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Introdcution: Parkinson’s Disease (PD) is a progressive neurodegenerative

disorder that primarily impacts motor function and is prevalent among older

adults worldwide. Gait performance (such as speed, stride, step, and so on) has

been shown to play a significant role in diagnosis, treatment, and rehabilitation.

Fortunately, advancements in computer science have provided serial ways

to calculate gait-related parameters, o�ering a more accurate alternative to

the complex and often imprecise assessments traditionally relied upon by

trained professionals. However, most of the current methods depend on data

preprocessing and feature engineering, often require domain knowledge and

laborious human involvement, and require additional manual adjustments when

dealing with new tasks.

Methods: To reduce the model’s reliance on data preprocessing, feature

engineering, and traversal rules, we employed the Spatial-Temporal Graph

Convolutional Networks (ST-GCN) model. We also defined five distinct states

within a complete gait cycle: standstill (S), left swing (L), double support

(D), right swing (R), and turnaround (T). Using ST-GCN, we extracted spatial

and temporal patterns from these five states directly from the data, thereby

enhancing the accuracy of gait parameter calculation. Furthermore, to improve

the interpretability of the ST-GCN model and increase its clinical relevance, we

trained the model on data from both healthy individuals and PD patients. This

allowed us to explore how the model’s parameters (di�erent ST-GCN Layers)

could assist clinicians in understanding.

Results: The dataset used to evaluate the model in this paper includes motion

data from 65 PD participants and 77 healthy control participants. Regarding

the classification results from the 5 classifiers, ST-GCN achieved an average

precision, recall, and F1-score of 93.48%, 93.21%, and 93.32%, outperforming

both the Transformer-based and LSTM-basedmethods. Displaying the joints and

edge weights from various layers of the ST-GCN, particularly when comparing

data from healthy individuals and PD patients, enhances the model’s feasibility

and o�ers greater interpretability. This approach is more informative than relying

on a purely black-box model.

Conclusion: This study demonstrated that the ST-GCN approach can e�ectively

support accurate gait parameter assessment, assisting medical professionals in

making diagnoses and reasonable rehabilitation plans for patients with PD.
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1 Introduction

Parkinson’s disease (PD) is one of the most common

neurodegenerative diseases among people aged 60 and above (1).

A variety of motor symptoms are common in Parkinson’s disease,

including impaired motor function with slow movements, tremors,

and gait and balance disturbances (2). Gait disorder is one of

the most common motor symptoms of Parkinson’s disease (3).

Its characteristic patterns include reduced turning agility, short

and slow steps, festination, and freezing of gait (FoG), which

generally occurs in patients with mid and advanced-stage PD

(4). Considering the strong correlation between gait disorders

and decreased quality of life, early recognition of gait disorders

is crucial for the diagnosis, treatment, and prognosis of patients

with PD (5). However, due to subtle and imperceptible changes

in gait, it is difficult for neurologists and physicians to assess

gait disorders in PD (6). In clinical practice, traditional scales are

commonly used to assess gait disorders in PD, such as the Part III

of the MDS-sponsored revision of the Unified Parkinson’s Disease

Rating Scale (MDS-UPDRS III) (7), the Timed Up and Go test

(TUG) (8), the Freezing of Gait Questionnaire (FOG-Q) (9) and

so on (10). Specifically, the physician must observe the patient’s

walking performance and then give a score based on the criteria

of the scales.

Although traditional scales are widely used in clinical practice,

they still have some limitations. Due to its semi-quantitative

and time-consuming subjective evaluations of clinical physicians,

the results may be imprecise or inconsistent, especially for PD

with subtle symptoms. In recent years, along with the rapid

development of science and technology, objective and quantitative

gait assessment techniques have emerged (11). Instrumented gait

analysis (IGA) uses motion capture systems and instrumented

walkways to record gait data such as positions and pressures. Its

accurate and precise quantitative measurement of gait performance

makes it the gold standard for gait assessment in research practice

(12). Quantitative assessment based on IGA can improve the

diagnosis, prediction of outcome and rehabilitation of various

gait disorders compared to conventional observational scales

and techniques for gait disorders in PD. The variety of human

gait parameters it provides, including spatio-temporal, kinematic,

and kinetic parameters, can help researchers better identify and

understand gait disorders (10). However, deploying IGA in clinical

settings still faces various challenges. For example, vision-based

IGA systems use multicameras to offer the highest capture

accuracy, yet they are expensive and demand a large space for

deployment, making them difficult to popularize currently. In

addition, wearable sensor-based systems use wearable sensors such

as inertial measurement units (IMUs) (13) and press the force insole

to capture acceleration or pressure instead of video. They have both

usability issues and technical challenges, such as discomfort during

wear, data alignment, and bias drift. Meanwhile, depth sensors such

as Kinect (14) are becoming popular in gait analysis. Their low-cost

and non-contact advantages make them convenient and feasible for

clinical deployment.What is more important, they not only provide

depth video, but also offer human 3D skeleton data. This type of

data represents the spatial positions of the main joint points of the

human body, making it easier andmore effective to describe human

movements. Therefore, using a depth sensor is a promising method

to assess gait performance. In addition to advances in these motion

capture devices, significant progress has also been made in software

algorithms, propelling PD gait research into a new stage.

The researchers relied mainly on hand-designed feature

extraction methods to process skeleton data to assess gait disorders.

These methods commonly required specialized knowledge and

experience to select and design features. Researchers usually shape

skeleton data into pseudoimages or coordinate vector sequences

for machine learning methods. Procházka et al. (15) proposed a

Bayesian system that used stride length, gait speed, and age as

features. Then, digital signal processing methods and Bayesian

probability classification algorithms were used for gait feature

analysis to recognize individuals suspected of having Parkinson’s

disease. These methods are unsatisfactory because they cannot fully

express the complex information contained in the skeleton data.

With the rise of deep learning technology, several deep learning

models have been applied to human motion analysis in skeleton

data, such as Recurrent Neural Networks (RNNs) (16) and Long

Short-Term Memory (LSTM) (17). These models construct the

coordinates of the joint point into vector sequences that are used as

input. Although these deep learning models make it easier to assess

the severity of PD, they have the problem of lack of interpretability.

Physicians and patients do not understand how these deep learning

models make their predictions. A feasible solution is to apply deep

learning models in the process of obtaining gait parameters. The

key of the process is the detection of the gait phase. Jing et al.

(18) used bidirectional Long Short-Term Memory (Bi-LSTM) to

identify gait types in each walking frame. The results indicated

that the Bi-LSTM model is better than the traditional machine

learning method, Support Vector Machine (SVM). However, the

ability of these models is relatively limited because they do not

effectively utilize the spatial relationships between skeleton points,

which are crucial to understanding human actions. In recent

years, graph convolutional networks (GCNs) (19) have shown good

performance in skeleton-based human action recognition and gait

recognition (20). GCNs can effectively handle non-Euclidean data

by extending the convolution paradigm from images to graphs.

The human skeleton is essentially a graph-like structure connecting

major points according to the natural links in the structure of

human bone. Therefore, the complex architecture of the graph

makes it possible to describe the dependency relationships between

interconnected joints. In the medical field, GCNs have been used

to classify the severity of PD based on gait assessment. Zhang

et al. proposed WM-STGCN (21) that provided an effective spatio-

temporal modeling method for the recognition of PD gait that

outperformed the machine learning and LSTMmethods. However,

most existing GCN methods focus on PD detection and FoG

detection, while phase detection of Parkinsonian gait and normal

gait from the skeleton data has not been reported.

In summary, this study aims to boost the accuracy of gait phase

recognition using ST-GCNs, meanwhile reducing the burden on

data preprocessing and feature extraction, and finally to obtain

accurate gait parameters for further gait-related research. Through

a comprehensive comparative analysis of gait parameters between

patients and healthy controls (HC), this study wish to further

elucidate the differences in the performance of the deep learning

model when applied to HC and PD populations. By leveraging the

strong interpretability of graph-based approaches to examine the
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FIGURE 1

Illustration of joints and edges of human body skeleton.

weight assignments of human skeletal points within the model, the

research seeks to enhance the model’s credibility and facilitate its

acceptance by medical professionals.

2 Methods

This paper focuses on gaining insights into gait performance

in Parkinson’s disease through the latent features of deep graph

neural networks. By directly inputting raw depth information, the

model autonomously learns relevant features without the need

for data preprocessing or feature engineering. This approach not

only enhances the model’s accuracy but also ensures its ease of

deployment in clinical settings, making it broadly applicable for

more precise and effective gait analysis.

2.1 Data set

The dataset used in this study was originally collected

as part of the project “Multimodal Imaging Technology to

Explore the Mechanism of Frozen Gait in Disease,” with data

collection conducted at Peking Union Medical College Hospital

and The Medical Review Ethics Committee approved the study

(reference JS-2530). It is not publicly available because of data

protection requirements.

The dataset includes gait performance data from 142

participants, comprising 65 individuals diagnosed with PD and

77 HC. Data was collected between 2022 and 2024 using a depth

camera developed byMicrosoft-Azure Kinect. In the data collection

part, a 5-meter-long walking area was established in front of the

Kinect. Participants were asked to walk back and forth 3 times

in a natural walking posture, including actions such as standing

still, walking straight forward, and turning around. Skeleton data

consisting of 32 joint points was obtained from the Kinect built-

in ONNX Runtime (Figure 1). The sampling frequency was 60 Hz,

which was the same as the color video.

Data collection was conducted under the supervision of

physicians and under local ethical guidelines, with informed

consent obtained from all participants. The data used in this

study were secondary analyses of previously collected research data.

Participants’ privacy and confidentiality were rigorously protected
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FIGURE 2

The division of gait cycle.

throughout the study. All collected data were de-identified, and any

potentially identifiable information was removed before analysis.

Through preliminary interviews with clinicians, we identified

concerns regardingmodels that solely provide PD diagnosis results.

On the one hand, there are issues related to model interpretability;

on the other hand, clinicians expressed uncertainty about when

to trust the model and when it might make errors. Compared to

features like gait speed, stride width, and gait height, clinicians are

more attuned to user behavior and the timing of behavioral events.

Through the interviews, we found that overlaying user behavior

recognition results onto the original video interface provides a

more intuitive and effective way to demonstrate the system’s utility.

As a result, during the data annotation phase, we segmented

gait behavior based on the presence or absence of PD, dividing

the complete gait cycle into five states (Figure 2) according to the

movements of the left and right feet: standstill (S), left swing (L),

double support (D), right swing (R), and turnaround (T). After

recording, two experts annotated the data by identifying key points

of gait phase changes based on the video.

2.2 Deep learning models

Three different deep-learning models were trained and tested

on our dataset: ST-GCN, ST-TR, and Bi-LSTM. The code repository

is available at Github1.

Spatial-Temporal Graph Convolutional Networks (ST-GCN)

(22) is a deep learning model designed for skeleton-based action

recognition. It uses GCNs to model the spatial relationships

between joints in a skeleton and applies temporal convolutions to

capture the dynamics of these joints over time. This combination

allows the model to learn both spatial and temporal features from

the skeleton data, making it highly effective for action recognition

tasks. The ST-GCN is composed of a set of ST-Conv blocks that

1 https://github.com/ICEJM1020/GaitInsight

alternatively apply spatial graph convolutions and temporal graph

convolutions to the skeleton graph. Each ST-Conv block contains a

spatial convolution layer (GCN) and a temporal convolution layer

(TCN). The residual connection and bottleneck strategy are applied

inside each block. The output layer contains an average pooling and

a fully connected layer at the end.

The model is configured for a 5-class classification task,

utilizing 3 channels (x, y, z), a temporal window size of 45 frame,

and 32 points per frame. The window size is changable, and the

45 is best among the tests (30, 35, 40, 45). The other hyper-

parameter of the training process is based on the training setting

of the original ST-GCN training process. A dropout rate of 0.2

and batch normalization on data are employed for regularization

and stability. The training adopts an initial learning rate of 0.01

with Nesterov momentum for enhanced convergence. Learning

rate decay is scheduled at epochs 40, 80, and 120. The dataset is

split into 75% training and 25% testing, with training data shuffled

during each epoch. To better validate this model, we repeat the

above method 4 times, as a Stratified 4-fold validation. The training

employs a batch size of 64, while testing uses a batch size of 256 for

efficiency. The process spans 150 epochs, applying a weight decay

of 0.01 to mitigate overfitting.

Spatial-Temporal Transformer network (ST-TR) Plizzari et al.

(23) is a Transformer-based model dependencies between joints

using the self-attention operator. The flexibility of the Transformer

self-attention in modeling long-range dependencies make models

a perfect solution in Natural Language Processing (NLP) and

Computer Vision (CV) tasks (24, 25). The ST-TR applys the same

mechanism to joints representing the human skeleton. It uses a

Spatial Self-Attentionmodule (SSA) and a Temporal Self-Attention

module (TSA) to understand intra-frame interactions between

different body parts and inter-frame correlations. A two-stream

architecture is used to combine the SSA and TSA modules. On the

spatial stream, SSA is used to extract spatial information, followed

by a 2D convolution on time dimension (TCN). On the temporal,

TSA is used to extract temporal information, while spatial features

are extracted by a standard graph convolution (GCN).
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Bi-LSTM (26) is a variant of LSTM that captures contextual

relationships in sequences by learning both forward and backward

information. Bi-LSTM has achieved significant results in many

fields, such as speech recognition andmedicine (27), demonstrating

its ability to process time series data. This allows Bi-LSTM

to better understand the patterns and dependencies in a gait

sequence, ultimately improving the prediction of gait labels for each

frame. Recent study (18) in gait analysis indicate that this model

performs better than traditional machine learning methods such

as SVM.

2.3 Model explanation

An GCN typically consists of multiple layers, each performing

graph convolutions on skeletal data across time. Formally, let

G = (V ,E) represent the graph, where V is the set of joints

(nodes) and E denotes edges capturing joint connectivity. The

network refines these representations across layers, culminating

in an output layer that classifies the gait action. In GCN models,

the weights associated with joints (nodes) and bones (edges)

encapsulate the learned importance of each element in representing

and processing the underlying data. Specifically, joint weights

reflect how much individual joint features contribute to the overall

representation, while edge weights modulate the influence of

the relationships between joints. Higher edge weights indicate a

stronger interdependency, suggesting that the connection between

those joints is more critical for capturing relevant motion patterns–

such as those in gait cycles. By examining these weights, one can

infer which joints and interactions are prioritized by the model

during decision-making, thereby linking the learned parameters to

known biomechanical principles and enhancing the interpretability

of the model’s predictions.

2.4 Subjective interview

To verify the feasibility of this study’s method in field medical

scenarios, we conducted in-depth interviews with physicians

experienced in diagnosis of Parkinson’s disease. During the

interviews, we collected a total of 6 conversation records from

physicians. The interviews aimed to gather their insights and

opinions on the results.

3 Results

The typical gait of PD patients includes various conditions

such as unilateral lower limb tremors, bradykinesia, and postural

instability. As symptoms progress, the differences in motor

performance between PD patients and healthy individuals become

more pronounced. In this context, the study first examines the

applicability of the ST-GCN model across different populations,

validating its effectiveness by recognizing five distinct activity

states. We then compared the ST-GCN model with those from

previous studies, discussing its scope of applicability and the

potential for a similar study. Next, we applied the ST-GCN model

to identify the five activity states in PD patients and HC to

TABLE 1 The performance of ST-GCN and its comparison to previous

models.

Models Accuracy Precision Recall F1-score

SVM 0.7750 0.8699 0.8662 0.8667

Bi-LSTM 0.9320 0.9054 0.9041 0.9038

ST-TR-PD 0.9203 0.9213 0.9203 0.9213

ST-TR-HC 0.9124 0.9129 0.9124 0.9129

ST-TR 0.9065 0.9074 0.9065 0.9064

ST-GCN-PD 0.9329 0.9348 0.9321 0.9332

ST-GCN-HC 0.9386 0.9383 0.9386 0.9386

ST-GCN 0.9373 0.9382 0.9373 0.9372

TABLE 2 4-fold validation of ST-GCN.

Folds Accuracy Precision Recall F1-score

Fold-1 0.9360 0.9381 0.9327 0.9353

Fold-2 0.9330 0.9372 0.9379 0.9375

Fold-3 0.9376 0.9391 0.9337 0.9363

Fold-4 0.9343 0.9367 0.9385 0.9375

evaluate the model’s generalizability. Finally, through interviews

and discussions with clinicians, we examined the role of model

parameters in enhancing model interpretability and the overall

credibility of the results.

3.1 Comparison of models

The performance of the ST-GCN was superior to ST-TR and

Bi-LSTM models in all metrics. The statistical analysis results are

shown in Table 1 [the Bi-LSTM and SVM model results form Jing

et al. (18)]. And the results of 4-fold validation is presented in

Table 2 regarding the classification results from the five classifiers,

ST-GCN demonstrated the best performance, requiring no data

preprocessing or feature engineering, as it simply uses continuous

raw depth images as input signals. ST-GCN achieved an average

precision, recall, and F1-score of 93.48%, 93.21%, and 93.32%.

The accuracy of the Bi-LSTM (93.20%) was similar to that of ST-

GCN (93.73%), while other metrics were about 3% lower (90.54%,

90.41%, 90.38%). The precision, recall, and F1-score of the ST-

TR were very close to those of Bi-LSTM, at 90.74%, 90.65%,

90.64%. Surprisingly, the accuracy of ST-TR (90.65%) was the

lowest among those deep learning models. This discrepancy may

be attributed to the smaller dataset size, fewer label categories, and

lower task complexity, which may not fully leverage the capabilities

of ST-TR.

3.2 Performance in di�erent participants

PD patients and HC exhibit distinct gait patterns, which

can impact the model’s performance. Separate training allows
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FIGURE 3

Illustration of joints and edges weights in di�erent ST-GCN layers (PD). More transparent edges represent lower weights, and smaller joint sizes

represent smaller weights.

the model to capture the unique characteristics of each

group, evaluate its generalizability, and identify necessary

adjustments to enhance accuracy. This approach ensures that

the model is both robust and reliable for both PD patients and

healthy individuals.

We evaluated the ST-GCN model using data from both the

PD and HC participants, and the results are presented in Table 1.

The accuracy, precision, recall, and F1-score for both groups

differed by < 1%.

3.3 Latent features interpretation

An analysis of the model’s weights indicates that the joints and

edges associated with the head exhibit progressively smaller weight

values. This observation aligns with real-world expectations, as the

spatial position of the head typically has limited relevance to the

overall image context. The diminishing weights assigned to the

head suggest that its contribution to the model’s decision-making

process is minimal, which is consistent with its reduced significance

in tasks where other body regions or spatial dynamics carry greater

informational value.

A comparison of the two Figures 3, 4 reveals relevant distinct

differences in the edge weights of the output layer between the

two groups under study. In the PD group, the model weights

of legs exhibit a marked asymmetry, characterized by one side

being significantly lighter while the other is darker. In contrast, the

model weights in the HC group display a relatively symmetrical

distribution. This pronounced asymmetry observed in the PD

group may be closely linked to the pathological characteristics

of PD, as its onset is often unilateral, with symptoms initially

manifesting predominantly on one side of the body. These

findings suggest that the asymmetric weight distribution in the PD

group could reflect underlying neural or behavioral asymmetries

associated with the disease.

4 Discussion

This study aimed to apply a state-of-the-art network for

spatiotemporal analysis, namely, ST-GCN for the gait analysis

in skeleton data in patients with PD. This model achieved

excellent accuracy in both PD patients and HC, while there

were significant differences in gait performance between PD

patients and healthy controls. PD patients had higher weights

in what joints and what edges, which was consistent with the

existing research. Due to gait being a crucial motor function in

daily life, decreased gait performance is closely associated with

the quality of life. Therefore, recognition and monitoring of

gait is important for the diagnosis, treatment, and prognosis of

PD patients. Deep learning techniques like ST-GCN make gait

assessment more accurate, making PD more feasible and reliable.

Furthermore, this spatiotemporal model helps to reveal potential
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FIGURE 4

Illustration of joints and edges weights in di�erent ST-GCN layers (HC). More transparent edges represent lower weights, and smaller joint sizes

represent smaller weights.

disease characteristics of PD, thereby assisting physicians in better

understanding PD.

The SVM results show significant intermittent jumps,

indicating abrupt transitions between different gait states,

which is inconsistent with natural human walking patterns.

In interviews, clinicians noted that if they observed predicted

results that were markedly different from actual user behavior

and if the model’s outputs were unstable, they would seriously

question the system’s reliability. As a result, they would be

unlikely to consider such information when making diagnostic

decisions.

After feature design and extraction, LSTM captures time-

series information and provides reliable user behavior recognition.

Because clinicians do not need to address issues such as feature

selection, model fine-tuning, or adaptability to new users, they can

generally allow this method.

However, clinicians interact with a large and diverse population

of PD patients daily, leading to significant variability between

individuals. Moreover, as PD progresses in a given patient,

their motor function continues to decline, causing changes in

their movement patterns. Given these factors, the performance

of features used in the SVM and Bi-LSTM methods on

offline datasets may not directly translate to real-world clinical

diagnosis. ST-GCN, on the other hand, takes user motion data

as input, allowing the model to autonomously learn motion

features that capture both spatial and temporal information.

This reduces the reliance on manual annotation and rule

formulation, offering stronger generalization capabilities for real-

world applications. Overall, the ST-GCN model’s algorithm is a

more suitable choice for gait assessment tasks, particularly in

clinical settings.

Compared to black-box models that only provide classification

results, when clinicians are shown the weight information from

each layer of the ST-GCN and engage in discussions regarding the

illustration of joints and edge weights across different populations

(PD, HC, PD with left-foot motor impairment, and PD with

right-foot motor impairment), 4 out of 6 clinicians expressed that

our approach offers significant potential. This method not only

helps them better understand the model’s decision-making process,

thereby increasing their trust in its predictions, but also mitigates

biases toward artificial intelligence (AI). As a result, they are more

inclined to consider the model’s outputs, particularly when the

model’s results are presented alongside the original video without

any discrepancies.

The description of the movement process has the potential

to calculate additional gait parameters. However, we have not

yet systematically demonstrated this capability, nor have we

provided direct evidence regarding the specific improvement in

accuracy offered by this method compared to traditional scale-

based measurements.
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