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The impact of impulse control 
disorders on cognitive decline in 
de novo Parkinson’s disease: a 
study based on structural MRI
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Background: Impulse control disorders (ICDs) are common neuropsychiatric 
symptoms (NPS), which are prevalent among patients with Parkinson’s disease 
(PD). Current research has not clarified the impact of ICDs on cognitive function 
nor provided sufficient objective evidence. This study aims to explore the effects 
of ICDs on cognitive functions in PD patients, and further investigate associated 
cerebral structural changes.

Methods: Two hundred PD patients with normal cognition (PDNC) and 69 
healthy controls were included from the Parkinson’s Progression Markers 
Initiative (PPMI), among these PDNC, 81 patients with “pure” ICDs (p-ICDs), 
69 ICDs combined with other NPS (c-ICDs), and 50 patients without NPS. 
The cognitive status of each PD patient was obtained every year in four-year 
follow-up. The difference in conversion rates was obtained by chi-square test. 
Survival analysis was used to explore the conversion time difference among 
these groups. Further analysis was conducted on the potential structural 
difference. Finally, the correlation between significant brain structural changes 
and neuropsychological assessments were evaluated.

Results: The survival analysis suggested that the conversion time of p-ICDs from 
normal cognition to MCI was significantly delayed compared to NPS-negative, 
with no significant difference relative to the c-ICDs. There is no significant 
difference in conversion rates among them. Morphological analysis revealed 
that compared to the NPS-negative group, the p-ICDs and c-ICDs groups 
exhibited thickness changes in certain regions (Bonferroni-corrected, p < 0.05).

Conclusion: Our findings suggest that ICDs might exert a protective effect 
against cognitive decline, potentially delay the occurrence of MCI in PDNC, 
which could be associated with alterations in cortical thickness.
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1 Introduction

Cognitive deficits are commonly observed in Parkinson’s disease (PD) (1). Approximately 
30–40% of individuals may exhibit mild cognitive impairment (MCI) early in the disease 
course (2, 3), which might emerge before or at the time of PD diagnosed. Previous studies have 
shown that MCI is a risk factor for Parkinson’s disease dementia (PDD) and an established 
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stage of the condition (4, 5). Compared to PD patients with normal 
cognition (PDNC), PDMCI have a higher risk of developing to PDD 
(6, 7). Almost 60–80% of PDMCI eventually develop to PDD (8), 
which would significantly impact their quality of life and tend to 
deteriorate as the disease progress (9).

Besides cognitive impairment, the neuropsychiatric symptoms 
(NPS), such as depression, anxiety, apathy, psychosis and impulse 
control disorders (ICDs), are also common non-motor symptoms in PD 
patients (10). These clinical signs and symptoms may present either 
independently or simultaneously (11). Among these NPS, ICDs, which 
include compulsive, repetitive, and excessive behaviors such as gambling, 
sexual activity, shopping, and eating (12), have a relatively high incidence 
and are often accompanied by other NPS (13–15). For decades, the 
relationship between NPS and cognitive impairment in Parkinson’s 
disease has sparked considerable interest among researchers. Some 
studies found that NPS, such as depression and anxiety, apathy, are 
associated with cognitive impairment in Parkinson’s disease and serve 
as predictors for cognitive decline (16–20). While, other researchers 
indicated that PD with the single and coexistence of NPS exhibit 
relatively lower cognitive decline within a certain period (21–23). Due 
to the inconsistencies of these findings and the inherent limitations of 
neuropsychological assessments, this issue still remains controversial.

Structural magnetic resonance imaging provides an objective and 
non-invasive method to accurately measure changes in brain 
structure, providing biomarkers for monitoring cognitive decline, an 
advantage over conventional clinical assessment (24). To date, there 
have been few morphometric analyses on the impact of ICDs on 
cognitive function in PD. Biundo et al. found that cognitive function 
was relatively preserved in PD with ICD, but voxel-based 
morphometry analysis revealed no significant differences between PD 
with and without ICDs (25). Therefore, the impact of ICDs combined 
with other NPS on cognitive changes in PD and the relevant imaging 
evidence needs to be further explored.

In this study, we aim to investigate that (1) whether single ICDs 
and ICDs combined with other NPS have an impact on the progression 
of cognitive impairment; (2) The structural differences between single 
ICDs and ICDs combined with other NPS; (3) the correlation between 
cortical changes and cognitive assessments.

2 Materials and methods

2.1 Participants

The data were acquired from PPMI1 (26). The PPMI study 
protocols were approved by local ethics committees, which involved 
all 33 clinical research institutions. Written informed consent was 
obtained prior to their inclusion in the study. Methods in this study 
were in accordance with relevant guidelines and regulations. The 
inclusion criteria of PD patients were as follows: (I) the patients must 
have at least 2 of the following: resting tremor, bradykinesia, rigidity, 
and either asymmetric resting tremor or asymmetric bradykinesia; 
(II) At baseline, the patients remained untreated; during the 
follow-up period, they were required to strictly adhere to the 

1 http://www.ppmi-info.org

prescribed dosage and medication protocols; (III) the patients have 
T1-weighted images without distortion or head motion artifacts. The 
exclusion criteria were as follows: (I) Cognitive decline caused by 
other diseases (such as brain tumors, cerebral hemorrhages, etc.); (II) 
the patient has taken PD medication recently; (III) MRI images are 
missing or of poor quality; (IV) The subjects were diagnosed 
with PDD.

The cognitive assessments were evaluated at baseline and with 
12 months interval in four-year follow-up. Based on the cognitive 
assessments, the cognitive status of all participants were obtained in 
four-year follow-up. Patients were classified as PDMCI if they met one 
of the following criteria: (I) cognitive impairment evidenced by the 
Montreal Cognitive Assessment (MoCA) (27, 28), MOCA<26 as a 
cut-off, or (II) scores below 1.5 standard deviations from the age/
education normative mean on at least two neuropsychological tests, 
including the Hopkins Verbal Learning Test (HVLT), Judgment of 
Line Orientation (JLO), Letter Number Sequencing (LNS), Semantic 
Fluency Test (SFT), and Symbol Digit Modality Test (SDMT) (29).

Neuropsychiatric symptoms were assessed at baseline, Depression 
was evaluated with the 15-item Geriatric Depression Scale (GDS-15), 
and a scores ≥5 indicated clinically significant depression (30). 
Anxiety was evaluated with the State–Trait Anxiety Inventory (STAI), 
and a score ≥40 on any subscale was considered as clinically significant 
anxiety (31). ICDs and related behaviors were assessed with the short 
form of the Questionnaire for ICDs in PD (32). Psychosis and apathy 
were separately assessed through the MDS-Psychiatric Rating Scale 
17, part I, focusing on the hallucination/psychosis and apathy items 
(33). The presence of any level 1 or higher symptoms of psychosis or 
apathy was considered indicative of these conditions.

Following a series of screenings, 200 PD patients with normal 
cognition (PDNC) were diagnosed with ICDs. Taking into account the 
mediating effects of other neuropsychiatric symptoms, among these 
PDNC, 81 participants which had ICDs only were diagnosed as “pure” 
ICDs (p-ICDs), while 69 PD-ICDs with other NPS such as depression, 
anxiety, psychosis, and apathy were diagnosed as PD-ICDs combined 
other NPS (c-ICDs). Fifty PD patients without NPS were classified as 
NPS-negative. The study also included 69 healthy controls (HC).

2.2 Image acquisition

The magnetic resonance imaging parameters were standardized 
across all scanners with a slice thickness of 1 mm and a matrix size of 
256 × 256. For GE MEDICAL SYSTEMS scanners, the Signa HDxt 
model used a field of view (FOV) of 250 mm, echo time (TE) of 3.6 ms, 
inversion time (TI) of 450.0 ms, repetition time (TR) of 9.1 ms, and a flip 
angle of 13.0°; the SIGNA EXCITE model featured a FOV of 230 mm, 
TE of 4.0 ms, TI of 0.0 ms (no inversion recovery), TR of 8.3 ms, and a 
flip angle of 15.0°; while the DISCOVERY MR750 employed a FOV of 
260 mm, TE of 4.2 ms, TI of 450.0 ms, TR of 8.2 ms, and a flip angle of 
13.0°. Siemens scanners included the Espree (FOV = 250 mm, 
TE = 3.2 ms, TI = 1,100.0 ms, TR = 1,970.0 ms, flip angle = 15.0°), Verio 
(FOV = 240 mm, TE = 3.0 ms, TI = 900.0 ms, TR = 2,300.0 ms, flip 
angle = 9.0°), and TrioTim (FOV = 250 mm, TE = 3.0 ms, TI = 900.0 ms, 
TR = 2,300.0 ms, flip angle = 9.0°). Philips Medical Systems scanners 
comprised the Achieva (FOV = 220 mm, TE = 3.2 ms, TI = 0.0 ms, 
TR = 7.0 ms, flip angle = 8.0°) and Intera (FOV = 250 mm, TE = 4.0 ms, 
TI = 0.0 ms, TR = 8.5 ms, flip angle = 8.0°), with TI = 0.0 ms indicating 
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no inversion recovery (Table 1). And the number of participants scanned 
across eight different manufacturers are provided as follows (Table 2).

2.3 Image processing

Cortical thickness was assessed by FreeSurfer,2 which computed the 
average distance between the gray/white matter boundary and the pial 
surface at each vertex on the cortical surface. Employing well-established 
FreeSurfer processing pipeline (34), a robust, unbiased subject-specific 
template was generated through inverse consistent registration across all 
available MRI scans for each participant (35, 36). Several processing 
steps, such as skull stripping, Talairach transformation, atlas registration, 
and the creation of spherical surface maps and parcellations, were 
executed based on the subject-specific templates. The cerebral cortex was 
parcellated into 68 distinct anatomical regions, within which the average 
thickness was determined. Prior to further analysis, each individual 
brain map underwent visual inspection to ensure proper registration.

2.4 Statistical analysis

Statistical analysis was performed using SPSS software 27.0. For 
quantitative data that followed a normal distribution, inter-group 
comparisons were conducted using one-way ANOVA. Non-parametric 
tests were conducted using the Kruskal-Wallis test. For multiple 
comparisons, the Bonferroni correction was applied to adjust the 
probability of Type I errors. Categorical data were analyzed using the 
Chi-square test, with a significance level of α = 0.05. Subsequently, 
with progression to MCI as the status variable and follow-up time as 
the time variable, differences in conversion rates among the p-ICDs, 
c-ICDs, NPS-negative and HC were investigated using the Kaplan–
Meier survival analysis. The power analysis was performed through 
univariate ANOVA methodology to systematically validate the 
reliability of cognitive function assessments. Differences in cortical 
thickness among groups were further compared using one-way 
ANOVA then. Based on this, Pearson analysis was used to explore the 
correlation between cortical thickness and neuropsychological tests, 
with a significance level of α = 0.05.

2 V6.0.0, http://surfer.nmr.mgh.harvard.edu/.

3 Results

3.1 Demographics and cognitive analysis

At baseline, no significant differences were observed in age, sex, 
years of education, and H&Y stages among the p-ICDs group, c-ICDs 
group, NPS-negative group, and the control group (p > 0.05).

The HVLT, JLO, LNS, SFT and SDMT showed no significant 
differences at baseline across the p-ICDs group, c-ICDs group, 
NPS-negative group, and the control group (p > 0.05) (Table 3).

3.2 Survival analysis and conversion rate 
analysis

Among 81 p-ICDs, 69 c-ICDs, and 50 NPS-negative, the 
conversion rates to MCI were 20, 28, and 38%, respectively. And there 
was no significant difference in the conversion rates among these 
groups (p = 0.073) (Supplementary Table S1).

The Kaplan–Meier analysis revealed that the time in the p-ICDs 
group to progress from normal cognition to MCI was significantly 
longer than that of the NPS-negative group. (p = 0.011) (Figure 1A). 
There were no significant difference in conversion rates between the 
c-ICDs group and NPS-negative group (p = 0.152) (Figure  1B), 
p-ICDs group and c-ICDs group (p = 0.250) (Figure 1C).

3.3 Analysis of differential brain regions

Compared to the HC, both p-ICDs group and c-ICDs group 
exhibited thinning in the bilateral caudal cingulate cortex (cACC), 
bilateral frontal pole and bilateral isthmus cingulate cortex (ICC). 
Similarly, both c-ICDs group and NPS-negative group exhibited 
thinning in the right rostral middle frontal gyrus (rMFG) in contrast 
to the HC. Additionally, the p-ICDs group showed thinning in the 
right parahippocampal gyrus (PHG) and right rostral anterior 
cingulate cortex (rACC) in comparison to HC (Bonferroni-corrected, 
p < 0.05, Table 4).

Compared to the NPS-negative group, both the p-ICDs group and 
the c-ICDs group showed significant thinning in the left ICC, and the 
p-ICDs group exhibited thinning in the right PHG (Bonferroni-
corrected, p < 0.05, Figure 2). The p-ICDs group exhibited thickening 
in the left ICC compared to the c-ICDs group (Bonferroni-corrected, 
p < 0.05, Table 4; Figure 2).

TABLE 1 MRI image acquisition protocols of this study.

Manufacturer Slice thickness Matrix size Fov TE TI TR Flip angle

GE MEDICAL SYSTEMS, Signa HDxt 1 mm 256 × 256 250 mm 3.6 ms 450.0 ms 9.1 ms 13.0 degree

GE MEDICAL SYSTEMS, SIGNA EXCITE 1 mm 256 × 256 230 mm 4.0 ms 0.0 ms 8.3 ms 15.0 degree

GE MEDICAL SYSTEMS, DISCOVERY MR750 1 mm 256 × 256 260 mm 4.2 ms 450.0 ms 8.2 ms 13.0 degree

SIEMENS, Espree 1 mm 256 × 256 250 mm 3.2 ms 1,100.0 ms 1,970.0 ms 15.0 degree

SIEMENS, Verio 1 mm 256 × 256 240 mm 3.0 ms 900.0 ms 2,300.0 ms 9.0 degree

SIEMENS, TrioTim 1 mm 256 × 256 250 mm 3.0 ms 900.0 ms 2,300.0 ms 9.0 degree

Philips Medical Systems, Achieva 1 mm 256 × 256 220 mm 3.2 ms 0.0 ms 7.0 ms 8.0 degree

Philips Medical Systems, Intera 1 mm 256 × 256 250 mm 4.0 ms 0.0 ms 8.5 ms 8.0 degree
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TABLE 3 Cognitive data and basic characteristics of Parkinson’s disease patients with p-ICDs, c-ICDs, NPS-negative and healthy control participants.

Clinical data p-ICDs (n = 81) c-ICDs (n = 69) NPS-negative (n = 50) HC (n = 69) p value

Age (year) 61.67 ± 9.56 61.88 ± 9.65 63.13 ± 10.32 61.13 ± 11.82 0.758a

Sex (female/male) 29/52 30/39 19/31 26/43 0.803b

Education duration 15.97 ± 2.92 16.30 ± 3.36 16.20 ± 3.28 16.20 ± 2.8 0.907a

H&Y 1.55 ± 0.56 1.72 ± 0.54 1.68 ± 066 0.769d

UPDRS-III 20.08 ± 10.73 22.31 ± 9.35 23.51 ± 9.56 0.933d

MoCA 27.80 ± 1.92 27.32 ± 1.81 27.96 ± 2.22 28.45 ± 1.17 0.088a

JLO 12.52 ± 2.52 11.84 ± 3.01 11.44 ± 2.43 12.74 ± 2.52 0.522a

LNS 53.00 ± 9.21 51.68 ± 10.26 52.04 ± 11.07 53.52 ± 9.88 0.820c

HVLT 49.80 ± 8.81 49.33 ± 9.92 49.60 ± 9.84 49.61 ± 9.72 0.829c

SDMT 46.28 ± 8.72 48.32 ± 8.60 46.28 ± 7.58 46.48 ± 9.75 0.720c

SFT 53.00 ± 9.21 51.68 ± 10.26 52.04 ± 11.07 53.52 ± 9.88 0.673c

Quantitative data are presented as mean ± standard deviation if normally distributed, or median ± interquartile range if not. p < 0.05 indicates statistical significance. a = Kruskal-Wallis test, 
b = Chi-square test, c = One-way ANOVA, d = Mann–Whitney U test.

The post hoc power analysis showed that the Cohen d (Eta 
squared) between the three groups (p-ICDs, c-ICDs, NPS negative) 
was 0.72, reaching a moderate effect (Supplementary Figure S2).

3.4 Correlation analysis

The correlation analysis was conducted between the significantly 
altered cortical regions and clinical neuropsychiatric tests 
(Supplementary Figure S1). The left cACC was negatively correlated 
with the Judgment of Line Orientation in the p-ICDs group 
(r = −0.220, p = 0.049). The right PHG showed a positive correlation 
with the Hopkins Verbal Learning Test in p-ICDs group (r = 0.376, 
p = 0.001) and HC group (r = 0.239, p = 0.048), but showed a negative 
correlation with the Hopkins Verbal Learning Test in NPS-negative 
group (r = −0.304, p = 0.034). The right PHG in HC group (r = 0.250, 
p = 0.038), and the left ICC (r = 0.262, p = 0.030), the left paORB 
(r = 0.398, p = 0.001) and left frontal pole (r = 0.291, p = 0.015) in 
c-ICDs group showed a positive correlation with Letter Number 
Sequencing. The right frontal pole was negatively correlated with the 
MOCA (r = −0.250, p = 0.039) and Semantic Fluency Test 
(r = −0.283, p = 0.019) in c-ICDs group. There was no significant 
correlation between other brain regions and neuropsychological 
assessments (p > 0.05). There was no significant correlation between 
other brain regions and neuropsychological assessments (p > 0.05).

4 Discussion

In this study, we investigate the impact of ICDs on PD patients 
from normal cognition to MCI. Notably, in the four-year follow up, 
we observed that patients with PD who exhibited ICDs had notably 
longer survival times compared to those who were NPS-negative, while 
the conversion rates not significantly differed. And the survival time 
and conversion rates were also not significantly differed between the 
p-ICDs group and c-ICDs group. In the brain structural analysis, the 
p-ICDs group showed increased cortical thickness in the left ICC 
relative to the c-ICDs group, and both the p-ICDs group, and the 
c-ICDs group showed decreased cortical thickness of left ICC than 
NPS-negative group. And the p-ICDs group exhibited thinning in the 
right PHG than the NPS-negative group. The correlation analysis 
revealed that the right PHG showed a positive correlation with the 
Hopkins Verbal Learning Test in p-ICDs and HC group, but showed a 
negative correlation with the Hopkins Verbal Learning Test in 
NPS-negative group.

The longer survival time of PD with ICDs from MCI was 
observed, which indicating a potential protection effect of ICDs. 
Similar phenomenon were reported previously, Thomas et al. found 
that ICDs were associated with an increased psychiatric burden at 
baseline, but they were also linked to a better cognitive prognosis, it is 
believed that PD patients with ICDs at baseline, the intake of a certain 
dose of dopamine agonists (DA) leads to drug-induced 

TABLE 2 The number of participants scanned across eight different manufacturers.

Manufacturer p-ICDs (n = 81) c-ICDs (n = 69) NPS-negative (n = 50) HC (n = 69)

GE MEDICAL SYSTEMS, Signa HDxt 12 9 8 10

GE MEDICAL SYSTEMS, SIGNA EXCITE 9 8 5 8

GE MEDICAL SYSTEMS, DISCOVERY MR750 9 7 6 8

SIEMENS, Espree 9 9 5 8

SIEMENS, Verio 7 6 5 7

SIEMENS, TrioTim 14 12 8 10

Philips Medical Systems, Achieva 9 7 5 8

Philips Medical Systems, Intera 12 11 8 10
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overstimulation, impairing the top-down inhibitory control of ICDs, 
which somewhat delays the decline in cognitive function (37). 
Similarly, Chiara et al. found that PD patients with ICDs exhibited 
relatively lower cognitive decline over time (22, 38), which was then 
attributed to the drug-induced overstimulation exerted relatively 
preservation on prefrontal cognitive functions. Such possibility should 
also take in to consideration currently. In this work, patients were only 
receiving therapy of dopamine to control PD symptom. Our findings 
might result from the different reaction of the brain of PD patients 

with ICDs on the dopamine therapy, and further investigation were 
warranted. And with the not significantly differed conversion rates 
between patients with or without ICDs in 4 years, we speculate that 
the incidence of MCI in PD patient was certainly fixed, and dopamine 
induced effects in PD patients with ICDs might delayed the 
occurrence of MCI.

In our study, patients with ICDs were divided into p-ICDs group, 
PD with only ICDs, and c-ICDs group, PD with ICDs and other 
NPS. Relative to healthy controls, all three groups (p-ICDs, c-ICDs, 

FIGURE 1

Survival analysis of Parkinson’s disease patients with p-ICDs and NPS-negative, c-ICDs and NPS-negative, p-ICDs and c-ICDs. (A) p-ICDs VS NPS-
negative, (B) c-ICDs VS NPS-negative, (C) p-ICDs VS c-ICDs.
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TABLE 4 Differences in cortical thickness among patients with p-ICDs, c-ICDs, NPS-negative and healthy control participants.

Brain area p-ICDs (n = 81) c-ICDs (n = 69) NPS-negative (n = 50) HC (n = 69) p value

Left cACC 2.37 ± 0.23 2.37 ± 0.28 2.38 ± 0.25 2.51 ± 0.31 0.002de

Left iCC 2.20 ± 0.11 2.16 ± 0.12 2.28 ± 0.17 2.33 ± 0.27 0.000abcde

Left paORB 2.52 ± 0.23 2.57 ± 0.21 2.58 ± 0.17 2.71 ± 0.29 0.003ef

Left frontal pole 2.64 ± 0.22 2.65 ± 0.23 2.66 ± 0.24 2.74 ± 0.25 0.018de

Right cACC 2.24 ± 0.20 2.25 ± 0.22 2.28 ± 0.21 2.37 ± 0.31 0.003de

Right iCC 2.23 ± 0.15 2.18 ± 0.16 2.27 ± 0.18 2.35 ± 0.29 0.000de

Right PHG 2.54 ± 0.20 2.61 ± 0.24 2.65 ± 0.26 2.70 ± 0.29 0.000bd

Right rACC 2.58 ± 0.23 2.61 ± 0.25 2.63 ± 0.28 2.71 ± 0.35 0.031d

Right rMFG 2.25 ± 0.16 2.26 ± 0.12 2.26 ± 0.13 2.38 ± 0.17 0.002ef

Right frontal pole 2.62 ± 0.22 2.63 ± 0.25 2.62 ± 0.27 2.51 ± 0.23 0.008de

a. p-ICDs VS c-ICDs b. p-ICDs VS NPS-negative c. c-NPS VS NPS-negative d. p-ICDs VS HC e. c-ICDs VS HC f. NPS-negative VS HC.
cACC, caudal anterior cingulate cortex; rACC, rostral anterior cingulate cortex; paORB, pars orbitalis; PHG, parahippocampal gyrus; iCC, isthmus cingulate cortex; rMFG, rostral middle 
frontal gyrus.

and NPS) exhibited shared cortical alterations in the cingulate cortex, 
parahippocampal gyrus (PHG), and frontal regions, which correlate 
with deficits in emotional regulation, cognitive control, memory, and 
executive function (39–41). These structural changes are consistent 
with previous reports on PD (42, 43). Besides changes associated with 
PD, cortical thinning at left ICC was observed in p-ICDs group and 
c-ICDs group in relation to NPS negative group. The ICC is closely 
related to emotional process and regulation, and important in 
cognitive control and executive function (41, 44). The cortical atrophy 
of ICC was also reported in neurodegenerative diseases and 
psychiatric disorders, such as PD, AD and schizophrenia (45–48). 
Prior investigations have demonstrated that PD patients with ICDs 
exhibit greater cortical thickness in the left ICC following 
pharmacological induction compared to non-ICD counterparts, 
which was then assumed to be associated with drug effects and reward 
mechanisms (49). In our study, PD subjects did not receive dopamine 
treatment at baseline, and the drug effects and reward mechanisms 
maybe not activate. Notably, in the decreased cortical thickness of ICC 
in relation to NPS-negative group, the c-ICDs group showed even 
thinner ICC than p-ICD group. Given on our analysis was conducted 
at the baseline, and the dopamine therapy after image acquisition. 
Such phenomenon might result from two possibilities, the 

confounding effects of other NPS and/or the differed reaction to 
dopamine therapy, and further research is needed to validate these 
hypotheses. Additionally, PD participants from the PPMI cohort 
received standardized drug therapy during the follow-up period. 
Previous study reported the magnitude of polytherapy and 
anticholinergic drugs burden does not appear to modulate PD-MCI 
risk (50). in other words, the cognitive impact of impulse control 
disorders (ICDs) in Parkinson’s disease appears independent of 
medication classes or dosage levels.

Besides, the p-ICDs group exhibited thinning in the right PHG at 
baseline. Although previous study have shown that the PHG of PD 
patients with ICDs is slightly thicker than that of patients without 
ICDs after dopamine treatment, no significant statistical difference 
was observed, They believe that the structural changes are secondary 
to neuroplastic adaptations related to non-physiological dopaminergic 
stimulation (49). Our subjects had not received dopamine therapy at 
baseline, the thinning of the PHG at baseline may be  due to the 
dopamine-induced reward mechanism not being activated. In 
addition, we found that the PHG in the c-ICDs group was slightly 
thinner than in PD patients without NPS, although this difference was 
not statistically significant, possibly due to the confounding effects of 
other NPS.

FIGURE 2

Differential cortical thickness map between group comparison. (A) p-ICDs VS NPS-negative, (B) c-ICDs VS NPS-negative, (C) p-ICDs VS c-ICDs. Blue 
represents areas of cortical thinning, while red represents areas of cortical thickening.
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Additionally, we observed a positive correlation between the cortical 
thickness of right PHG and HVLT in p-ICDs and HC group, suggesting 
a potential link between ICDs and memory function in PD patients. 
Recent study also reported that PD with ICDs and normal elderly 
exhibited poor performance in language learning and memory functions 
(51, 52), notably, we found that the PHG thinning is accompanied by 
memory improvement in NPS-negative group, which might be that the 
brain maintains certain cognitive functions through adaptation and 
compensation mechanisms (53).

This study has several limitations. First, the distribution of 
other neuropsychiatric symptoms in this study is uneven, for 
example, the number of NPS-negative group is too small, although 
our results are interpretable, a larger and more evenly distributed 
sample is needed to further investigate the mediating effects of 
each psychiatric symptom on cognitive function. Second, our 
imaging structural study is limited to the baseline, and the imaging 
modalities are relatively single. Further longitudinal design and 
multimodal imaging analysis are needed to confirm our results.

In conclusion, by survival analysis and cortical structural 
analysis, this study provides valuable imaging markers and 
supplementary information on the impact of ICDs on cognitive 
decline in PD patients. It suggests that ICDs may play a protective 
role in cognitive ability, potentially delaying the onset of MCI in 
PDNC patients and being accompanied by corresponding changes in 
cortical thickness.
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