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Objective: Early differentiation of stroke etiology in acute large vessel occlusion 
stroke (LVOS) is crucial for optimizing endovascular treatment strategies. This 
study aimed to develop and validate a prediction model for pre-procedural 
etiological differentiation based on admission laboratory parameters.

Methods: We conducted a retrospective cohort study at a comprehensive 
stroke center, enrolling consecutive patients with acute LVOS who underwent 
endovascular treatment between January 2018 and October 2024. The study 
cohort (N = 415) was split into training (n = 291) and validation (n = 124) sets 
using a 7:3 ratio. We applied machine learning techniques—the Boruta algorithm 
followed by least absolute shrinkage and selection operator regression—for 
variable selection. The final predictive model was constructed using multivariable 
logistic regression. Model performance was evaluated through the area under 
the receiver operating characteristic curve (AUC), calibration plots, and decision 
curve analysis. We then developed a web-based calculator to facilitate clinical 
implementation.

Results: Of 415 enrolled patients, 199 (48.0%) had cardioembolism (CE). The 
final model incorporated six independent predictors: age [adjusted odds ratio 
(aOR) 1.03], male sex (aOR 0.35), white blood cell count (aOR 0.86), platelet-
large cell ratio (aOR 1.06), aspartate aminotransferase (aOR 1.02), and non-
high-density lipoprotein cholesterol (aOR 0.75). The model demonstrated good 
discriminatory ability in both the training set (AUC = 0.802) and the validation 
set (AUC = 0.784). Decision curve analysis demonstrated consistent clinical 
benefit across threshold probabilities of 20%–75%.

Conclusion: We developed and internally validated a practical model using 
routine admission laboratory parameters to differentiate between CE and large 
artery atherosclerosis in acute LVOS. This readily implementable tool could aid 
in preoperative decision-making for endovascular intervention.

KEYWORDS

large vessel occlusion, stroke etiology, cardioembolism, laboratory biomarkers, 
prediction model

OPEN ACCESS

EDITED BY

Jean-Claude Baron,  
University of Cambridge, United Kingdom

REVIEWED BY

Ozge Altintas Kadirhan,  
Kırklareli University, Türkiye
Qazi Zeeshan,  
University of Pittsburgh Medical Center, 
United States

*CORRESPONDENCE

Liangyi Chen  
 chenliangyizsyy@126.com

†These authors have contributed equally to 
this work

RECEIVED 27 January 2025
ACCEPTED 10 April 2025
PUBLISHED 25 April 2025

CITATION

Gao W, Zhu R, She J, Huang R, Cai L, Jin S, 
Lin Y, Lin J, Chen X and Chen L (2025) 
Development and validation of a blood 
biomarker-based model for differentiating 
stroke etiology in acute large vessel 
occlusion.
Front. Neurol. 16:1567348.
doi: 10.3389/fneur.2025.1567348

COPYRIGHT

© 2025 Gao, Zhu, She, Huang, Cai, Jin, Lin, 
Lin, Chen and Chen. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 25 April 2025
DOI 10.3389/fneur.2025.1567348

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2025.1567348&domain=pdf&date_stamp=2025-04-25
https://www.frontiersin.org/articles/10.3389/fneur.2025.1567348/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1567348/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1567348/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1567348/full
mailto:chenliangyizsyy@126.com
https://doi.org/10.3389/fneur.2025.1567348
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2025.1567348


Gao et al. 10.3389/fneur.2025.1567348

Frontiers in Neurology 02 frontiersin.org

Introduction

Acute ischemic stroke remains a leading cause of global mortality 
and disability, claiming approximately 5 million lives annually (1). 
Large vessel occlusion stroke (LVOS), characterized by rapid clinical 
deterioration and poor outcomes, represents a particularly devastating 
subtype (2). Cardioembolism (CE) and large artery atherosclerosis 
(LAA) are the primary etiologies of LVOS, collectively accounting for 
94.0% of all cases (3, 4). Endovascular thrombectomy has emerged as 
a crucial breakthrough in improving the outcomes of LVOS patients 
by achieving timely recanalization and salvaging the ischemic 
penumbra (5). However, the optimal endovascular treatment strategy 
varies depending on the underlying etiology. Although stent retrievers 
demonstrate similar initial recanalization rates in both etiologies, 
atherosclerotic occlusions often face the risk of re-occlusion due to in 
situ stenosis and platelet activation, frequently necessitating rescue 
treatments such as balloon angioplasty or stenting (6). Furthermore, 
direct aspiration techniques have shown significantly better efficacy in 
patients with CE compared to those with atherosclerotic lesions (7, 8). 
Therefore, accurate preoperative identification of the occlusion 
mechanism is crucial for determining the optimal treatment strategy.

However, current methods for etiological differentiation have 
limitations. Assessments based on baseline neuroimaging or 
preoperative angiographic features (e.g., presence of a stump, tapered 
occlusion, or truncal-type occlusion) heavily rely on operator 
experience (3, 9, 10), while predictive models based on cardiovascular 
risk factors and medical history are limited by potential underdiagnosis 
and variability in patient reporting (11). In contrast, admission 
laboratory examinations, as routinely required items before 
endovascular treatment, offer significant advantages in terms of 
universal accessibility, objectivity, and cost-effectiveness. Nevertheless, 
the potential of these parameters in predicting LVOS etiology has not 
been systematically explored.

We sought to develop and validate a predictive model using 
admission laboratory parameters to differentiate between CE and 
LAA in LVOS patients. These readily available biomarkers may reflect 
distinct pathophysiological processes and guide the selection of 
optimal endovascular strategies.

Methods

Study design and population

This study was a retrospective observational study based on an 
electronic medical record database. We consecutively enrolled patients 
with LVOS who underwent endovascular thrombectomy at 
Zhongshan Hospital of Xiamen University between January 2018 and 
October 2024. The study protocol was approved by the hospital’s ethics 
committee, which waived the requirement for informed consent due 
to the retrospective nature of the research.

The inclusion criteria were as follows: (1) age ≥18 years; (2) 
received thrombectomy treatment at our hospital within the 
appropriate time window (onset-to-puncture time ≤6 h for anterior 
circulation LVOS, or 6–24 h after onset but deemed suitable for 
endovascular treatment based on rigorous imaging evaluation; time 
window ≤24 h for posterior circulation LVOS); (3) presence of large 
vessel occlusion confirmed by computed tomography angiography or 

intraoperative digital subtraction angiography (DSA), with etiology 
classified as CE or LAA. This inclusion was justified because all blood 
samples were collected prior to any therapeutic interventions 
(including thrombolysis), and thrombolytic therapy does not 
significantly influence the differentiation of stroke etiology. Therefore, 
thrombolysis status was not considered an exclusion criterion. The 
exclusion criteria included: (1) large vessel occlusion caused by other 
etiologies, such as arterial dissection, hypercoagulable state, 
malignancy, hematological disorders, vasculitis, or vascular 
malformations (e.g., Moyamoya disease); (2) presence of severe 
cardiac, hepatic, or renal dysfunction, or hematological disorders; (3) 
incomplete emergency laboratory examinations or tests performed 
outside our hospital. The patient selection process is presented in 
Supplementary Figure 1.

Sample size calculation

We calculated the sample size based on the events per variable 
criterion, which is a widely accepted method for statistical analysis. In 
our training set, the proportion of CE was 0.47. Considering our 
intention to include six predictive variables and setting the EPV at 10, 
we calculated the required sample size using the following formula:

 
× ×

= = =
− −

Number of Cariables EPV 6 10Sample Size 113
1 Invidence Rate 1 0.47

Data collection and laboratory analysis

We systematically collected demographic characteristics and 
results of emergency electrocardiographic examinations. All data were 
independently collected and recorded by two specially trained 
neurologists following a standardized protocol, and cross-checked by 
other researchers to ensure data accuracy and completeness.

Blood samples were collected immediately upon emergency 
admission and before any therapeutic interventions. All tests were 
performed in the central laboratory of our hospital using standardized 
methods and regularly calibrated automated analyzers, strictly 
adhering to the manufacturers’ operating instructions. To ensure the 
accuracy of the results, all blood samples were processed within 
30 min of collection. Laboratory parameters included: (1) 
hematological parameters, measured using a fully automated 
hematology analyzer, including white blood cell series (total white 
blood cell count and counts and percentages of neutrophils, 
lymphocytes, and monocytes), red blood cell series (red blood cell 
count, hemoglobin, hematocrit, mean corpuscular volume, mean 
corpuscular hemoglobin, mean corpuscular hemoglobin 
concentration, and red cell distribution width), as well as platelet 
hematocrit, platelet distribution width, and platelet-large cell ratio; (2) 
coagulation function indicators, measured using an automated 
coagulation analyzer, including fibrinogen and D-dimer levels; (3) 
biochemical parameters, measured using a fully automated 
biochemical analyzer, including protein metabolism (total protein, 
albumin, globulin, albumin/globulin ratio), liver function (alanine 
aminotransferase, aspartate aminotransferase), lipid profile 
(triglycerides, total cholesterol, high-density lipoprotein cholesterol, 
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low-density lipoprotein cholesterol), and renal function (blood urea 
nitrogen, creatinine, uric acid).

Calculation of composite biomarkers

Based on existing evidence suggesting that composite biomarkers 
may have more stable and accurate predictive value than single 
indicators, we calculated the following composite indicators based on 
routine laboratory test results and divided them into three categories:

 1 Inflammation-related indicators:

Neutrophil-to-lymphocyte ratio (NLR) = neutrophil count / 
lymphocyte count.

Systemic inflammation response index (SIRI) = (neutrophil count 
× monocyte count) / lymphocyte count.

 2 Metabolism-related indicators:

Non-high-density lipoprotein cholesterol (Non-HDL 
cholesterol) = total cholesterol (mmol/L) − high-density lipoprotein 
cholesterol (mmol/L).

Non-high-density lipoprotein cholesterol to high-density lipoprotein 
cholesterol ratio (NHHR) = Non-HDL-C (mmol/L) / HDL-C (mmol/L).

Hemoglobin to red blood cell distribution width ratio 
(HRR) = (hemoglobin (g/L) × 0.1) / red cell distribution width 
coefficient of variation (%).

Triglyceride-glucose index (TyG) = ln[(triglycerides 
(mmol/L) × 88.57) × (glucose (mmol/L) × 18.0156) / 2].

 3 Organ function-related indicators:

Blood urea nitrogen-to-albumin ratio (BAR, mg/g) = (urea 
(mmol/L) × 2.801) / (albumin (g/L) × 0.1).

Stroke etiology classification

The determination of stroke etiology was based on a comprehensive 
assessment of clinical characteristics, risk factors, auxiliary examination 
results, and findings during endovascular treatment. All patients 
underwent a thorough etiological evaluation during hospitalization, 
including detailed history taking, cardiovascular risk factor assessment 
(hypertension and diabetes), and systematic diagnostic investigations 
(emergency electrocardiography, 24-h Holter monitoring, carotid 
ultrasound, right heart contrast echocardiography, transthoracic 
echocardiography, and bilateral lower extremity venous ultrasound).

According to TOAST criteria (11, 12) and considering the findings 
during endovascular treatment, we classified patients into the LAA 
group and the CE group. The diagnostic criteria for LAA were as 
follows: digital subtraction angiography immediately after 
thrombectomy showed significant stenosis (>50% or tendency for 
re-occlusion after successful reperfusion) in the responsible vessel, with 
corresponding atherosclerotic changes confirmed by CT or MR 
angiography, while excluding high-risk sources of cardioembolism. The 
diagnostic criteria for CE were as follows: complete recanalization after 
the thrombectomy, no evidence of atherosclerosis, and the presence of 

a definite high-risk source of cardioembolism, including mechanical 
valves, mitral stenosis with atrial fibrillation, atrial fibrillation (except 
lone atrial fibrillation), left atrial/left atrial appendage thrombus, sick 
sinus syndrome, recent myocardial infarction (<4 weeks), left 
ventricular thrombus, or patent foramen ovale with atrial septal 
aneurysm. For patients with suspected cardioembolism, repeated 
electrocardiographic monitoring was performed postoperatively to 
detect potential paroxysmal atrial fibrillation.

Patients with multiple etiologies or unclear etiology were excluded 
from the study. The final etiological classification of all patients was 
jointly assessed by an attending physician and two interventional 
radiologists, with consensus reached through team discussion in case 
of disagreement.

Statistical analysis

Categorical variables were described as frequencies (percentages) 
[n (%)], and comparisons between groups were performed using 
Pearson’s chi-square test or Fisher’s exact test. The normality of 
continuous variables was assessed using the Shapiro–Wilk test. 
Normally distributed variables were presented as mean ± standard 
deviation, and comparisons between groups were performed using the 
independent samples t-test; non-normally distributed variables were 
presented as median (interquartile range), and comparisons between 
groups were performed using the Mann–Whitney U test.

The study cohort was randomly divided into a training set 
(n = 291) and a validation set (n = 124) at a 7:3 ratio. In the training 
set, we first used the Boruta algorithm for high-dimensional data 
screening to preliminarily determine potential predictive variables. To 
avoid overfitting and multicollinearity issues, we further optimized the 
variable selection process based on the initial screening results using 
least absolute shrinkage and selection operator (LASSO) regression. 
Finally, we used a multivariable logistic regression model to identify 
independent risk factors and construct a nomogram for predicting the 
etiology of acute LVOS. To facilitate the application of the model in 
clinical practice, we developed a web-based interactive nomogram 
tool using the Shiny package in R.

The discriminative ability of the predictive model was assessed using 
receiver operating characteristic (ROC) curves, and the area under the 
ROC curve (AUC) and its 95% confidence interval (CI) were reported. 
The AUC ranges from 0.5 (no discrimination) to 1.0 (perfect 
discrimination). The calibration ability of the model was evaluated using 
calibration plots, which assess the accuracy of the model by comparing 
the predicted probabilities with the actual observed probabilities. We also 
used decision curve analysis (DCA) to evaluate the clinical net benefit of 
the model at different threshold probabilities. Statistical analyses were 
performed using two-sided tests, and the significance level was set at 
α = 0.05. All statistical analyses were conducted using R software 
(Version 4.2.2, R Foundation for Statistical Computing, Vienna, Austria).

Results

Demographics and baseline characteristics

A total of 415 patients with LVOS who received MT treatment 
were ultimately included in this study (Table  1). Patients were 
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TABLE 1 Baseline clinical, and laboratory characteristics of patients with emergent large vessel occlusion stroke in the training and internal test 
cohorts.

Variables Overall Training cohort Internal test cohort p-value

N = 415 N = 291 N = 124

Age, years 68 (58, 76) 67 (57, 75) 70 (59, 78) 0.119

Sex, male 281 (67.7) 204 (70.1) 77 (62.1) 0.110

Stroke etiology 0.363

  Large-artery atherosclerosis 214 (51.82) 155 (53.26) 59 (48.36)

  Cardioembolism 199 (48.18) 136 (46.74) 63 (51.64)

Positive emergency ECG findings 128 (30.99) 83 (28.52) 45 (36.89) 0.094

Complete blood count

  White blood cell, ×109/L 8.6 (6.6, 11.4) 8.6 (6.7, 11.2) 8.3 (6.3, 11.9) 0.678

  Neutrophils count, ×109/L 6.0 (4.3, 9.0) 6.1 (4.4, 9.0) 5.7 (4.2, 8.8) 0.586

  Lymphocytes count, ×109/L 1.48 (1.02, 2.23) 1.45 (1.00, 2.20) 1.50 (1.07, 2.28) 0.606

  Monocytes, ×109/L 0.46 (0.34, 0.61) 0.47 (0.36, 0.61) 0.43 (0.32, 0.62) 0.328

  Neutrophil Percentage, % 74 (63, 83) 74 (63, 83) 74 (64, 83) 0.921

  Lymphocyte Percentage, % 18 (12, 28) 18 (12, 28) 18 (12, 28) 0.817

  Red blood cells, ×1012/L 4.55 (4.13, 4.97) 4.56 (4.14, 5.00) 4.47 (4.10, 4.86) 0.233

  Hemoglobin, g/L 139 (124, 150) 139 (124, 150) 138 (126, 148) 0.688

  Hematocrit, % 41.4 (38.3, 44.6) 41.7 (38.5, 44.8) 41.2 (38.0, 43.9) 0.533

  MCV, fL 91.2 (87.9, 95.2) 91.1 (87.8, 94.9) 91.9 (88.7, 95.5) 0.208

  MCH, pg 30.60 (29.35, 31.90) 30.40 (29.20, 31.80) 30.80 (29.50, 31.90) 0.153

  MCHC, g/L 334 (325, 343) 333 (325, 341) 335 (326, 343) 0.360

  RDW-CV, % 13.10 (12.50, 13.95) 13.10 (12.60, 14.00) 13.00 (12.48, 13.73) 0.375

  Platelet distribution width, fL 11.00 (9.70, 12.80) 11.00 (9.70, 12.95) 10.70 (9.70, 12.63) 0.581

  Platelet-large cell ratio, % 23 (19, 29) 23 (19, 29) 22 (19, 28) 0.584

Biochemical parameters

  Total protein, g/L 72 (68, 75) 72 (68, 76) 71 (68, 75) 0.319

  Albumin, g/L 40.2 (37.6, 42.4) 40.4 (37.6, 42.6) 39.6 (37.3, 42.1) 0.263

  Globulin, g/L 31.5 (28.5, 34.4) 31.9 (28.4, 34.4) 30.8 (28.8, 34.5) 0.698

  Albumin to globulin ratio 1.28 ± 0.20 1.28 ± 0.20 1.27 ± 0.20 0.579

  Triglycerides, mmol/L 1.23 (0.86, 1.82) 1.25 (0.86, 1.77) 1.20 (0.85, 1.90) 0.969

  Total cholesterol, mmol/L 4.73 (3.93, 5.47) 4.73 (3.89, 5.47) 4.72 (4.11, 5.45) 0.527

  HDL cholesterol, mmol/L 1.15 (0.99, 1.39) 1.15 (0.97, 1.37) 1.17 (1.03, 1.45) 0.073

  LDL cholesterol, mmol/L 3.07 (2.49, 3.68) 3.04 (2.45, 3.70) 3.13 (2.62, 3.60) 0.490

  Alanine aminotransferase, U/L 16 (11, 23) 17 (12, 24) 15 (11, 20) 0.112

  Aspartate aminotransferase, U/L 23 (19, 30) 23 (19, 30) 23 (19, 30) 0.445

  Blood urea nitrogen, mmol/L 6.00 (4.80, 7.12) 5.90 (4.65, 7.02) 6.13 (5.03, 7.37) 0.281

  Creatinine, μmol/L 74 (61, 91) 74 (61, 91) 73 (63, 91) 0.785

  Uric acid, μmol/L 390 (322, 455) 394 (321, 456) 381 (325, 445) 0.505

Coagulation parameters

  D-dimer, mg/L FEU 1.4 (0.5, 2.9) 1.5 (0.5, 2.8) 1.4 (0.5, 3.2) 0.880

  Fibrinogen, g/L 3.06 (2.62, 3.66) 3.05 (2.63, 3.58) 3.08 (2.62, 3.82) 0.576

Composite biomarkers

  NLR 4.1 (2.3, 7.0) 4.1 (2.3, 7.1) 4.1 (2.2, 6.8) 0.809

  SIRI 1.8 (1.0, 3.3) 1.8 (1.0, 3.4) 1.6 (0.9, 2.9) 0.332

  HRR 1.06 (0.92, 1.17) 1.06 (0.92, 1.17) 1.04 (0.94, 1.15) 0.958

(Continued)
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randomly allocated to the training cohort (n = 291) and internal test 
cohort (n = 124) at a 7:3 ratio. Among all patients, 214 (51.82%) were 
classified as LAA, and 199 (48.18%) as CE. Of these, 128 (30.99%) 
patients had atrial fibrillation on admission emergency 
electrocardiography, but 46% of CE patients had no obvious 
abnormalities on admission electrocardiography. The training and test 
cohorts showed no significant differences in baseline characteristics 
such as age [67 (57–75) years vs. 70 (59–78) years, p = 0.119], sex 
(male 70.1% vs. 62.1%, p = 0.110), stroke etiology (LAA 53.26% vs. 
48.36%, p = 0.363), and laboratory parameters (Table 1). Overall, the 
baseline characteristics were evenly distributed between the training 
and internal test cohort, supporting the validity of the predictive 
model established in this study.

Comparison of laboratory parameters in 
the training cohort

In the emergency admission laboratory examinations of the 
training cohort (Table 2), CE patients exhibited significantly different 
demographic and biomarker characteristics compared to the LAA 
group. CE patients were older [72 (62–80) vs. 63 (55–70) years, 
p < 0.001] and had a higher proportion of females (42.6% vs. 18.7%, 
p < 0.001). Emergency hematological tests showed lower levels of 
inflammatory markers in the CE group, as evidenced by lower white 
blood cell count [7.8 (6.3–9.7) × 109/L vs. 9.4 (7.5–12.9) × 109/L, 
p < 0.001] and neutrophil count [5.2 (3.9–7.4) × 109/L vs. 6.6 (5.1–
11.0) × 109/L, p < 0.001]. Moreover, CE patients had significantly 
lower hemoglobin levels [135 (122–145) vs. 143 (129–154) g/L, 
p < 0.001] but markedly higher platelet-large cell ratio [26% (20–31%) 
vs. 22% (18–27%), p < 0.001].

Biochemical tests at admission revealed that CE patients generally 
had lower lipid levels, including total cholesterol [4.45 (3.49–5.14) 
mmol/L vs. 5.04 (4.21–5.80) mmol/L, p < 0.001], LDL cholesterol 
(2.85 ± 0.94 mmol/L vs. 3.29 ± 0.92 mmol/L, p < 0.001), and 
non-HDL cholesterol [3.23 (2.41–3.79) mmol/L vs. 3.84 (3.01–4.48) 
mmol/L, p < 0.001]. Characteristic changes in the CE group also 
included significantly elevated blood urea nitrogen levels [6.41 (5.10–
7.81) mmol/L vs. 5.50 (4.60–6.60) mmol/L, p < 0.001] and aspartate 
aminotransferase levels [26 (21–33) U/L vs. 22 (18–26) U/L, 
p < 0.001].

Regarding composite biomarkers, the CE group exhibited lower 
systemic inflammation response index (SIRI: 1.48 vs. 2.06, p = 0.003) 
and non-HDL cholesterol to HDL cholesterol ratio (NHHR: 2.61 vs. 

3.26, p < 0.001) but higher blood urea nitrogen to albumin ratio [4.55 
(3.60–5.90) vs. 3.66 (3.04–4.71) mg/g, p < 0.001].

Variable selection for the prediction model

To construct a robust predictive model, we employed the Boruta 
algorithm, a feature selection method based on random forest, to 
assess the importance of 40 candidate variables (Figure 1). With the 
maximum number of iterations set to 100, the algorithm ultimately 
identified 13 important predictive variables: age, sex, inflammatory 
status (white blood cell count, neutrophil count), lipid parameters 
(total cholesterol, low-density lipoprotein cholesterol, non-high-
density lipoprotein cholesterol), platelet-large cell ratio, platelet 
distribution width, blood urea nitrogen, aspartate aminotransferase, 
blood urea nitrogen to albumin ratio, and D-dimer. Additionally, two 
variables (hemoglobin and hemoglobin to red blood cell distribution 
width ratio) were marked as tentatively important, requiring further 
evaluation. The remaining 25 variables did not demonstrate significant 
predictive value.

To further optimize the prediction model and avoid overfitting 
and multicollinearity, we  performed least absolute shrinkage and 
selection operator (LASSO) regression analysis on the 13 variables 
selected by the Boruta algorithm (Figure 2). The model was trained 
using 10-fold cross-validation and 100 candidate λ values. At the 
optimal λ value, seven key predictive variables were finally determined: 
age, sex, white blood cell count, platelet-large cell ratio, aspartate 
aminotransferase, blood urea nitrogen, and non-high-density 
lipoprotein cholesterol.

Logistic regression analysis and model 
development

Univariate and multivariate logistic regression analyses were 
performed on the seven variables selected by LASSO regression 
(Table  3). Univariate analysis showed that all variables were 
significantly associated with cardioembolism (all p < 0.01). In the 
multivariate model, six independent predictors maintained statistical 
significance: increasing age (adjusted odds ratio [aOR] 1.03, 95% 
confidence interval [CI] 1.01–1.05), elevated platelet-large cell ratio 
(aOR 1.06, 95% CI 1.02–1.10), and higher aspartate aminotransferase 
levels (aOR 1.02, 95% CI 1.00–1.04) were significantly associated with 
an increased risk of CE (all p < 0.05). Conversely, male sex (aOR 0.35, 

TABLE 1 (Continued)

Variables Overall Training cohort Internal test cohort p-value

N = 415 N = 291 N = 124

  NHHR 2.95 (2.15, 3.83) 2.97 (2.14, 3.89) 2.84 (2.15, 3.69) 0.720

  Non-HDL cholesterol, mmol/L 3.47 (2.73, 4.18) 3.44 (2.70, 4.20) 3.50 (2.87, 4.14) 0.650

  Triglyceride-glucose index 10.37 (9.98, 10.75) 10.37 (9.98, 10.73) 10.30 (9.97, 10.76) 0.999

  BAR, mg/g 4.20 (3.32, 5.13) 4.14 (3.22, 5.08) 4.33 (3.48, 5.40) 0.236

Values are presented as median (interquartile range) or mean ± standard deviation, as appropriate. MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC, mean 
corpuscular hemoglobin concentration; RDW-CV, red blood cell distribution width coefficient of variation; HDL, high-density lipoprotein; LDL, low-density lipoprotein; NLR, neutrophil-to-
lymphocyte ratio; SIRI, systemic inflammation response index; HRR, hemoglobin-to-red cell distribution width ratio; NHHR, non-HDL-to-HDL cholesterol ratio; BAR, blood urea-to-
albumin ratio; FEU, fibrinogen equivalent units.
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TABLE 2 Comparison of baseline laboratory parameters between large-artery atherosclerosis and cardioembolism groups in the training cohort of 
patients with large vessel occlusion stroke.

Variables LAA group (n = 155) CE group (n = 136) p value

Age, years 63 (55, 70) 72 (62, 80) <0.001

Sex, male 126 (81.3) 78 (57.4) <0.001

Complete blood count

  White blood cell count, ×109/L 9.4 (7.5, 12.9) 7.8 (6.3, 9.7) <0.001

  Neutrophils count, ×109/L 6.6 (5.1, 11.0) 5.2 (3.9, 7.4) <0.001

  Lymphocytes count, ×109/L 1.50 (1.05, 2.35) 1.42 (0.98, 2.00) 0.248

  Monocytes count, ×109/L 0.51 (0.38, 0.64) 0.43 (0.34, 0.58) 0.008

  Neutrophil Percentage, % 76 (66, 84) 70 (61, 83) 0.056

  Lymphocyte Percentage, % 17 (10, 26) 21 (12, 29) 0.064

  Red blood cells, ×1012/L 4.71 (4.28, 5.12) 4.44 (4.06, 4.87) 0.001

  Hemoglobin, g/L 143 (129, 154) 135 (122, 145) <0.001

  Hematocrit, % 42.3 (39.0, 46.2) 40.5 (36.8, 43.4) 0.002

  Mean corpuscular volume, fL 90 (88, 94) 93 (89, 96) 0.008

  Mean corpuscular hemoglobin, pg 30.30 (29.30, 31.75) 30.90 (29.10, 31.83) 0.383

  MCHC, g/L 335 (327, 344) 330 (324, 338) 0.002

  RDW-CV, % 13.00 (12.50, 13.60) 13.20 (12.68, 14.33) 0.013

  Platelet distribution width, fL 10.70 (9.50, 12.30) 11.60 (10.08, 13.23) 0.001

  Platelet-large cell ratio, % 22 (18, 27) 26 (20, 31) <0.001

Biochemical parameters

  Total protein, g/L 72 (68, 76) 72 (68, 76) 0.615

  Albumin, g/L 40.4 (37.6, 42.6) 40.6 (38.4, 43.2) 0.020

  Globulin, g/L 31.9 (28.4, 34.4) 31.4 (28.6, 33.9) 0.230

  Albumin to globulin ratio 1.27 (1.18, 1.39) 1.30 (1.19, 1.40) 0.615

  Triglycerides, mmol/L 1.35 (1.00, 1.85) 1.13 (0.79, 1.60) 0.004

  Total cholesterol, mmol/L 5.04 (4.21, 5.80) 4.45 (3.49, 5.14) <0.001

  HDL cholesterol, mmol/L 1.13 (0.98, 1.35) 1.17 (0.96, 1.39) 0.870

  LDL cholesterol, mmol/L 3.29 ± 0.92 2.85 ± 0.94 <0.001

  Alanine aminotransferase, U/L 16 (12, 23) 18 (12, 27) 0.075

  Aspartate aminotransferase, U/L 22 (18, 26) 26 (21, 33) <0.001

  Blood urea nitrogen, mmol/L 5.50 (4.60, 6.60) 6.41 (5.10, 7.81) <0.001

  Creatinine, μmol/L 73 (62, 91) 76 (60, 91) 0.690

  Uric acid, μmol/L 389 (320, 450) 402 (325, 464) 0.253

Coagulation parameters

  D-dimer, mg/L FEU 3.16 (2.71, 3.60) 3.02 (2.59, 3.54) 0.294

  Fibrinogen, g/L 1.0 (0.4, 2.6) 1.7 (0.9, 3.2) <0.001

Composite biomarkers

  NLR 4.4 (2.6, 8.2) 3.4 (2.2, 6.6) 0.058

  SIRI 2.06 (1.16, 4.16) 1.48 (0.91, 2.84) 0.003

  HRR 1.11 (0.95, 1.21) 1.01 (0.86, 1.13) <0.001

  NHHR 3.26 (2.49, 3.99) 2.61 (1.91, 3.46) <0.001

  Non-HDL cholesterol, mmol/L 3.84 (3.01, 4.48) 3.23 (2.41, 3.79) <0.001

  Triglyceride-glucose index 10.46 (10.03, 10.80) 10.26 (9.92, 10.62) 0.013

  BAR, mg/g 3.66 (3.04, 4.71) 4.55 (3.60, 5.90) <0.001

Values are presented as median (interquartile range) unless otherwise specified; mean ± standard deviation is used for normally distributed variables. LAA, large-artery atherosclerosis; CE, 
cardioembolism; MCHC, mean corpuscular hemoglobin concentration; RDW-CV, red blood cell distribution width coefficient of variation; HDL, high-density lipoprotein; LDL, low-density 
lipoprotein; NLR, neutrophil-to-lymphocyte ratio; SIRI, systemic inflammation response index; HRR, hemoglobin-to-red cell distribution width ratio; NHHR, non-HDL-to-HDL cholesterol 
ratio; BAR, blood urea-to-albumin ratio.
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95% CI 0.19–0.63, p < 0.001), higher white blood cell count (aOR 0.86, 
95% CI 0.79–0.93, p < 0.001), and elevated non-high-density 
lipoprotein cholesterol (aOR 0.75, 95% CI 0.59–0.95, p = 0.017) were 
associated with a reduced risk of CE. Blood urea nitrogen lost 
statistical significance after adjusting for other factors (aOR 1.08, 95% 
CI 0.96–1.21, p = 0.201).

Based on these independent predictors, we  developed a 
nomogram for assessing the risk of cardioembolism in patients with 
acute LVOS (Figure  3). To facilitate clinical application, we  also 
constructed a web-based interactive predictive tool,1 enabling rapid 
assessment of individualized risk for patients.

1 https://gaoww.shinyapps.io/dynnomapp/

Model performance and clinical utility 
assessment

The predictive model demonstrated good discriminatory ability 
in the training cohort (AUC = 0.802, 95% CI 0.751–0.852), which was 
validated in the internal validation cohort (AUC = 0.784, 95% CI 
0.701–0.867) (Figure 4). ROC curve analysis of individual predictive 
variables showed that age had the highest discriminatory power 
(AUC = 0.679, 95% CI 0.616–0.743), followed by sex (AUC = 0.655, 
95% CI 0.592–0.718) and white blood cell count (AUC = 0.660, 95% 
CI 0.598–0.722).

Calibration plot assessment (Figure  5) revealed that the 
probabilities predicted by the model exhibited good consistency with 
the observed outcomes, a characteristic that was evident in both the 
training and internal validation cohorts. The calibration curve of the 
training cohort almost perfectly aligned with the ideal curve, while the 
internal validation cohort showed only slight deviations in the extreme 

FIGURE 1

Variable importance analysis using the Boruta algorithm for LVOS etiology prediction. (a) Boxplot showing the relative importance of laboratory 
parameters and composite biomarkers based on Boruta algorithm analysis. Green boxes represent confirmed important variables, yellow boxes 
represent tentatively important variables, and red boxes represent rejected variables. (b) Time series plot showing the convergence of importance 
scores over 100 iterations of the Boruta algorithm for confirmed (green), tentative (yellow), and rejected (red) variables.

FIGURE 2

LASSO regression analysis for variable selection in the prediction model. (a) LASSO coefficient profiles of the candidate variables plotted against the 
log(λ) values. Each colored line represents a variable’s coefficient path. The vertical dashed line represents the optimal λ value selected through cross-
validation. (b) Cross-validation error curve showing the binomial deviance (±1 SE) against log(λ). (c) Bar plot showing the standardized coefficients of 
the six variables selected by LASSO regression at the optimal λ value. Variables are ordered by the absolute magnitude of their coefficients, with sex 
showing the strongest association.
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ranges of predicted probabilities, indicating stable predictive accuracy 
of the model.

DCA further verified the clinical utility of the predictive model 
(Figure 5). The results showed that using the model to predict CE 
yielded significant net benefits within the threshold probability range 
of 20%–75%, demonstrating clear advantages over the strategies of 
“assuming all patients have CE” or “assuming all patients have non-CE.” 
This finding was consistently validated in the internal validation cohort.

Discussion

In this retrospective observational study, we found that 46% of 
patients ultimately diagnosed with CE had no obvious abnormalities 
on admission electrocardiography. Given the crucial importance of 
etiological differentiation in optimizing endovascular treatment 
strategies for LVOS, accurately identifying CE patients with negative 
electrocardiographic findings and those with LAA is of significant 
clinical relevance. Using machine learning methods, we developed and 
validated a predictive model based on readily available admission 
laboratory parameters. We identified six independent predictors: age, 
sex, white blood cell count, platelet-large cell ratio, aspartate 
aminotransferase, and non-high-density lipoprotein cholesterol. This 
integrated approach demonstrated robust discriminatory ability in 
both the training set (AUC = 0.802) and the internal validation set 
(AUC = 0.784), outperforming the predictive efficacy of any single 
indicator. Furthermore, we  revealed characteristic laboratory 
manifestations of CE, including a higher proportion of females, older 
age, attenuated inflammatory response, and lower lipid levels. Decision 
curve analysis showed that the model had significant clinical utility 
within a wide range of threshold probabilities (20%–75%).

Our findings are consistent with previous research, which has 
shown that patients with LVOS caused by CE are younger and have a 
higher proportion of males compared to those with LAA (13). 
Although these two subtypes exhibit characteristic differences in 
clinical presentation—CE often presents with sudden onset and rapid 
progression, while atherosclerotic stroke tends to manifest as 
progressive worsening and is frequently accompanied by a history of 
transient ischemic attacks—these clinical features are often difficult to 
accurately ascertain in the emergency setting. Previous studies have 
attempted to differentiate stroke etiology from multiple perspectives. 
Angiographic features have shown some value, with Jin et  al. (14) 
finding that a jet-like appearance is a specific imaging marker of 

atherosclerotic occlusion, and Yi et al. (15) confirming the significant 
diagnostic value of the microcatheter first-pass effect (90.9% vs. 12.8%, 
p < 0.001). However, these features can only be  confirmed during 
endovascular intervention and are difficult to guide preoperative 
decision-making. The development of clinical prediction tools has also 
made some progress, such as the scoring system constructed by Liao 
et al. (11) that integrates atrial fibrillation, blood pressure, neurological 
deficits, CT findings, and diabetes. However, this method is limited by 
multiple factors, including potential underdiagnosis of cardiovascular 
risk factors, differences in population health literacy, and the inability 
of patients with neurological deficits to accurately provide medical 
history. Moreover, the inclusion of complications discovered during 
hospitalization may not accurately reflect the preoperative state. 
Recently, Li et  al. (16) conducted a study from a metabolomics 
perspective, constructing a predictive model based on triglycerides and 
sphingolipids that demonstrated excellent discriminatory ability 
(AUC = 0.889). Despite its superior performance, the complexity and 
high cost of metabolomics analysis limit its application in clinical 
practice, especially in primary healthcare settings. As a routinely 
required item before endovascular treatment, emergency laboratory 
examinations offer significant advantages, including universal 
accessibility, strong objectivity, and low cost. However, no studies have 
systematically explored the feasibility of constructing predictive models 
based on emergency laboratory indicators.

The different laboratory characteristics observed in our study may 
reflect the underlying pathophysiological differences between CE and 
LAA. The higher incidence of CE in elderly female patients is consistent 
with the increased prevalence of atrial fibrillation in this population, 
aligning with the established understanding of age and female sex as 
recognized risk factors for arrhythmia (17). In terms of lipid profiles, 
LAA patients exhibited significantly elevated levels of non-high-density 
lipoprotein cholesterol, which encompasses both remnant cholesterol 
and low-density lipoprotein cholesterol. Previous research has 
demonstrated that elevated remnant cholesterol levels can accelerate 
cholesterol accumulation within the arterial wall, promoting the 
progression of atherosclerosis and leading to cardiovascular events (18). 
Furthermore, studies have confirmed that elevated non-high-density 
lipoprotein cholesterol is a crucial determinant of culprit lesion plaque 
burden in acute coronary syndrome (19), directly correlating with the 
necrotic core volume of atherosclerotic plaques and exhibiting a stronger 
association with the progression of coronary atherosclerosis compared 
to low-density lipoprotein cholesterol (19, 20). These findings validate 
our study conclusions. Our analysis revealed that non-high-density 

TABLE 3 Univariate and multivariate logistic regression analysis for predicting cardioembolism in patients with large vessel occlusion stroke.

Variables Univariate analysis Multivariate analysis

OR (95% CI) p value OR (95% CI) p value

Age 1.05 (1.03, 1.07) <0.001 1.03 (1.01, 1.05) 0.014

Sex, male 0.31 (0.18, 0.52) <0.001 0.35 (0.19, 0.63) <0.001

White blood cell 0.84 (0.78, 0.90) <0.001 0.86 (0.79, 0.93) <0.001

Platelet-Large Cell Ratio 1.07 (1.03, 1.11) <0.001 1.06 (1.02, 1.10) 0.006

Aspartate aminotransferase 1.03 (1.01, 1.04) 0.003 1.02 (1.00, 1.04) 0.020

Blood urea nitrogen 1.19 (1.07, 1.32) 0.001 1.08 (0.96, 1.21) 0.201

Non-HDL cholesterol 0.64 (0.51, 0.79) <0.001 0.75 (0.59, 0.95) 0.017

Values are presented as odds ratio (OR) with 95% confidence interval (CI).
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FIGURE 3

Nomogram and web-based calculator for predicting cardioembolism in acute LVOS patients. (a) Nomogram for estimating the probability of 
cardioembolism. Points are assigned for each variable by drawing a vertical line from the variable value to the “Points” line. The sum of points plotted 
on the “Total Points” line corresponds to the predicted probability of cardioembolism on the “Risk of Y” line. (b) Screenshot of the web-based 
interactive calculator (available online at https://gaoww.shinyapps.io/dynnomapp/). The tool provides real-time probability estimates with 95% 
confidence intervals based on input laboratory values. The interface allows for rapid clinical assessment through slider-based input and immediate 
visual feedback.
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lipoprotein cholesterol demonstrated superior predictive value compared 
to low-density lipoprotein cholesterol in differentiating CE from LAA.

Inflammatory markers also showed significant differences between 
the two stroke subtypes. Patients with atherosclerotic stroke exhibited 
a more pronounced low-grade inflammatory state (21). This process 
involves complex interactions between lipid abnormalities and reduced 
cholesterol efflux, promoting the production of mononuclear cells in 
the hematopoietic system. Simultaneously, oxidized low-density 
lipoprotein triggers the release of epigenetically modified monocytes, 
which can sustain ongoing inflammatory responses. These 
phenotypically altered monocytes and macrophages exhibit adaptive 
immune responses rather than innate immune behavior, maintaining 
a persistent inflammatory state. In contrast, CE primarily originates 
from the acute detachment of intracardiac thrombi, with a lower degree 
of inflammatory involvement, which is consistent with our observation 
of lower white blood cell and monocyte counts in the CE group.

Furthermore, we found that higher aspartate aminotransferase 
levels were significantly associated with an increased risk of 
CE. However, the exact link between aspartate aminotransferase and 
AF remains unclear. Sinner et al. (22) reported that elevated ALT and 

AST concentrations were associated with an increased incidence of 
AF over a 10-year follow-up period (HR: 1.12, 95% CI: 1.01–1.24, 
p = 0.03). Nevertheless, two other prospective cohort studies failed to 
confirm this association (23, 24). Elevated aspartate aminotransferase 
levels may indicate subtle myocardial injury, as this enzyme is also 
present in cardiac tissue and can be released under conditions of mild 
myocardial stress. This finding could be  either a cause or a 
consequence of cardioembolic events, warranting further investigation.

We observed that the CE group exhibited a significantly increased 
platelet-large cell ratio, suggesting enhanced platelet turnover and 
activation (25). Physiological studies have shown that platelets have a 
lifespan of 3–6 days (26). Moreover, previous research has found that 
hemodynamic changes caused by underlying heart diseases, such as 
valvular heart disease, can lead to chronic platelet stress and activation 
(27). In contrast, atherosclerotic occlusion is usually secondary to 
acute plaque rupture, where platelet activation is a secondary response 
to exposed subendothelial components. The acute nature of 
atherosclerotic events may not be  sufficient to induce significant 
changes in platelet production and volume distribution. This temporal 
dynamics characteristic is consistent with the differences in platelet 

FIGURE 4

Receiver operating characteristic curves showing the discriminative performance of predictive variables and the integrated model. (a) ROC curves for 
individual predictive variables. (b) ROC curves comparing model performance in training and internal validation cohorts.

FIGURE 5

Calibration plots and decision curve analyses for model evaluation in training and validation cohorts. (a) Calibration plot for the training cohort 
(n = 291) showing excellent agreement between predicted and observed probabilities of cardioembolism. (b) Calibration plot for the internal validation 
cohort (n = 124). Although showing slight deviation at extreme probabilities, the model maintains good calibration across most of the probability range. 
(c) Decision curve analysis for the training cohort demonstrating the net benefit of the prediction model (blue line) compared to the strategies of 
treating all patients as CE (red line) or none as CE (green line). The model shows clinical utility across threshold probabilities of 20%–75%. (d) Decision 
curve analysis for the internal validation cohort confirming the model’s clinical utility, with consistent net benefit patterns observed in the training 
cohort.
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features observed between the two stroke subtypes. However, the 
underlying mechanisms warrant further exploration.

This study has several limitations. First, the retrospective single-
center study design may introduce selection bias. Second, although the 
model performed well in internal validation, external validation in 
different populations and healthcare settings is still required to confirm 
its generalizability. Third, our strategic decision to rely solely on 
laboratory parameters has both methodological advantages and 
limitations. This approach ensured standardization and objectivity, 
minimizing variability and reporting bias in clinical assessments. 
However, it may fail to capture all clinically relevant information. 
We acknowledge that the reporting and recording of cardiovascular risk 
factors can vary significantly between different healthcare institutions 
due to differences in health literacy, diagnostic capabilities, and 
documentation standards. For example, the diagnosis rates of atrial 
fibrillation, hypertension, and diabetes may differ substantially between 
tertiary hospitals and primary care facilities, or between urban and rural 
areas. Although our model based on laboratory tests maintains broad 
applicability, it may sacrifice some potential predictive power from 
comprehensive clinical information. Future research should consider 
developing region-specific models that integrate laboratory parameters 
with standardized clinical assessments, including emergency 
electrocardiography results and validated stroke scales. Such 
comprehensive models, calibrated according to local healthcare 
capabilities and population characteristics, may achieve higher predictive 
accuracy while maintaining practicality in specific healthcare settings.

Conclusion

We developed and internally validated a practical model using 
routine admission laboratory parameters to differentiate between CE 
and LAA in acute LVOS. The model’s robust discrimination and 
established clinical utility suggest its potential value in guiding 
endovascular intervention strategies. Beyond its predictive capability, 
our findings revealed distinct laboratory patterns between stroke 
subtypes, providing novel insights into their underlying 
pathophysiological mechanisms. This laboratory-based approach 
offers a readily implementable tool for rapid etiological assessment in 
emergency settings, particularly valuable when electrocardiographic 
findings are inconclusive. External validation across diverse 
populations and healthcare settings is warranted to confirm these 
findings and establish the model’s broader clinical applicability.
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SUPPLEMENTARY FIGURE 1

CONSORT flow diagram of patient selection and allocation. Flow diagram 
showing the patient selection process. From 535 initially screened patients 
with large vessel occlusion stroke who underwent endovascular 

thrombectomy, 120 were excluded based on predefined criteria. The 
remaining 415 patients were randomly allocated in a 7:3 ratio to the training 
cohort (n = 291) and validation cohort (n = 124), with cardioembolism (CE) 
and large artery atherosclerosis (LAA) distribution as indicated.
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