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Objectives: Delays in diagnosing severe carotid artery stenosis (CAS) are 
prevalent, particularly in low-income regions with limited access to imaging 
examinations. CAS is a major contributor to the recurrence and poor prognosis 
of ischemic stroke (IS). This retrospective cohort study proposed a non-invasive 
dynamic prediction model to identify potential high-risk severe carotid artery 
stenosis in patients with ischemic stroke.

Methods: From July 2017 to March 2021, 739 patients with ischemic stroke 
were retrospectively recruited from the Department of Neurology at Liuzhou 
Traditional Chinese Medical Hospital. Risk factors for severe CAS were identified 
using the least absolute shrinkage and selection operator (LASSO) and 
multivariate logistic regression (MLR) methods. The model was constructed 
after evaluating multicollinearity. The model’s discrimination was assessed using 
the C-statistic and area under the curve (AUC). Its clinical utility was evaluated 
through the decision curve analysis (DCA) and the clinical impact curve (CIC). 
Calibration was examined using a calibration plot. To provide individualized 
predictions, a web-based tool was developed to estimate the risk of severe CAS.

Results: Among the patients, 488 of 739 (66.0%) were diagnosed with severe 
CAS. Six variables were incorporated into the final model: history of stroke, 
serum sodium, hypersensitive C-reactive protein (hsCRP), C-reactive protein 
(CRP), basophil percentage, and mean corpuscular hemoglobin concentration 
(MCHC). Multicollinearity was ruled out through correlation plots, variance 
inflation factor (VIF) values, and tolerance values. The model demonstrated 
good discrimination, with a C-statistic/AUC of 0.70  in the test set. The DCA 
and CIC indicated that clinical decisions based on the model could benefit IS 
patients. The calibration plot showed strong concordance between predicted 
and observed probabilities. The web-based prediction model exhibited robust 
performance in estimating the risk of severe CAS.

OPEN ACCESS

EDITED BY

Wencai Liu,  
Shanghai Jiao Tong University, China

REVIEWED BY

Chifumi Iseki,  
Tohoku University, Japan
Qianmei Jiang,  
Suzhou University, China
Qian Guo,  
First Affiliated Hospital of Zhengzhou 
University, China

*CORRESPONDENCE

Shengxian Peng  
 13258280319@163.com

†These authors have contributed equally to 
this work and share first authorship

RECEIVED 23 January 2025
ACCEPTED 05 March 2025
PUBLISHED 24 March 2025

CITATION

Huang J, Li Z, Liu X, Kuang L and 
Peng S (2025) Development and validation of 
a web-based dynamic nomogram to predict 
individualized risk of severe carotid artery 
stenosis based on digital subtract 
angiography.
Front. Neurol. 16:1565395.
doi: 10.3389/fneur.2025.1565395

COPYRIGHT

© 2025 Huang, Li, Liu, Kuang and Peng. This 
is an open-access article distributed under 
the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 24 March 2025
DOI 10.3389/fneur.2025.1565395

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2025.1565395&domain=pdf&date_stamp=2025-03-24
https://www.frontiersin.org/articles/10.3389/fneur.2025.1565395/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1565395/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1565395/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1565395/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1565395/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1565395/full
mailto:13258280319@163.com
https://doi.org/10.3389/fneur.2025.1565395
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2025.1565395


Huang et al. 10.3389/fneur.2025.1565395

Frontiers in Neurology 02 frontiersin.org

Conclusion: This study identified six key risk factors for severe CAS in IS patients. 
In addition, we  developed a web-based dynamic nomogram to predict the 
individual risk of severe CAS. This tool can potentially support tailored, risk-
based, and time-sensitive treatment strategies.
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Introduction

Ischemic stroke (IS) is a life-threatening condition and a major 
global public health concern. IS patients suffer from severe 
atherosclerotic stenosis, particularly carotid artery stenosis (CAS) (1). 
The poor prognosis of IS patients is often attributed to reduced 
cerebral blood flow caused by severe arterial stenosis. In addition, 
severe CAS is an independent risk factor for the early recurrence of IS, 
underscoring the importance of early diagnosis and prevention. 
Timely prediction and intervention for severe CAS can substantially 
improve IS outcomes (2). The severity of CAS also significantly 
influences treatment decisions and clinical outcomes. For instance, 
endovascular therapy is often recommended for patients with severe 
arterial stenosis or occlusion. Digital subtraction angiography (DSA) 
remains the gold standard for diagnosing CAS, but it is both invasive 
and costly (3). Currently, there are limited non-invasive tools 
specifically designed to assess severe CAS in IS patients who lack 
access to imaging examinations (4). Thus, developing a practical, 
non-invasive, and individualized prediction model for severe CAS in 
IS patients is imperative. Nomograms have been widely recognized for 
their accuracy in calculating the probability of clinical outcomes. The 
nomogram model accurately calculated the possibility of outcome (5, 
6). Compared to traditional predictive models, web-based dynamic 
nomograms for CAS prediction have gained attention due to their 
superior predictive performance and user-friendly interfaces.

In this study, we retrospectively analyzed 739 IS patients using a 
big data intelligence platform. We identified risk factors for severe CAS 
using the least absolute shrinkage and selection operator (LASSO) and 
multivariate logistic regression (MLR) methods. After evaluating the 
multicollinearity of prognostic factors, we developed and internally 
validated a non-invasive, individualized prediction model for severe 
CAS. Finally, the web-based dynamic nomogram was made publicly 
accessible online, providing dynamic diagnostic information to guide 
individualized treatment strategies for IS patients.

Methods

Patient population

Between July 2017 and March 2021, 1,177 ischemic stroke (IS) 
patients were retrospectively recruited from the Department of 
Neurology, Liuzhou Traditional Chinese Medical Hospital. All patients 
underwent digital subtraction angiography (DSA) for the evaluation 
of carotid artery stenosis (CAS), assessed by two neurologists using 
the North American Symptomatic Carotid Endarterectomy Trial 
(NASCET) method. Patients meeting any of the following criteria 
were excluded: (1) less than 18 years old; (2) patient with acute 
cardiogenic cerebral embolism or acute thrombotic cerebral infarction; 

(3) patients with vasculitis, moyamoya disease, abnormal coagulation, 
and tumor embolism (7); and (4) patient with more than 30% of 
personal data missing. Ultimately, 739 IS patients were included in the 
analysis. The patient selection flowchart is shown in Figure 1. This 
retrospective study was conducted using anonymized data and was 
approved by the Ethics Review Board of Liuzhou Traditional Chinese 
Medical Hospital, with a waiver for informed consent.

Data imputation and primary outcome

Missing data were imputed using the k-nearest neighbor (KNN) 
algorithm. Patients were randomly divided into a training set (n = 514) 
and a test set (n = 225) using a 7:3 ratio. The primary outcome was 
defined as severe CAS (stenosis ≥70%) based on the result of DSA.

Predictor variables

Clinical data were collected for each participant based on clinical 
expertise and prior studies on similar topics (8). Baseline characteristics, 
including demographic information, comorbidities, and laboratory test 
results, were recorded within 24 h of initial hospital admission.

Statistical analysis

All statistical analyses were performed using R software (version 
4.1.3) and RStudio (version 1.1.456). Baseline characteristics between 
groups were compared using the “CBCgrps” and “nortest” R packages. 
Predictive factors were selected using the LASSO method with the 
“glmnet” package. Multicollinearity among variables was assessed 
using the “corrplot” and “cra” packages. Model development and 
calibration were conducted using the “rms” and “regplot” packages. 
The clinical usefulness of the non-invasive prediction model was 
assessed through decision curve analysis (DCA) and clinical impact 
curve (CIC) plots generated using the “rmda” package. LASSO 
regression was used to reduce data dimensionality (9), while MLR was 
applied to identify independent risk factors for severe CAS. A 
web-based dynamic nomogram was constructed using the “DynNom” 
package and the custom function “DynNom_czx_lrm.” The 
non-invasive model was based on odds ratios (ORs) and p-values with 
95% confidence intervals (CIs) derived from the MLR analysis. The 
model’s discrimination was evaluated by calculating the area under 
the curve (AUC) and C-statistic. Calibration was assessed using 
calibration curves created with 1,000 bootstrap samples. The CIC and 
DCA curves were used to evaluate the clinical applicability of the 
model across varying threshold probabilities (Figure 1). Statistical 
significance was defined as a p-value of < 0.05 (two-sided).
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Results

Baseline characteristics

A total of 739 eligible subjects were included in the final cohort, 
of whom 488 (66.0%) were diagnosed with severe CAS. The cohort 
comprised 498 male participants (67.4%) and 241 female participants 
(32.6%). The baseline characteristics of the training and test sets are 
summarized in Table  1. No significant differences were observed 
between the two sets regarding baseline characteristics (all p > 0.05). 
The baseline characteristics of patients in the severe CAS and 
non-severe CAS groups are provided in Supplementary Table 1.

Selected predictor in the train set

To identify predictive factors for severe CAS in IS patients, the 
LASSO regularization method was applied to the data of 523 patients 
in the training set. This process yielded 11 potential predictors after 
shrinkage at the optimal lambda value (λ = 0.030205). Some regression 
coefficients were reduced to zero (Figures 2A,B), including stroke 
history, total protein (TP), serum sodium (Na), homocysteine (HCY), 
creatinine, high-density lipoprotein (HDL), cholesterol (CHO), 

high-sensitivity C-reactive protein (hsCRP), C-reactive protein (CRP), 
mean corpuscular hemoglobin concentration (MCHC), and basophil 
percentage (BASO_A). The predictors identified through LASSO 
analysis were further subjected to multivariate logistic regression 
(MLR) to confirm independent risk factors for severe CAS.

Variable multicollinear analysis

To ensure the reliability of the multivariate model, variable 
collinearity was assessed. Correlation coefficients between variables 
were analyzed (Supplementary Table 2), along with variance inflation 
factor (VIF) and tolerance values (Table 2). The results indicated no 
multicollinearity among variables, as all correlation coefficients were 
below 0.8, VIF values were under 5, and tolerance values exceeded 0.1.

Model development

Through MLR analysis, six variables—stroke history, serum 
sodium (Na), hsCRP, CRP, MCHC, and BASO_A—were identified as 
significant predictors of severe CAS (Table 3). These variables were 
incorporated into the final prediction model. A non-invasive 

FIGURE 1

(A) The flowchart of all patients’ selection. (B) The conceptual framework of this study, including data collection, model development, and evaluation. 
LASSO, least absolute shrinkage and selection operator; CAS, carotid artery stenosis.
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TABLE 1 Baseline characteristics of participants in different group.

Variables Total (n = 739) Test set (n = 225) Train set (n = 514) p

Age, Median (Q1, Q3) 65 (58, 70) 65 (57, 70) 66 (58, 71) 0.115

Sex, n (%) 0.509

  Female 241 (33) 69 (31) 172 (33)

  Male 498 (67) 156 (69) 342 (67)

Stroke, n (%) 0.571

  No 166 (22) 54 (24) 112 (22)

  Yes 573 (78) 171 (76) 402 (78)

Hypertension, n (%) 0.964

  No 211 (29) 65 (29) 146 (28)

  Yes 528 (71) 160 (71) 368 (72)

Diabetes, n (%) 0.988

  No 534 (72) 162 (72) 372 (72)

  Yes 205 (28) 63 (28) 142 (28)

Hyperuricemia, n (%) 0.235

  No 539 (73) 157 (70) 382 (74)

  Yes 200 (27) 68 (30) 132 (26)

Fg (g/L), Median (Q1, Q3) 3.33 (2.89, 3.95) 3.4 (2.9, 3.96) 3.29 (2.88, 3.93) 0.280

PT (s), Median (Q1, Q3) 12.9 (12.5, 13.5) 12.9 (12.5, 13.5) 12.9 (12.5, 13.4) 0.930

APTT (s), Median (Q1, Q3) 34.8 (30.6, 39) 34 (30.2, 39.1) 35.1 (30.72, 39) 0.167

TT (s), Median (Q1, Q3) 16.6 (15.9, 17.2) 16.5 (15.9, 17.2) 16.6 (15.9, 17.28) 0.856

INR, Median (Q1, Q3) 0.99 (0.94, 1.04) 0.98 (0.95, 1.05) 0.99 (0.94, 1.04) 0.753

HbAlc (%), Median (Q1, Q3) 6 (5.4, 6.8) 6 (5.3, 6.8) 6 (5.4, 6.8) 0.536

ALB (g/L), Median (Q1, Q3) 38.9 (36.55, 41) 39 (37, 41) 38.7 (36.4, 41) 0.584

TP (g/L), Median (Q1, Q3) 66.5 (62, 70.95) 66 (62.2, 70) 66.8 (62, 71) 0.256

DBIL (umol/L), Median (Q1, Q3) 3.5 (2.5, 4.6) 3.4 (2.4, 4.2) 3.6 (2.6, 4.6) 0.164

TBIL (umol/L), Median (Q1, Q3) 12.7 (9.9, 15.9) 12.6 (9.9, 16) 12.85 (9.83, 15.88) 0.987

ALT (U/L), Median (Q1, Q3) 18 (13, 25) 18 (13, 25) 18 (13, 25) 0.948

Na (mmol/L), Median (Q1, Q3) 141 (140, 143) 142 (140, 143) 141 (140, 143) 0.434

Cl (mmol/L), Median (Q1, Q3) 104 (102, 106) 104 (102, 106) 104 (102, 106) 0.581

RBP, Median (Q1, Q3) 41 (34, 49) 41 (35, 48) 41 (34, 49) 0.944

Mg (mmol/L), Median (Q1, Q3) 0.88 (0.81, 0.97) 0.87 (0.8, 0.96) 0.89 (0.81, 0.98) 0.133

PaCO2, Median (Q1, Q3) 26 (24.2, 28) 25.9 (24, 28) 26 (24.3, 28) 0.324

Ca (mmol/L), Median (Q1, Q3) 2.2 (2.13, 2.27) 2.2 (2.13, 2.26) 2.21 (2.13, 2.27) 0.566

K (mmol/L), Median (Q1, Q3) 3.84 (3.61, 4.09) 3.82 (3.58, 4.1) 3.84 (3.61, 4.08) 0.537

HCY, Median (Q1, Q3) 12.3 (10, 15.35) 12.3 (10, 15.6) 12.25 (10, 15.1) 0.523

P (mmol/L), Mean ± SD 1.08 ± 0.21 1.08 ± 0.22 1.09 ± 0.21 0.924

URCA (umol/L), Median (Q1, Q3) 360 (296, 421.5) 366 (302, 428) 356.5 (291, 420) 0.078

BUN (mmol/L), Median (Q1, Q3) 4.7 (3.8, 5.9) 4.66 (3.8, 5.83) 4.75 (3.89, 5.92) 0.755

CYC (mg/L), Median (Q1, Q3) 1.04 (0.88, 1.22) 1.04 (0.89, 1.22) 1.04 (0.88, 1.22) 0.630

β2MG (mg/L), Median (Q1, Q3) 2.05 (1.74, 2.47) 2.09 (1.75, 2.48) 2.03 (1.73, 2.47) 0.478

CREA (mmol/L), Median (Q1, Q3) 72.6 (61.9, 85.2) 74.6 (62.1, 88.8) 71.7 (61.4, 82.88) 0.115

Glucose (mmol/L), Median (Q1, Q3) 5.21 (4.69, 6.3) 5.21 (4.75, 6.13) 5.19 (4.68, 6.37) 0.849

PLT (10^9/L), Median (Q1, Q3) 241 (202, 290.5) 235 (197, 290) 24 2.5 (203.25, 290.75) 0.631

HDL (mmol/L), Median (Q1, Q3) 1.1 (0.94, 1.3) 1.09 (0.97, 1.3) 1.1 (0.93, 1.29) 0.871

(Continued)
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predictive model integrating these six variables was developed and 
visualized. Figure 3 illustrates a case where a patient with a history of 
stroke and specific biomarker values (BASO.A = 0.4, Na = 141 mmol/L, 
hsCRP = 4.3 mg/L, CRP = 6 mg/L, MCHC = 341 g/L) was assessed 
using a web-based dynamic nomogram tool. This tool allows clinicians 
to input patient-specific parameters and obtain individualized risk 
predictions based on their estimated effect sizes β(X − m). Each 
biomarker contributes to the total risk score, which is calculated by 
summing the individual point values from the nomogram. The red 
dots indicate the patient’s exact values, and the computed total score 
is approximately 1.09, corresponding to a predicted probability of 
77%, suggesting a high risk of the condition. The probability 
distribution curve (gray area) provides context within the dataset, 
placing this patient in the higher-risk category. This tool enhances 
clinical decision-making by enabling early risk assessment and 
supporting further diagnostic evaluations and personalized 
interventions. Weighted scores were assigned to each variable in the 
model. The predicted probability of severe CAS ranged from 0.2 to 0.9.

Validation of model

The clinical utility of the predictive model was assessed using 
decision curve analysis (DCA) and clinical impact curves (CICs). 
DCA demonstrated net benefit and threshold probabilities for both 
the training and test sets (Figure 4A). CICs further supported the 
model’s clinical usefulness (Figures 4B,C). Calibration plots indicated 

that the model achieved a good fit for predicting severe CAS in both 
the training and test sets (Figures 5A,B). The discrimination ability of 
the model was evaluated using receiver operating characteristic 
(ROC) curves (Figure 6). Two models had above 0.7 AUC values. The 
values of C-statistic/AUC of the LR model and nomogram model in 
the test set were 0.73 and 0.70, respectively.

Application of the web-based dynamic 
model

The web-based dynamic model was applied to predict outcomes 
for individual cases. Nine individual cases were used to demonstrate 
the predictive performance of the model. The model’s prediction 
results varied across different cases, and the prediction probabilities 
and confidence intervals are shown in Supplementary Table  3. 
Remarkably, the predicted outcomes were consistent with the actual 
prognoses of all patients, demonstrating the model’s robust 
predictive accuracy.

Discussion

To the best of our knowledge, this study represents the first 
attempt to develop a dynamic nomogram for predicting severe carotid 
artery stenosis (CAS) in Chinese patients with ischemic stroke (IS). 
This web-based non-invasive model provided an optimal prediction 

TABLE 1 (Continued)

Variables Total (n = 739) Test set (n = 225) Train set (n = 514) p

LDL (mmol/L), Median (Q1, Q3) 2.82 (2.22, 3.58) 2.76 (2.17, 3.73) 2.84 (2.25, 3.55) 0.979

TG (mmol/L), Median (Q1, Q3) 1.47 (1.01, 2.17) 1.5 (1.14, 2.27) 1.46 (0.97, 2.15) 0.067

CHO (mmol/L), Median (Q1, Q3) 4.77 (3.99, 5.65) 4.82 (3.93, 5.79) 4.76 (4.05, 5.59) 0.632

hsCRP (mg/L), Median (Q1, Q3) 1.61 (0.66, 4.34) 1.61 (0.65, 4.88) 1.62 (0.66, 4.33) 0.651

CRP (mg/L), Median (Q1, Q3) 4.9 (4.9, 5.36) 4.9 (4.9, 6.85) 4.9 (4.9, 5.13) 0.307

RDWSD (fL), Median (Q1, Q3) 41.3 (39.1, 43.4) 41.4 (39.2, 43.7) 41.2 (39.1, 43.27) 0.403

HCT (%), Median (Q1, Q3) 40.5 (38, 43.1) 40.8 (38.4, 43) 40.4 (37.82, 43.1) 0.466

MCH (pg), Median (Q1, Q3) 30 (28.5, 31.3) 30 (28.8, 31.3) 29.9 (28.42, 31.3) 0.572

MONO (10^9/L), Median (Q1, Q3) 0.46 (0.36, 0.59) 0.47 (0.37, 0.6) 0.46 (0.35, 0.58) 0.658

MCV (fL), Median (Q1, Q3) 88.9 (84.65, 92.6) 89.1 (85.1, 92.8) 88.9 (84.6, 92.6) 0.447

LYM (10^9/L), Median (Q1, Q3) 1.81 (1.33, 2.35) 1.89 (1.38, 2.45) 1.77 (1.32, 2.33) 0.148

RBC (10^12/L), Median (Q1, Q3) 4.62 (4.28, 5.04) 4.6 (4.31, 5.03) 4.63 (4.26, 5.04) 0.994

HGB (g/L), Median (Q1, Q3) 136 (126, 146) 136 (128, 147) 136 (126, 146) 0.372

BASO (10^9/L), Median (Q1, Q3) 0.02 (0.01, 0.03) 0.02 (0, 0.03) 0.02 (0.01, 0.03) 0.719

MCHC (g/L), Median (Q1, Q3) 336 (329, 343) 337 (329, 343) 335 (328, 343) 0.547

RDWCV (%), Median (Q1, Q3) 12.9 (12.4, 13.5) 12.9 (12.4, 13.4) 12.9 (12.4, 13.6) 0.682

WBC (10^9/L), Median (Q1, Q3) 7.43 (6.05, 8.95) 7.18 (5.97, 8.94) 7.57 (6.11, 8.98) 0.28

BASO_A (%), Median (Q1, Q3) 0.2 (0.1, 0.4) 0.2 (0.04, 0.4) 0.2 (0.1, 0.4) 0.925

MONO_A (%), Median (Q1, Q3) 6.3 (5.2, 7.6) 6.5 (5.4, 7.7) 6.2 (5.2, 7.6) 0.177

Stenosis, n (%) 0.855

  No 251 (34) 78 (35) 173 (34)

  Yes 488 (66) 147 (65) 341 (66)
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of severe CAS in IS patients through internal validation. One of the 
greatest advantages of this study was that the non-invasive model 
based on available factors could provide patient-specific, evidence-
based advice for clinicians, which benefited patients who did not 
receive or were not suitable for imaging examinations. Our prediction 
model integrates six significant predictors: history of stroke, serum 
sodium, hypersensitive C-reactive protein (hsCRP), C-reactive protein 
(CRP), basophil percentage, and mean corpuscular hemoglobin 
concentration (MCHC). Importantly, multicollinearity was not 
observed among these variables, as confirmed by variable correlation 
plots, variance inflation factor (VIF) values, and tolerance values. 
Internal validation demonstrated the model’s good discrimination 
(C-statistic = 0.70) and satisfactory calibration. Decision curve 
analysis (DCA) and clinical impact curves (CICs) confirmed the 
clinical utility of the model, indicating that IS patients could benefit 
from clinical decisions informed by this non-invasive tool. Moreover, 
the calibration plot revealed strong agreement between predicted and 
actual probabilities, while the web-based individualized prediction 
model exhibited robust predictive performance.

According to Fei Han et al. (2), in a prospective study involving 
1,082 stroke-free participants, 34 individuals experienced an ischemic 
stroke during an average follow-up of 4.2 years, with arterial 
atherosclerotic stenosis identified as a significant risk factor for future 
IS among asymptomatic individuals. Similarly, a study among 740 

Japanese male participants (average age: 68 years) reported prevalence 
rates of 20.7% for mild and 4.5% for severe intracranial atherosclerotic 
stenosis (ICAS) (10). In a Chinese observational cohort study, 44.2% 
of young IS patients were categorized into the stenosis group (middle 
cerebral artery [MCA] stenosis ≥50%), while 55.8% were placed in the 
no stenosis group (MCA stenosis <50% or no stenosis) (11). In 
comparison, our study identified 488 severe CAS cases (66.0%), a 
proportion notably higher than the 44.2% reported. The severity of 
stenosis also exacerbates IS symptoms. For instance, IS patients with 
atherosclerotic MCA stenosis exhibited higher plaque burdens in the 
symptomatic group compared to the asymptomatic group. Moderate-
to-severe stenosis was more prevalent, underscoring the association 
between stenosis severity and IS symptomatology (12). Furthermore, 
severe intracranial large vessel stenosis contributes to stroke-related 
complications. Hilal et al. (13) reported that intracranial stenosis, as 
defined by magnetic resonance angiography (MRA), could impair 
cognitive function due to reduced cerebral blood flow from 
atherosclerotic stenosis. In a prospective cohort study of 200 patients 
aged >40 years diagnosed with MCA stenosis via transcranial Doppler 
(TCD), 3.8% developed IS or transient ischemic attack (TIA) during 
follow-up (14). Severe CAS has also been independently associated 
with ipsilateral acute IS (15) and an increased 90-day IS risk in TIA 
patients (p < 0.01) (16). In addition, a strong correlation has been 
observed between cerebral artery stenosis and IS occurrence both 
before and after revascularization (p < 0.01) (7).

This study builds on previous research by providing a novel 
web-based dynamic nomogram to predict severe carotid artery 
stenosis (CAS) in patients with ischemic stroke (IS). Consistent 
with earlier findings, our study found that metabolic syndrome, 
such as sodium ion disorder, is associated with severe CAS (17). 
However, our findings regarding high-density lipoprotein 
cholesterol (HDL-C) differed from those of previous studies. A 
study (18) comprised 194 intracranial atherosclerotic stenosis 
and found that lower HDL-C was associated with the presence of 
arterial stenosis (p < 0.001), which was conversely with this study. 
A total of 412 patients (35–93 years old) with ischemic stroke 
were more prevalent in the MCA stenosis group; interestingly, 

FIGURE 2

The predictors’ selection by LASSO method. (A) Coefficients of all predictors gradually returned to zeros by using 10-fold cross-validation. 
(B) Coefficients of 11 predictors were non-zero at the leftmost dashed line (λ = lambda. min). Min, minimum.

TABLE 2 The result of the VIF and Tolerance between the variables in the 
MLR model.

Term VIF Tolerance

stroke 1.02 0.98

BASO.A 1.04 0.96

Na 1.12 0.89

hsCRP 1.27 0.78

CRP 1.24 0.8

MCHC 1.11 0.9
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there was no significant difference in HCY levels between the 
MCA stenosis and no stenosis groups at baseline and matched for 
age and sex (19). Consistently with it, the level of HCY was not 
an independent risk of severe CAS in this study. In a Japan study 
(20), 8 out of 103 patients with type II diabetes developed arterial 
stenosis, and glucose fluctuation was significantly higher in the 

severe stenosis group (≥70%) than in the non-severe stenosis 
group, instead of mean blood glucose and HbA1c, which was 
conversely to our study that random glucose was not an 
independent risk factor. Conventional risk factors, including age, 
a history of hyperhomocysteinemia, hypertension, diabetes 
mellitus, TG, HDL, LDL, and dyslipidemia, were excluded from 

TABLE 3 The result of multivariable logistic regression analysis.

Coef S.E. Wald Z OR Lower 0.95 Upper 0.95 p

Stroke = 1 0.4992 0.2347 2.13 0.6070 0.3832 0.9616 0.0334

TP −0.0224 0.0159 −1.41 0.8176 0.6181 1.0815 0.1582

Na 0.1169 0.0377 3.10 1.4199 1.1378 1.7721 0.0019

HCY 0.0087 0.0169 0.51 1.0453 0.8828 1.2378 0.6073

Creatinine 0.0056 0.0050 1.12 1.1279 0.9140 1.3918 0.2620

HDL −0.4285 0.3397 −1.26 0.8571 0.6744 1.0892 0.2072

CHO −0.0561 0.0854 −0.66 0.9175 0.7096 1.1863 0.5111

hsCRP 0.2238 0.0624 3.59 2.2706 1.4505 3.5546 0.0003

CRP −0.0157 0.0053 −2.97 0.9964 0.9940 0.9987 0.0030

MCHC 0.018 0.0084 2.15 1.3098 1.0236 1.6760 0.0319

BASO_A −0.7121 0.3561 −2.00 0.8077 0.6551 0.9957 0.0455

FIGURE 3

Development of nomogram. A case of the nomogram model showed that the probability of severe CAS was 0.77.
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the model in this study (21). The history of stroke was a risk 
factor for progressive posterior cerebral artery stenosis after 
revascularization (7). However, our finding that MCHC was a 
risk factor for severe CAS in IS patients had not been previously 
reported. There had been only one report that the group 
administered with cholesterol plus HDMC (high dose 
M. charantia) showed significantly lower MCHC than that of the 
control group in cholesterol-fed experimental rats before (22). 
Sun et al. (23) found that the higher the carotid stenosis rate, the 
higher the level of hsCRP in the ulcerated plaque group in the 
cerebral artery stenosis patients with IS, which was consistent 
with our study. Li et al. (24) found that the level of CRP was not 
an independent risk factor in cerebral artery stenosis patients 
with IS, which was in converse to our study. There were also 
significant associations between the percentages of basophil and 
acute ischemic cerebrovascular events at 3-month and 1-year 
follow-up in patients (25), which was consistent to our study. 

Furthermore, the model included factors that were easily 
acquired in this study so the model could be easily applied in 
clinical practice. Serum sodium levels are indicative of the body’s 
fluid and electrolyte balance. Hyponatremia (low serum sodium) 
has been associated with increased morbidity and mortality in 
various conditions, including cardiovascular diseases. Studies 
suggest that hyponatremia may exacerbate atherosclerosis by 
promoting endothelial dysfunction and inflammation, thereby 
increasing the risk of CAS (26). Conversely, hypernatremia (high 
serum sodium) can lead to increased blood viscosity and 
hypertension, both of which are risk factors for atherosclerosis 
and CAS (27). Basophils are a type of white blood cell involved 
in immune responses and inflammation. An elevated basophil 
percentage may reflect an ongoing inflammatory process. 
Chronic inflammation is a well-known contributor to 
atherosclerosis, which can lead to the development and 
progression of CAS. Therefore, an increased basophil percentage 

FIGURE 4

Validation of nomogram. (A) The DCA demonstrated the net benefit and threshold probability of nomogram in the train set and test set. (B) The CIC in 
the train set. (C) The CIC in the test set.

FIGURE 5

Calibration of nomogram. (A) The calibration curve in the train set. (B) The calibration curve in the test set. The calibration curve in both the train and 
test sets did not cross the diagonal bisector line, suggesting that the prediction models had a strong concordance performance in both groups; this 
indicates the model performed well in both groups.
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might be associated with a higher risk of carotid artery stenosis. 
In men, a low basophil-to-WBC ratio was linked to greater 
plaque instability, suggesting a protective role of basophils. In 
contrast, in women, a high basophil-to-WBC ratio was associated 
with increased plaque instability, hemorrhage, and thrombosis, 
highlighting a sex-specific dual role of basophils in vascular 
pathology (28). This highlights the dual nature of basophils in 
modulating inflammatory responses and their critical 
involvement in plaque progression, neovascularization, and 
thrombotic events.

The establishment of the prediction model for patients has always 
been a hot topic (29). In this study, we enrolled 739 IS patients to 
develop and validate the non-invasive web-based model based on 
independent risk factors. Six variables were considered as risk factors 
of severe CAS in this study, including the history of stroke, Na, hsCRP, 
CRP, BASO_A, and MCHC. Considering the fact that all variables 
came from clinical variables that were routinely collected, this 
dynamic model could easily be  applied to IS patients to improve 
clinical decision-making. The wed-based model displayed accurate 
predictive power through internal validation in this study. The clinical 
applicability of this dynamic nomogram is enhanced by its use of 
routine clinical variables, allowing for widespread implementation. 
Internal validation demonstrated its predictive accuracy, with an AUC 
of 0.70  in the test set, indicating acceptable discrimination. By 
incorporating this model into clinical practice, neurologists can 
stratify patients by risk and adopt appropriate interventions, 
particularly for those unable to undergo imaging studies. Despite the 
strengths of imaging modalities such as MRA or TCD for detecting 
atherosclerotic stenosis (13, 14), our non-invasive model offers a 
practical and accessible alternative.

The dynamic nomogram developed in this study offers a novel 
approach to individualized risk assessment for severe carotid artery 
stenosis (CAS) in ischemic stroke (IS) patients. Health professionals 
can utilize the nomogram to implement targeted interventions based 
on the calculated risk scores of various predictors for each patient, 
thereby enhancing the efficiency and precision of clinical 
interventions. However, using a traditional nomogram may pose 
challenges for non-professional statisticians due to its requirement for 
manual risk calculations across multiple variables.

To address this limitation, we  developed a web-based dynamic 
nomogram1 based on the prediction model. This online tool allows 
clinicians to input patient-specific predictors and instantly obtain an 
individualized CAS probability with a 95% confidence interval. The 
web-based nomogram significantly simplifies the application process, 
facilitates real-time decision-making, and enables the development of 
tailored, risk-based, and time-sensitive treatment strategies. Moreover, it 
provides a convenient resource for IS patients and their caregivers to 
implement personalized interventions based on the nomogram results.

Limitations

This study had several limitations. First, the data were derived 
from a single-center retrospective study. Future research incorporating 
data from multiple medical centers and prospective cohort designs is 
necessary to validate and generalize our findings.

Second, this study only included random glucose measurements 
rather than glycated hemoglobin (HbA1c) as not all patients 
underwent HbA1c testing. Further research, including HbA1c, may 
provide more comprehensive insights into the relationship between 
glucose metabolism and CAS.

Conclusion

In this study, six clinical variables—stroke history, serum sodium 
(Na), hypersensitive C-reactive protein (hsCRP), C-reactive protein 
(CRP), basophil percentage (BASO_A), and mean corpuscular 
hemoglobin concentration (MCHC)—were identified as potential 
predictors for severe CAS. A non-invasive prediction model 
incorporating these variables was successfully developed.

The web-based dynamic nomogram derived from this model allows 
healthcare professionals to easily identify IS patients at high risk of 
severe CAS, especially those unable to undergo imaging examinations. 
This tool facilitates the implementation of individualized, risk-based, 
and time-sensitive treatment strategies, which may ultimately improve 
patient outcomes and optimize resource utilization.
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