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Optic neuritis (ON) is an inflammatory condition of the optic nerve associated 
with demyelinating diseases like multiple sclerosis, neuromyelitis optica spectrum 
disorder, and myelin oligodendrocyte glycoprotein antibody-associated disease. 
The complement system is crucial in ON pathogenesis, driving blood-optic nerve 
barrier disruption, inflammation, and tissue damage. This review explores the 
complement activation pathways—classical, alternative, and lectin—and their 
roles in ON progression. Key proteins such as C3, C5, and terminal pathway 
components are highlighted as central to disease mechanisms. Recent advances 
in complement-targeted therapies, including C1q blockers, C3 and C5 inhibitors, 
show promising results in clinical and preclinical studies. Novel therapies, like 
anaphylatoxin receptor blockers and recombinant factor H, expand the treatment 
landscape, while plasma exchange remains vital for severe, corticosteroid-resistant 
cases. Challenges remain, such as ON heterogeneity, the long-term safety of 
complement inhibition, and the need for personalized approaches. Future studies 
should focus on unraveling complement-mediated mechanisms, identifying 
biomarkers, and refining therapeutic strategies. This review highlights the critical 
role of complement in ON and the latest therapeutic advances to improve patient 
outcomes.
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1 Background

Optic neuritis (ON) is a common inflammatory condition of the optic nerve, often 
associated with demyelinating diseases such as multiple sclerosis (MS), aquaporin-4 antibody-
positive neuromyelitis optica spectrum disorder (NMOSD), and myelin oligodendrocyte 
glycoprotein antibody-associated disease (MOGAD) (1–3). The pathological mechanisms of 
ON include inflammatory demyelination, characterized by the destruction of myelin and 
oligodendrocytes mediated by autoantibodies, complement activation, and antibody-
dependent cell-mediated cytotoxicity (ADCC) (4). B cells and antibody-mediated complement 
activation contribute to astrocyte and myelin destruction. In addition, T-cell-mediated 
activation of macrophages and glial cells leads to blood–brain barrier (BBB) and neuronal 
damage. Inflammatory cell infiltration further exacerbates damage by releasing cytokines and 
enzymes that disrupt the blood-optic nerve barrier (BONB) (5, 6).

The complement system, a key component of innate immunity, comprises a cascade of 
soluble and membrane-bound proteins that facilitate pathogen elimination, mediate 
inflammation, and interact with adaptive immunity (7). In ON, complement activation 
contributes to axonal injury, demyelination, and subsequent neurodegeneration, making it a 
critical target for therapeutic intervention (8). Biomarkers such as C3a and C5a have been 
identified as indicators of disease activity, offering potential utility in diagnosis and 
monitoring (9). Moreover, complement inhibitors, especially in neuromyelitis optica spectrum 
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disorder-associated ON (NMOSD-ON), have demonstrated 
promising therapeutic efficacy, further underscoring the relevance of 
the complement pathway in ON management (10). Despite these 
advances, significant gaps persist in our understanding of the precise 
roles and mechanisms of the complement system in ON. Recent 
progress in complement-targeted therapies for other neurological 
disorders suggests promising avenues for translational applications in 
ON. This review seeks to synthesize the current state of knowledge on 
the complement system in ON, focusing on recent discoveries, 
emerging therapeutic strategies, and unresolved questions. By 
elucidating these updates, the review aims to refine diagnostic and 
therapeutic approaches, ultimately mitigating visual disability and 
improving outcomes for affected patients.

2 Mechanisms of complement 
activation in ON

2.1 Classical pathway

The classical pathway, a vital component of the complement 
system, plays a central role in recognizing and eliminating pathogens, 
apoptotic cells, and abnormal molecular structures (11). Activation 
begins with the C1 complex, comprising C1q, C1r, and C1s, where 
C1q binds to immune complexes formed by immunoglobulin G (IgG) 
or immunoglobulin M (IgM) antibodies (12). This interaction triggers 
a cascade, leading to the cleavage of C4 and C2, forming the C3 
convertase, which subsequently cleaves C3 into active fragments, C3a 
and C3b. Additionally, the Hageman factor fragment (HFf) can 
activate this pathway independently by interacting with C1, amplifying 
the response (13). In diseases like NMOSD-ON and MOGAD-ON, 
autoantibodies against AQP4 or myelin oligodendrocyte glycoprotein 
(MOG) initiate complement-dependent cytotoxicity (CDC), further 
activating the classical pathway and driving inflammation and 
tissue damage.

2.2 Alternative pathway

The alternative pathway is activated independently of antibodies 
and recognizes pathogen-associated molecular patterns (PAMPs) and 
damage-associated molecular patterns (DAMPs) on injured optic 
nerve cells (14). This activation occurs through the spontaneous 
hydrolysis of C3, forming C3 convertase on activator surfaces (15). 
The resulting C3 convertase generates a large amount of C3b, which 
combines with existing C3 convertase to form C5 convertase. This 
enzyme cleaves C5 into C5a and C5b, with multiple C5b molecules 
assembling into the membrane attack complex (MAC). The MAC 
inserts into target cell membranes, causing cell damage and amplifying 
inflammation. The alternative pathway likely plays a crucial role in 
antibody-negative optic neuritis (ON) and enhances responses 
initiated by other complement activation pathways.

2.3 Lectin pathway

The lectin pathway is activated by mannose-binding lectin (MBL) 
and associated serine proteases, such as MASP-2, which recognize 

carbohydrate patterns on microbial surfaces or damaged host cells. 
Studies have shown elevated MASP-2 expression in the retina and 
optic nerve, supporting its role in ON (16). Complement components 
such as C3 and MAC deposition precede retinal ganglion cell (RGC) 
loss and demyelination in animal models, indicating an early 
involvement of the lectin pathway in ON (16).

3 Key stages of complement 
activation in ON

3.1 C3 activation in ON

C3, a central component of the complement cascade, plays a 
critical role in the inflammatory processes associated with optic 
neuritis (ON). Its activation products, C3a and C3b, drive multiple 
inflammatory responses. Research has linked C3 activation to the 
progression of neuroinflammation and neurodegeneration. In ON, 
astrocytes express C3, associated with retinal ganglion cell (RGC) loss. 
Additionally, C3 activation products inhibit axonal regeneration and 
exacerbate neuronal damage (17). Studies have shown that reducing 
C3 activation mitigates RGC loss, limits axonal damage (18), and 
slows the progression of neurodegenerative diseases (19). The C3a 
receptor is also implicated in promoting neuroinflammation, with 
evidence suggesting that its absence reduces neurodegeneration risk, 
highlighting the therapeutic potential of targeting this receptor. 
Meanwhile, C3b acts as an opsonin, marking cells for phagocytosis 
and amplifying the complement cascade (20).

3.2 C5 activation in ON

C5 activation is integral to the classical complement cascade and 
contributes significantly to the pathology of ON. Antibodies targeting 
aquaporin-4 (AQP4) on astrocytes initiate this cascade, resulting in 
granulocyte, eosinophil, and lymphocyte infiltration, which damages 
astrocytes and oligodendrocytes, leading to demyelination and 
neuronal loss (21). Research shows that loss of C5a receptors can 
modulate NMDAR activity, reducing excitotoxicity from glutamate 
and mitigating neurotoxicity, thereby influencing neuromyelitis optica 
(NMO) pathology (22). Elevated levels of the terminal complement 
complex sC5b-9 in NMO patients, compared to other neurological 
disorders and MS, are associated with disease relapses and increased 
disability, highlighting its role in disease severity and progression (23).

3.3 C4 activation in ON

C4 is a critical component of the classical complement pathway, 
acting upstream in the cascade, leading to the formation of the 
MAC. The activation of C4 triggers a series of downstream reactions, 
ultimately resulting in MAC formation, which disrupts cell 
membranes and causes cell damage and death. Studies suggest that 
low C4 levels are associated with specific clinical features of NMO, 
including more severe BBB disruption and a higher prevalence of 
brainstem lesions (24). These findings highlight the significance of 
C4 in the pathological mechanisms of NMO and its potential as a 
therapeutic target.
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3.4 C6 activation in ON

C6 plays a pivotal role in the terminal pathway of the 
complement system, primarily through its contribution to MAC 
formation. The activation of C6 drives neuroinflammation and 
nerve damage by facilitating the assembly of MAC, which lyses 
cell membranes and exacerbates inflammatory responses (25). 
Research indicates that the absence or inhibition of C6 prevents 
MAC formation, thereby mitigating nerve damage and reducing 
inflammation (26). This underscores the therapeutic potential of 
targeting C6 to alleviate the pathological effects of ON and related 
neuroinflammatory conditions.

3.5 C7 activation in ON

C7 plays a crucial role in the pathological progression of ON by 
contributing to complement deposition in the optic nerve, which 
triggers demyelination—a key step in the disease process. Activation 
of C7 also leads to the upregulation of genes such as IRF7 and 
CXCL10, suggesting its involvement in regulating inflammatory 
responses (27). Furthermore, C7’s interaction with AQP4 antibodies 
exacerbates astrocyte injury, complement deposition, and 
demyelination while altering inflammation-related gene expression. 
These mechanisms collectively drive the inflammatory and 
degenerative pathology observed in ON, highlighting the significance 
of C7 as a therapeutic target.

3.6 C9 activation in ON

C9, the final component in forming of the membrane attack 
complex (MAC), is pivotal in cell lysis and tissue damage associated 
with optic neuritis (ON). During activation, C9 integrates into the 
C5b-8 complex, culminating in the insertion of the MAC into cell 
membranes. This process leads to cell destruction and exacerbates 
inflammation. Research indicates that limiting the incorporation of 
C9 into the MAC can effectively inhibit cell lysis (28). This finding 
highlights a potential therapeutic strategy to mitigate complement-
mediated cytotoxicity and reduce neuronal and glial damage in ON.

4 Complement therapeutics in ON

Therapies targeting complement pathways aim to reduce 
inflammation, prevent tissue damage, and improve clinical outcomes 
in ON. Various complement inhibitors, either in development or 
clinical use, target different complement cascade components, offering 
the potential for effective intervention in ON and related conditions.

4.1 Inhibitors of complement activation

4.1.1 C1q inhibitors
C1q inhibitors block the initiation of the classical complement 

cascade by preventing C1q from binding to its substrates, thereby 
reducing complement-mediated tissue damage, including CDC (29). 
ANX007, an anti-C1q antibody fragment, inhibits downstream C1q 

activity and has shown potential in minimizing retinal damage caused 
by classical complement activation. Preclinical studies suggest that 
ANX007 can significantly reduce tissue injury in complement-
mediated retinal disorders (30). Beyond its role in CDC, C1q also 
contributes to neuroprotection by promoting neuronal survival and 
enhancing the expression of neurotrophic factors such as nerve 
growth factor (NGF) and neurotrophin-3 (NT-3), which support 
neuronal growth and maintenance (31). In NMOSD models, 
C1q-targeted monoclonal antibodies have been shown to reduce 
inflammatory demyelinating lesions caused by anti-AQP4 antibodies, 
highlighting their therapeutic potential in complement-mediated 
diseases (29). Early-phase studies of C1q inhibitors like ANX009 in 
healthy volunteers have demonstrated good safety and tolerability, 
supporting further exploration of C1q inhibitors in autoimmune 
diseases driven by complement activation (32). Advances such as 
C1qNb75 (33), a single-domain antibody targeting C1q, have also 
shown potential in inhibiting this pathway, offering promising 
therapeutic avenues.

4.1.2 C3 inhibitors
C3 inhibitors represent a promising therapeutic approach for ON 

by targeting the central amplification point of the complement 
cascade, thereby preventing downstream activation across all 
pathways and reducing inflammation, tissue damage, and immune-
mediated cytotoxicity. These inhibitors also address the inhibitory 
environment of the central nervous system (CNS) by inactivating the 
Rho signaling pathway, which impedes axonal regeneration. By 
inactivating Rho GTPase, C3 inhibitors facilitate neurite growth on 
inhibitory substrates like myelin-associated glycoprotein and myelin, 
enabling axonal repair (34). Pegcetacoplan, the first FDA-approved C3 
inhibitor, blocks C3 cleavage, preventing the generation of active 
fragments C3a and C3b, thereby mitigating inflammation and 
reducing opsonization (35). This dual capacity to reduce complement-
mediated damage and promote CNS repair makes C3 inhibitors a key 
area of interest in advancing ON treatment.

4.2 Inhibitors of terminal pathway 
activation

4.2.1 C5 inhibitors
C5 inhibitors are a pivotal therapeutic class targeting the terminal 

pathway of the complement system by blocking C5 cleavage into C5a 
and C5b, thereby preventing the formation of the MAC responsible 
for cell lysis and inflammation. By halting the complement cascade at 
this critical juncture, C5 inhibitors effectively reduce inflammation, 
cell lysis, and complement-mediated cytotoxicity, making them 
particularly effective for complement-driven diseases like 
NMOSD. Eculizumab, the first C5 inhibitor approved for treating 
NMOSD, significantly reduces relapse rates but requires biweekly 
dosing, which can be burdensome for patients (36). Ravulizumab, a 
long-acting C5 inhibitor, addresses this limitation with dosing 
intervals extended to every 8 weeks (37). The CHAMPION-NMOSD 
trial[38] demonstrated that ravulizumab offers comparable efficacy to 
eculizumab while significantly improving patient convenience (38). 
However, challenges remain, including residual hemolytic activity and 
an increased risk of infections, particularly with encapsulated 
organisms like Neisseria meningitidis. To mitigate these risks, patients 
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must be vaccinated against meningococci before starting treatment, 
and antibiotic prophylaxis may be  recommended in high-risk 
scenarios. Despite these concerns, the sustained activity and improved 
convenience of long-acting C5 inhibitors underscore their 
transformative potential in managing complement-mediated 
diseases (39).

4.2.2 Anaphylatoxin receptor blockers
Anaphylatoxin receptor blockers target the receptors for 

complement-derived inflammatory mediators C3a and C5a (C3aR 
and C5aR1), offering a therapeutic strategy to reduce inflammation 
and tissue damage while preserving the protective immune functions 
of the complement system. C3aR blockers primarily regulate immune 
cell recruitment and inflammatory amplification, with evidence 
suggesting a protective role for C3aR in conditions such as 
experimental meningococcal sepsis (40). Additionally, C5aR1 blockers 
are particularly effective in mitigating the pro-inflammatory and 
pathogenic effects of C5a. In NMOSD, modulation of C5aR1 activity 
can prevent astrocyte injury and demyelination caused by excessive 
complement activation. Age-related macular degeneration (AMD) 
studies have demonstrated that reducing C3a- and C5a-mediated 
inflammation preserves retinal integrity and slows degenerative 
processes (41). Avacopan, a C5aR antagonist approved for 
complement-mediated vasculitis, exemplifies this approach by 
selectively inhibiting C5a-driven inflammation while maintaining 
overall complement activity (42). Its success in vasculitis underscores 
the potential applicability of this strategy to optic neuritis and other 
complement-mediated disorders.

4.3 Complement regulators

4.3.1 Recombinant regulators
Complement Factor H (CFH) is essential for regulating the 

alternative complement pathway, primarily by binding to C3b and 
acting as a cofactor for complement factor I (CFI) to inactivate C3b 
(43). Additionally, CFH accelerates the decay of the alternative C3 
convertase, thereby controlling the complement system’s 
amplification loop caused by spontaneous C3b deposition. In 
NMOSD, approximately 9% of patients have autoantibodies against 
CFH, disrupting the interaction between CFH and C3b and leading 
to excessive complement activation and tissue damage (44). 
Similarly, CFH dysregulation in ON contributes to uncontrolled 
complement activity, resulting in inflammation, demyelination, 
and retinal RGC loss. Therapeutically, recombinant CFH or 
CFH-based treatments could restore proper complement regulation 
in patients with CFH deficiencies or autoantibodies. This targeted 
approach may mitigate tissue damage and inflammation, offering 
a promising neuroprotective strategy for complement-mediated 
diseases like ON and NMOSD. Further research into CFH-targeted 
therapies holds potential for advancing treatments in 
these conditions.

4.3.2 Membrane-targeted regulators
Membrane-targeted regulators CD55 and CD59 are critical for 

protecting cells from complement-mediated damage. CD55, also 
known as the Decay-Accelerating Factor, inhibits C3 convertase 
formation, preventing the amplification of the complement cascade, 

while CD59, or Protectin, blocks the assembly of the MAC, protecting 
cells from lysis. These regulators are abundantly expressed in 
peripheral tissues, offering robust protection against complement-
mediated cytotoxicity. However, their absence in the CNS renders 
CNS tissues particularly vulnerable to complement activation and 
AQP4-IgG-mediated damage, as observed in NMO (45). 
Therapeutically, enhancing CD59 expression in astrocytes has 
demonstrated neuroprotective effects, reducing demyelination and 
astrocyte loss in experimental models. Developing interventions that 
upregulate these regulators or mimic their protective functions could 
represent a novel strategy to mitigate complement-mediated damage 
in ON and other CNS disorders, offering new avenues for treatment 
and neuroprotection.

4.4 Plasma exchange

Plasma exchange (PLEX) involves physically removing 
circulating complement proteins, immune complexes, and 
autoantibodies. It has shown promise as a second-line treatment 
for severe ON, particularly when initial steroid therapies are 
ineffective. Studies demonstrate that PLEX can result in significant 
visual recovery for many patients. For instance, in a study involving 
34 patients, over half experienced clinically meaningful 
improvements in visual function following PLEX treatment (46). 
Similarly, another study noted enhancements in visual acuity 
among patients with NMOSD who underwent PLEX after 
inadequate response to intravenous methylprednisolone 
(IVMP) (47).

4.5 Factor B and D inhibitors

Factor B is a serine protease that drives the proteolytic activity of 
the C3 and C5 convertases, forming the alternative pathway’s core 
amplification loop (48). Research has demonstrated that inhibiting 
Factor B effectively blocks the alternative pathway both in vivo and 
in  vitro, preventing complement activation in serum. This highly 
selective and potent compound highlights its potential as a therapeutic 
agent for systemic treatment of complement-mediated diseases and 
supports its clinical development. Similarly, Complement Factor D 
(CFD) plays a critical role in the activation and amplification of the 
AP. CFD is a serine protease that serves as the rate-limiting enzyme, 
specifically cleaving Complement Factor B (CFB) to regulate 
complement activity (49).

4.6 MAC blockers

The activation of the terminal pathway of the complement system 
culminates in the formation of the MAC. Recent studies have 
identified CP010 as a novel therapeutic monoclonal antibody that 
specifically targets C6, effectively inhibiting MAC formation (26). 
CP010 achieves this by blocking the interaction between C6 and C5/
C5b, thereby preventing MAC assembly. This mechanism suggests its 
potential therapeutic role in neurological conditions such as ON, 
highlighting the broader promise of MAC inhibitors in treating 
complement-mediated neurological diseases.

https://doi.org/10.3389/fneur.2025.1566771
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


He et al. 10.3389/fneur.2025.1566771

Frontiers in Neurology 05 frontiersin.org

5 Challenges and future directions

The pathogenesis of optic neuritis (ON) is multifaceted, involving 
complement-dependent and complement-independent mechanisms, 
complicating therapeutic approaches (50). While complement 
inhibitors such as eculizumab have shown efficacy in reducing disease 
activity in NMOSD-associated ON, concerns persist regarding their 
long-term safety and effectiveness. Moreover, the precise role of 
complement inhibition within the broader therapeutic landscape 
remains uncertain, particularly given the availability of diverse 
treatments with distinct mechanisms of action. Additionally, the 
heterogeneity in disease presentation and progression among patients 
poses significant challenges to developing universally effective 
therapies (51).

Future directions in addressing ON focus on innovative, 
biomarker-driven, and tailored approaches to enhance treatment 
precision and efficacy. Combination therapies targeting both 
complement-dependent and complement-independent mechanisms 
may offer comprehensive disease management by improving 
therapeutic outcomes and minimizing adverse effects. Targeted 
modulation of specific complement proteins, such as C3 and C5, holds 
promise for controlling disease progression while maintaining 
essential immune functions. Moreover, advances in understanding the 
genetic and molecular underpinnings of ON facilitate personalized 
medicine, enabling customized interventions that align with 
individual patient profiles. These strategies aim to address the complex 
pathogenesis and heterogeneity of ON, optimizing treatment precision 
and efficacy (52).

6 Conclusion

The complement system is integral to the pathophysiology of ON, 
especially in AQP4-IgG and MOG-IgG-associated subtypes. 
Complement-targeted therapeutics present promising opportunities 
to reduce neuroinflammation and prevent tissue damage. As research 
and clinical trials continue to advance, they will provide deeper 

insights into the efficacy and safety of these treatments, ultimately 
refining therapeutic strategies and improving outcomes for patients 
with ON.
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