of poor 

sleep quality. The Pittsburgh Sleep Quality Index (PSQI) was used for 
the assessment. The PSQI is a self-reported questionnaire developed 
by Dr. Buysse and colleagues from the Department of Psychiatry at 
the University of Pittsburgh in 1989 that is used to evaluate sleep 
quality and disturbances over a one-month interval. The questionnaire 

FIGURE 1

STROBE participant flow diagram. Flow diagram. The flowchart 
outlines the selection criteria and patient exclusions for the study on 
sleep quality in patients with systemic lupus erythematosus. This 
study that included SLE patients recruited from a tertiary hospitals 
rheumatology and immunology department between 2021 and 
2022. Four patients were excluded due to presence of other 
rheumatic or autoimmune diseases, two suspected or confirmed 
pregnancy patients, five patients sleep-related disorders and current 
use of sleeping aids, 221 patients met inclusion criteria, excluding 
three patients due to incomplete records, the study included valid 
clinical data from 218 patients.
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consists of 18 questions that can be  transformed into seven 
components and a global score. The seven components are subjective 
sleep quality, sleep latency, sleep duration, habitual sleep efficiency, 
sleep disturbances, use of sleep medication, and daytime dysfunction. 
The global score is the sum of the seven component scores. The total 
score ranges from 0 to 21, with higher scores indicating poorer sleep 
quality. Since its development, the PSQI has been widely used to 
measure sleep quality in different patient populations (20). In the 
present study, a score ≥ 7 was considered indicative of poor sleep 
quality, while a score < 7 was considered indicative of no poor sleep 
quality (21).

The normal range for RBC was 3.8–5.1 × 1012/L and the normal 
range for HGB was 115–150 g/L.

2.3 Statistical methods

2.3.1 Univariate analysis
Data analysis was performed using R software (version 4.2.1). 

Count data were described as n (%), and quantitative data were tested 
for normality using the Shapiro–Wilk test. Data that followed a 
normal or approximately normal distribution were presented as 
means with standard deviation (SD), while non-normally distributed 
quantitative data were described using medians (P25, P75). For 
comparisons between two groups, independent-sample t tests were 
used for normally distributed data, and Mann–Whitney U tests were 
used for non-normally distributed data. Count data were analyzed 
using chi-square tests.

2.3.2 Construction of a column chart
We used the least absolute shrinkage and selection operator 

(LASSO) to identify the predictors of poor sleep quality. LASSO (22) 
minimizes the sum of squares of the residuals between the absolute 
values of the regression coefficients and with less than one constant, it 
produces a regression coefficient that is strictly equal to 0. Then, 
we obtained an interpretable model, selected the independent variables 
that had the greatest impact on the dependent variables, and calculated 
the corresponding regression coefficients. Due to the excellent 
performance of this method in variable screening and model stability, 
many researchers in the medical field have used the LASSO method to 
build models for prediction (23). The variables selected by the LASSO 
regression analysis were used as the independent variables in a binary 
logistic regression analysis to fit a multivariate logistic regression model 
and determine the independent risk factors for poor sleep quality. The 
independent risk factors determined by the binary logistic regression 
analysis were used to construct a column chart prediction model for 
sleep disorder risk (24, 25). This model allowed for the intuitive 
calculation of the risk of poor sleep quality based on patient information.

2.3.3 Model validation
Internal validation was performed using Bootstrap resampling 

with 2000 iterations. Poor sleep quality was used as the dependent 
variable, and the total score from the column chart risk assessment 
model was used as the independent variable. Goodness-of-fit tests and 
likelihood ratio tests were performed, and the predictive accuracy was 
described using the area under the receiver operating characteristic 
(ROC) curve (AUC). An ROC curve was plotted, and odds ratios 

TABLE 1 Risk factor selection and measurement methods.

Variable Measurement 
tool

Description

Patient Information
Face-to-face 

questionnaire

Includes: gender, age, height, weight, body mass index, smoking history, alcohol consumption history, educational 

level, marital status, occupation, place of residence, family size, average monthly income, annual medical expenses 

for SLE, duration of disease, medical payment method

SLE Disease 

Characteristics

Medical records and 

patient complaints

Includes facial malar rash, headache, nausea/vomiting, arthralgia, diarrhea, fatigue, Raynaud’s phenomenon, 

vasculitis, cough, chest tightness/chest pain, fever, lower limb edema

SLE Disease Activity
SLEDAI-2000 and SLE-

DAS

SLEDAI-2000: 24 items covering 9 organ systems, disease activity score range (0–105, higher = more active 

disease) (55)

SLE-DAS: 17 items, includes all disease manifestations of the 24, items above, as well as additional items about 

hemolytic anemia and the involvement of the cardiovascular, pulmonary, and gastrointestinal systems,with higher 

scores indicating greater disease activity (56)

Anxiety and Depression
Hospital Anxiety and 

Depression Scale (HADS)

Fourteen items, divided into two subscales:

HADS-A (Anxiety): 0–7 = normal, 8–10 = mild, 11–14 = moderate, 15–21 = severe

HADS-D (Depression): Same scoring as HADS-A (57)

Fatigue Level
Fatigue Severity Scale 

(FSS)

Average score of 9 items, ranging from 1.0 (no fatigue) to 7.0 (maximum fatigue). A total score ≥36 points was 

used as the assessment criterion for fatigue (58, 59)

Red Blood Cell Count 

(RBC) and Hemoglobin 

Count (HGB)

Patients’ medical records Laboratory test results

Smoking History Self-reported Previous cigarette smoking and current smoking

Alcohol History Self-reported Drinking alcohol ≥1 time per week in the past year (60)

Immunosuppressants and 

Hormone Use
Medical records Recorded medication usage.
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(ORs) with 95% confidence intervals (CIs) were calculated to validate 
the reliability of the model (26). A significance level of p < 0.05 was 
used for all tests.

2.3.4 Sample size calculation
Sample size calculation was based on the logistic regression 

prediction model. It is generally recommended to have at least 10 
events per variable (EPV) to eliminate coefficient bias (27). Assuming 
that 10 outcome events were selected based on the LASSO regression 
results, a minimum of 10 × 10 = 100 cases were required. Considering 
that the main end point of this study was the poor sleep quality 
assessed by the PSQI score, and based on the previous research 
indicating a sleep disorder prevalence of 62.9% in SLE patients, at least 
100/0.629 ≈ 159 cases were needed. Additionally, considering the 
potential loss to follow-up, an additional 20% was added, resulting in 
a minimum requirement of 191 SLE patients to meet the sample size 
requirement for constructing the prediction model.

3 Results

3.1 General characteristics of the study 
population

In total, 218 SLE patients were included, namely 23 males and 195 
females. The mean age of the patients was 35.2 ± 11.4 years, and the 
mean disease duration was 71.84 ± 82.70 months. The occurrence rate 
of poor sleep quality in SLE was 47.7%. Comparative analysis between 
the group with and without poor sleep quality revealed statistically 
significant differences in age, gender distribution, disease duration, 
educational level, and history of alcohol consumption (p < 0.05; Table 2).

3.2 Disease characteristics of SLE patients

Comparative analysis between the group with and without poor 
sleep quality revealed statistically significant differences in anxiety and 
depression status, fatigue, RBC, and HGB levels (p < 0.05; Table 3).

3.3 LASSO regression analysis

Figure 2 shows the trajectories of variables that affect sleep based 
on the LASSO model, which gradually compresses the variable 
coefficients to 0 as λ changes, thereby achieving the purpose of variable 
selection. Figure 3 shows the relationship between log(λ) and mean 
squared error. The LASSO method was used for variable selection using 
10-fold cross-validation. The figure shows that 10 factors were further 
analyzed using multivariate logistic regression to construct the logistic 
model. The final selected variables were age, gender distribution, 
disease duration, education level, history of alcohol consumption, 
anxiety score, depression score, fatigue, RBC, and HGB (Figures 2, 3).

3.4 Binary logistic regression analysis

The variables selected by the LASSO model were used as the 
independent variables in a binary logistic regression model, and 

variable selection was performed using a forward LR method. Based 
on the results of the multivariate logistic regression analysis, gender 
distribution, high fatigue level, and high depression score were 
identified as the significant predictors of poor sleep quality (Table 4).

3.5 Nomogram model

Based on the results of the multivariate logistic regression analysis, 
a nomogram was constructed using the risk factors of gender, fatigue, 
and depression score. The left side of the model represents the 
individual scores corresponding to different values of each predictor 
variable. Each variable in the model is marked with a scale on the 
corresponding line segment, representing the range of values the 
variable can take and the length of the line segment reflects the 
contribution of that factor to the outcome event “Total Points” 
represents the total score obtained by adding up the single-item scores 
for each variable, and “Linear Predictor” represents the linear 
predicted value (Figure 4).

3.6 Model validation

3.6.1 ROC curve analysis
ROC curve analysis was performed to assess the predictive 

probability of the model for the presence or absence of poor sleep 
quality. The AUC was 0.789 (95% CI: 0.729–0.849), while sensitivity 
and specificity were 51.92 and 93.86%, respectively, indicating a good 
discriminatory ability of the nomogram (Figure 5).

3.6.2 Calibration curve analysis and calibration 
curve analysis

After 2000 rounds of internal validation using bootstrap 
resampling, the concordance index (C-index) of the nomogram was 
found to be 0.789, which was consistent with the AUC result from the 
ROC analysis. The calibration curve of the prediction model was a 
straight line with a slope close to 1, the decision curve analysis of the 
prediction model showed a threshold probability of 35%, indicating 
that it has good clinical application value (Figure 6).

3.6.3 Clinical impact curve analysis
Clinical impact curve (CIC) analysis demonstrated the clinical 

effectiveness of the prediction model. When the threshold probability 
exceeded 60% of the predicted score probability, the prediction model 
identified individuals at high risk of poor sleep quality, which matched 
well with the actual high-risk population for poor sleep quality, 
confirming the high clinical effectiveness of the prediction model 
(Figure 7).

4 Discussion

SLE is a common autoimmune disease that is often accompanied 
by poor sleep quality. Previous reports have shown that the occurrence 
rate of poor sleep quality in SLE ranges from 42% to over 81% (9, 28–
30), which is consistent with the findings of the present study (47.7%). 
Sleep is a basic human heed and is crucial for both physical and mental 
health. When sleep quality declines, it can worsen the patient’s disease 
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experience and have a negative impact on health and quality of life (31). 
Therefore, early identification of individuals with SLE and poor sleep 
quality and providing early intervention are particularly important. In 

the present study, a wide range of variables were considered to 
comprehensively understand the sleep situation and further explore the 
influencing factors of poor sleep quality in SLE patients.

TABLE 2 General characteristics of the study population.

Variable Category Poor sleep quality 
(n = 104)

No poor sleep 
quality (n = 114)

t/Z/χ2 p value

Age (years) 37.2 ± 12.0 33.4 ± 10.7 −2.320a 0.015

Gender
Male 5 (4.8%) 18 (15.8%) 6.950c 0.008

Female 99 (95.2%) 96 (84.2%)

Disease duration (months) 36(7,108) 51.5(10,120) −2.177b 0.031

BMI 21.71 ± 3.19 21.31 ± 2.94 −0.990a 0.331

Education

Primary school or below 8 (7.7%) 8 (7%) −2.80b 0.005

Middle school 27 (26%) 14 (12.3%)

High school or technical 

school
20 (19.2%) 16 (14%)

Junior college or above 49 (47.1%) 76 (66.7%)

Marital status
No spouse 34 (32.7%) 46 (40.4%) 1.373c 0.242

Married 70 (67.3%) 68 (59.6%)

Occupation

Employed 50 (48.1%) 61 (53.5%) 2.902c 0.407

Student 11 (10.6%) 16 (14%)

Farming or self-employed 12 (11.5%) 14 (12.3%)

Unemployed or retired 31 (29.8%) 23 (20.2%)

Smoking history
No 102 (98.1%) 106 (93.0%) 3.225c 0.105

Yes 2 (1.9%) 8 (7.0%)

History of alcohol 

consumption

No 99 (95.2%) 96 (84.2%) 6.950a 0.008

Yes 5 (4.8%) 18 (15.8%)

Place of residence
Urban 92 (88.5%) 98 (86%) 0.303c 0.583

Rural 12 (11.5%) 16 (14%)

Monthly family income 

(Yuan/month)

< 1,000 7 (6.7%) 8 (7%) −0.914c 0.361

1,000–1999 12 (11.5%) 6 (5.3%)

4,000–5,999 25 (24%) 32 (28.1%)

6,000–7,999 8 (7.7%) 7 (6.1%)

8,000–9,999 9 (8.7%) 7 (6.1%)

10,000–14,999 12 (11.5%) 10 (8.8%)

15,000–19,999 3 (2.9%) 7 (6.1%)

≥ 20,000 3 (2.9%) 8 (7%)

SLE annual medical 

expenses (Yuan/year)

< 1,000 5 (4.8%) 12 (10.5%) −1.64b 0.101

1,000–1999 4 (3.8%) 6 (5.3%)

2000–3,999 10 (9.6%) 12 (10.5%)

4,000–5,999 6 (5.8%) 4 (3.5%)

6,000–7,999 4 (3.8%) 6 (5.3%)

8,000–9,999 4 (3.8%) 5 (4.4%)

10,000–14,999 17 (16.3%) 24 (21.1%)

15,000–19,999 12 (11.5%) 7 (6.1%)

≥ 20,000 42 (40.4%) 38 (33.3%)

aStands for the use of independent-sample t tests.
bStands for the use of Mann–Whitney U tests.
cStands for the use of the chi-square test.
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Previous studies have shown that depression symptoms (32, 33) 
and negative emotions (34) correlate with the severity of poor sleep 
quality. Many researchers have suggested that anxiety (35), depression 
(36), and fatigue (37, 38) are factors influencing sleep quality. It has 
also been reported that disease activity and depression are 
confounding factors for poor sleep quality in SLE patients (14). The 
relationship between disease activity and depression has been found 
to strongly influence depression symptoms (39), suggesting that 
disease activity may act on depression, and the accumulated depressive 
mood may affect sleep quality.

In addition to affecting sleep quality, depression itself can 
exacerbate fatigue, and thus, affect sleep. Attree et al. (40) pointed out 
that although the pathological and physiological mechanisms of 
fatigue are still unclear, immune system abnormalities are clearly 

present. Groven et al. (41) found that patients with fatigue symptoms 
had higher tumor necrosis factor-alpha (TNF-α) plasma levels 
compared with healthy controls, and also that these daytime increases 

TABLE 3 Disease characteristics of the study population.

Disease characteristic Characteristic 
category

Poor sleep 
quality (n = 104)

No poor sleep 
quality (n = 114)

t/Z/χ2 p value

PSQIscore

Anxiety score

No anxiety 84 (80.8%) 108 (94.7%) −3.207c 0.001

Possible anxiety 13 (12.5%) 5 (4.4%)

Moderate to severe anxiety 7 (6.7%) 1 (0.9%)

Depression score

No depression 83 (79.8%) 108 (94.7%) −3.357c 0.001

Possible depression 15 (14.4%) 5 (4.4%)

Moderate to severe depression 6 (5.8%) 1 (0.9%)

Fatigue No fatigue 55 (52.9%) 94 (82.5%) 21.984c <0.001

Fatigue 49 (47.1%) 20 (17.5%)

RBC Decreased 21 (20.2%) 6 (5.3%) −2.268c 0.023

Normal 78 (75%) 107 (93.9%)

Increased 5 (4.8%) 1 (0.9%)

HGB Decreased 18 (17.3%) 6 (5.3%) −2.570c 0.010

Normal 85 (81.7%) 108 (94.7%)

Increased 1 (1%) 0 (0%)

aStands for the use of independent-sample t tests.
bStands for the use of Mann–Whitney U tests.
cStands for the use of the chi-square test.

FIGURE 2

Trajectories of variables affecting sleep under LASSO regression. This 
figure shows the trajectories of variables that affect sleep based on 
the LASSO model, which gradually compresses the variable 
coefficients to 0 as λ changes, thereby achieving the purpose of 
variable selection.

FIGURE 3

Coefficient selection of indicators affecting sleep under LASSO 
regression. This figure shows the relationship between log(λ) and 
mean squared error. The LASSO method was used for variable 
selection using 10-fold cross-validation. The figure shows that ten 
factors were further analyzed using multivariate logistic regression to 
construct the logistic model.

TABLE 4 Binary logistic regression analysis.

Variable Standardized 
coefficients (β)

p OR 95%CI

Gender 1.549 0.010 4.706
1.449–

15.290

Fatigue 1.286 0.000 3.617 1.854–7.057

Depression 

score
0.188 0.001 1.207 1.078–1.352
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in inflammatory cytokines may explain the increased fatigue 
experienced during the day (13). Therefore, there is an apparent 
relationship between fatigue and poor sleep quality. Long-term sleep 
deprivation or poor sleep quality can increase fatigue and affect daily 
life and work efficiency. Fatigue can also disrupt sleep. The interaction 
between poor sleep quality and fatigue can form a cycle that requires 
intervention and adjustment to reduce potential negative impacts.

Researchers have suggested that anxiety (35) and depression (36) can 
influence sleep quality. This may be related to the decreased melatonin 
levels in patients with depression, as melatonin has a sedative effect and 
can help with falling asleep. More research should be  conducted to 
provide further evidence for sleep management in patients with SLE.

Based on studies on clinical populations, 36–91% of patients 
report insomnia either while drinking or within several weeks of 
stopping (42). In a study of alcohol consumption in SLE, drinkers were 
more likely to feel psychologically stressed than non-drinkers (43).

A review provides a qualitative assessment of all known 
scientific studies on the effect of alcohol ingestion on nocturnal 
sleep in healthy volunteers. At all dosages, alcohol causes a 
reduction in sleep onset latency, a more consolidated first half of 
sleep, and an increase in sleep disruption in the second half of sleep 
(44–47). Disturbances in sleep and circadian rhythms may 
be important risk factors for the initiation of alcohol use and the 

FIGURE 4

Nomogram for the risk of poor sleep quality in SLE patients.

FIGURE 5

Receiver operating characteristic curve analysis of poor sleep quality 
and predictive probability. Receiver operating characteristic curve 
analysis of poor sleep quality and predictive probability. ROC curve 
analysis was performed to assess the predictive probability of the 
model for the presence or absence of poor sleep quality. The AUC 
was 0.789 (95% CI: 0.729–0.849), while sensitivity and specificity 
were 51.92% and 93.86%, respectively, indicating a good 
discriminatory ability of the nomogram.

FIGURE 6

Calibration curve of the prediction model and decision curve analysis 
of the prediction model. Calibration curve of the prediction model 
and decision curve analysis of the prediction model. (A) The 
calibration curve of the prediction model was a straight line with a 
slope close to 1. (B) The decision curve analysis of the prediction 
model showed a threshold probability of 35%, indicating that it has 
good clinical application value.
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escalation of alcohol problems (48), which is consistent with 
this study.

The nomogram transforms complex regression equations into 
a simple and visual graphical tool, which quantifies the risk of 
clinical diseases in individuals by integrating various risk factors 
(49). It is an implementable tool for risk prediction and patient 
management. This study included indicators specific to the 
population characteristics, as well as SLE symptom indicators, to 
preliminarily screen factors influencing the sleep quality of SLE 
patients using LASSO regression analysis, and multicollinearity 
was assessed using VIF (50). Finally, we constructed a nomogram 
with good predictive performance. The concordance index 
(C-index) of the nomogram was found to be 0.789, with the value 
of the C-index ranging from 0.5 to 1.0, where 0.5 indicates 
random chance and 1.0 indicates the model’s perfect ability to 
correctly predict the outcome (51). This was consistent with the 
AUC result from the ROC analysis, indicating that the nomogram 
had excellent predictive ability. The calibration curve of the 
prediction model was a straight line with a slope close to 1, 
indicating there was good consistency between the predicted risk 
of poor sleep quality in SLE patients and the actual risk. Decision 
curve analysis of the prediction model showed a threshold 
probability of 35%. The net benefit is useful for determining 
whether basing clinical decisions on a model would do more 
good than harm (52), indicating the high clinical utility of the 
model. The CIC analysis demonstrated the clinical effectiveness 
of this prediction model, This nomogram has good discriminatory 
ability, so it can be used when the physician has a high suspicion 
that the patient may have or develop sleep disturbance based on 
the clinical presentation or activity assessment of the patient; 
however, it is not recommended for screening of sleep quality in 
a wide range of patients with SLE. However, it is worth noting 
that the constructed nomogram for early screening of poor sleep 
quality in SLE patients provides a convenient and practical model 
with strong clinical applicability and good health, economic, and 
social benefits.

Although anemia may affect sleep, abnormalities in RBC and 
HGB are also a manifestation of SLE and reflect the changes in quality 
of life that the disease may bring to patients, so we did not consider 
it a confounding factor in the analysis. This study found the effect of 
sex differences in terms of sleep in patients with SLE. Women were 
found to be at a higher risk of sleep disorders with a risk ratio of 1.41 
(95% confidence interval: 1.28–1.55) for women versus men. The risk 
of women experiencing insomnia was found to be  significantly 
higher than that of men in large and high-quality studies, confirming 
that women are predisposed to insomnia (53, 54).

In conclusion, age, gender, disease duration, history of alcohol 
consumption, education level, anxiety score, depression score, 
fatigue, RBC, and HGB are all associated with poor sleep quality 
in individuals with SLE, while female sex, high fatigue, and high 
depression scores are independent risk factors for poor sleep 
quality in SLE. The nomogram constructed based on the results 
of both univariate and multivariate logistic regression analyses 
shows good predictive performance and could be  of clinical 
significance for the prevention and intervention of poor sleep 
quality in high-risk SLE patients.

4.1 Limitations

There were some limitations to the study. First, as the study 
design was cross-sectional, we could not make causal inferences. 
Second, external validation of the prediction model was not 
performed, and only internal validation was conducted. This 
study was conducted in a single center, so there may be  data 
biases. Although nomograms are widely used clinically, they are 
rarely evaluated prospectively to determine whether their use 
improves patient outcomes. Subsequent research should be carried 
out in a prospective study. In future research, incorporating 
objective tools such as actigraphy or polysomnography could 
provide a comprehensive assessment of sleep disturbances in SLE 
patients. In addition, further research is needed to understand 

FIGURE 7

Clinical impact curve of the prediction model. Clinical impact curve of the prediction model. This figure depicts the clinical effectiveness of the 
predictive model. When the threshold probability exceeds 60% of the predicted score probability, the model can identify high-risk individuals.
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how sleep can be improved to foster its regulation of inflammation 
and immunosupportive functions.

5 Conclusion

In summary, the model demonstrated favorable accuracy, 
calibration, and practicability, the clinical value of the nomogram lies 
in transforming complex sleep into an actionable predictive tool, that 
is especially suitable for early screening and stratified management in 
preventive scenarios. The nomogram can be iteratively updated by 
regularly incorporating new data into it. Future directions for research 
include the development of dynamic models, exploration of causal 
mechanisms, and achievement of closed-loop management from 
symptom assessment to precise intervention.
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