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Objective: This study evaluates the utility of artificial intelligence (AI) for 
automated segmentation of intracranial hematomas and surrounding oedema 
in non-contrast computed tomography (CT) images. Additionally, it aims to 
extract imaging features for developing machine learning models to predict 
hematoma expansion in acute spontaneous intracerebral hemorrhage (sICH).

Methods: Data from 183 patients with acute spontaneous hemorrhage, treated 
at Lianyungang Hospital Affiliated to Xuzhou Medical University between January 
2020 and December 2023, were retrospectively analyzed. Patients were divided 
into training (n = 128) and testing (n = 55) sets in a 7:3 ratio. CT images were 
segmented using United Imaging uAI software and both imaging features and 
clinical characteristics were extracted. Independent risk factors were identified 
through univariate analysis and least absolute shrinkage and selection operator 
(LASSO) regression. Machine learning algorithms were applied to construct 
predictive models for hematoma expansion. Model performance was evaluated 
using receiver operating characteristic (ROC) curves and the area under the 
curve (AUC).

Results: Eight feature parameters were extracted from the CT images. The 
comprehensive model achieved an AUC of 0.9027, with a sensitivity of 0.8235 
and specificity of 0.8831. A simplified model utilizing four imaging features 
yielded an AUC of 0.8897, with a sensitivity of 0.7451 and specificity of 0.9221, 
slightly underperforming compared to the comprehensive model. Incorporating 
the subjective ‘swirl sign’, identified as the most significant feature in univariate 
analysis, into the simplified model enhanced its performance. This optimized 
model achieved an AUC of 0.9524, with a sensitivity of 0.9412 and specificity of 
0.9091, surpassing both the comprehensive and simplified models.

Conclusion: The optimized model, based on CT imaging features of hematomas 
and surrounding oedema, offers a practical and reliable tool for predicting 
hematoma expansion in sICH. Its robust performance supports its utility in 
emergency settings to guide clinical decision-making effectively.
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1 Introduction

Cerebrovascular diseases are among the leading causes of 
mortality in urban and rural populations in China, with haemorrhagic 
stroke accounting for approximately 20–30% of all stroke cases (1). 
Spontaneous intracerebral hemorrhage (sICH), the most common 
subtype of haemorrhagic stroke (2), is frequently associated with early 
hematoma expansion (HE), a critical factor contributing to rapid 
neurological deterioration and poor clinical outcomes (3). Advances 
in artificial intelligence (AI) have facilitated the development of 
predictive models for hematoma expansion using radiomics and deep 
learning techniques (4, 5). However, the clinical utility of these models 
has been hindered by non-real-time data processing and non-intuitive 
outputs. Leveraging advancements in AI-based image segmentation, 
this study aims to employ automated segmentation of baseline 
non-contrast computed tomography (CT) scans to extract critical 
imaging features. These features are then utilized to develop a machine 
learning model for the rapid and efficient identification of hematoma 
expansion risks, enhancing decision-making in emergency settings.

2 Materials and methods

2.1 Study population

This retrospective study of patients with sICH admitted to The 
Affiliated Lianyungang Hospital of Xuzhou Medical University 
between January 2020 and December 2023. Inclusion criteria were as 
follows: (1) Age greater than 18 years; (2) Diagnosis of intracerebral 
hemorrhage confirmed via non-contrast head CT; (3) Initial head CT 
performed within 6 h of symptom onset, followed by a follow up CT 
within 24 h; (4) Availability of complete clinical and laboratory 
records. Exclusion criteria were as follows: (1) Presence of 
arteriovenous malformation, aneurysm, brain tumor or haemorrhagic 
transformation from cerebral infarction; (2) Lack of follow-up CT or 
prior surgical intervention before the first follow-up CT; (3) CT 
artifacts precluding accurate evaluation; (4) Recent anticoagulant 
therapy or history of coagulopathy. Patients were classified into 
expansion and non-expansion groups based on post-recheck CT 
findings for hematoma expansion, defined as either a ≥ 33% relative 
increase in baseline hematoma volume or an absolute increase of ≥ 
6 mL. Cases were randomly divided into training (n = 128) and testing 
(n = 55) sets using the random number generator in the Shukun 
Research Platform, maintaining a 7:3 ratio. A total of 183 patients with 
sICH were enrolled in the study. Among them, 86 patients exhibited 
hematoma expansion, while 97 patients showed no evidence of 
hematoma expansion (Figure 1).

2.2 Imaging protocol

Head imaging was performed using multi-slice spiral CT scanners 
(Discovery CT750, GE Healthcare, USA). Patients were positioned 

supine with a head-first orientation. Scans covered the skull base to 
the vertex, with a tube voltage of 120 kV, tube current of 200 mA, slice 
thickness of 5 mm, matrix size of 512 × 512 and thin-layer 
reconstruction at 1.25 mm.

2.3 Hematoma imaging segmentation and 
feature extraction

Baseline and follow-up CT images were retrieved from the PACS 
system in DICOM format and analyzed using United Imaging uAI 
software. The software automatically segmented hematomas within 
the brain parenchyma, surrounding oedema, midline structures and 
other intracranial regions, providing quantitative data, including 
hemorrhage diameters (short and long), hematoma volume, 
surrounding oedema volume, ventricular hematoma volume, midline 
shift and hematoma volume changes (Figure  2). The accuracy of 
automatic segmentation was reviewed by a senior neuroradiologist 
with 10 years of experience, who also identified baseline CT imaging 
features, including irregular shape, hypodensities, swirl sign, black 
hole sign, blend sign, satellite sign, island sign and fluid level (6–10).

Demographic and clinical data, including age, sex, history of 
hypertension and diabetes, diastolic and systolic blood pressure, Glasgow 
Coma Scale (GCS) score and laboratory parameters (white blood cell 
count, neutrophil count, lymphocyte count, neutrophil-to-lymphocyte 
ratio [NLR], platelet count, blood glucose, cholesterol, triglycerides, 
HDL, LDL, prothrombin time, PT activity, international normalized 
ratio [INR], activated partial thromboplastin time [APTT], thrombin 
time, fibrinogen and D-dimer), were collected for subsequent analysis.

2.4 Statistical analysis

Data analysis was conducted using the Shukun Research Platform. 
Univariate analyses were performed to evaluate clinical and imaging 
features. Categorical variables were assessed using the χ2 test, normally 
distributed continuous variables using the t-test and non-normally 
distributed continuous variables using the Mann–Whitney U test. 
Variables with statistically significant differences in univariate analyses 
(p < 0.05) were further analyzed using multivariate logistic regression 
to identify independent risk factors for hematoma expansion. A p-value 
of < 0.05 was considered statistically significant. Using the selected 
clinical and imaging features, predictive models were constructed in 
the training set employing logistic regression, random forest and 
support vector machine (SVM) algorithms. Model performance was 
assessed in the testing set by generating receiver operating characteristic 
(ROC) curves and calculating the area under the curve (AUC).

3 Results

A total of 183 patients with spontaneous intracerebral hemorrhage 
(sICH) were included in the study and randomly divided into a 
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training set (70%) and a testing set (30%). The training set comprised 
128 cases, with 51 in the expansion group and 77 in the non-expansion 
group. A total of 36 features were analyzed, encompassing 
demographic characteristics (e.g., age, sex), clinical history, laboratory 
data (e.g., blood pressure, blood glucose, complete blood count, 
coagulation parameters) and hematoma-related imaging features (e.g., 

hematoma size, short-to-long diameter ratio, surrounding oedema 
volume, swirl sign). Detailed data are provided in Table 1.

Univariate analysis revealed no significant differences in 
demographic or clinical laboratory variables between the expansion 
and non-expansion groups. However, significant differences were 
observed in imaging features, including initial hematoma volume, 

FIGURE 1

Flow chart for sICH patients.

FIGURE 2

Schematic diagram of imaging feature segmentation. (A) Initial non-contrast CT scan images of the brain at 2 h after onset; (B) Follow-up CT scan 
images at 6 h, showing hematoma expansion. Red area: hematoma within the brain parenchyma and its volume; Blue solid line: long and short 
diameters of the hematoma; Yellow dashed line area: volume of surrounding oedema; Yellow solid line area: hematoma within the ventricles; Green 
solid line: degree of midline shift. The image in panel A shows the presence of the ‘swirl sign’ within the hematoma.
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short-to-long diameter ratio, surrounding oedema volume, midline 
shift distance and the presence of hypodensities, swirl sign, black hole 
sign and island sign (p < 0.05), as shown in Table 1.

Using the eight selected imaging features, predictive models for 
hematoma expansion were constructed with logistic regression, 
random forest and SVM methods. The performance metrics, including 

TABLE 1 Univariate analysis for HE.

Evaluation Metrics Hematoma expansion p value

NO (77) YES (51)

Demographic

 Age, mean (SD) 57.494 (13.85) 59.157 (13.589) 0.504

 Gender (male), n (%) 57 (74.0) 33 (64.7) 0.259

Clinical characteristics

 Time to exam, median (IQR) 4.0 (2.0) 4.0 (2.0) 0.814

 Diastolic pressure, median (IQR) 94.0 (25.0) 91.0 (18.0) 0.559

 Systolic pressure, median (IQR) 158.0 (37.0) 155.0 (32.0) 0.827

 GCS, median (IQR) 14.0 (3.0) 13.0 (4.5) 0.153

 D-dimer, median (IQR) 146.0 (274.0) 179.0 (258.5) 0.236

 FIB(g/L), median (IQR) 2.36 (0.97) 2.5 (1.27) 0.609

 INR, mean (SD) 1.058 (0.068) 1.071 (0.084) 0.331

 PT, median (IQR) 11.7 (1.0) 11.8 (1.35) 0.629

 PT(%), median (IQR) 97.0 (15.0) 95.0 (16.5) 0.378

 TT(s), median (IQR) 14.2 (1.8) 14.0 (2.25) 0.806

 Platelet, mean (SD) 218.286 (57.936) 202.647 (64.802) 0.156

 HDL, median (IQR) 1.18 (0.38) 1.19 (0.36) 0.984

 LDL, median (IQR) 2.23 (0.82) 2.48 (0.615) 0.174

 LYM, median (IQR) 1.19 (0.75) 1.18 (0.69) 0.423

 NEUT, median (IQR) 7.36 (4.01) 7.71 (3.865) 0.733

 NLR, median (IQR) 5.991 (5.962) 6.421 (5.339) 0.348

 WBC, median (IQR) 9.41 (3.99) 9.17 (3.875) 0.946

 Blood glucose, median (IQR) 6.26 (2.9) 6.7 (3.2) 0.336

 Cholesterol, median (IQR) 4.14 (1.12) 4.36 (0.955) 0.144

 Triglyceride, median (IQR) 1.21 (0.98) 1.21 (0.94) 0.772

Imaging features

 Baseline hematoma volume (ml), median (IQR) 21.6 (20.6) 30.9 (24.6) 0.004

 Perihematoma edema volume (ml), median (IQR) 13.6 (12.8) 18.7 (19.35) 0.013

 Minor/Major axis, median (IQR) 0.5 (0.125) 0.678 (0.143) <0.001

 Midline shift (mm), median (IQR) 0.0 (4.0) 3.5 (5.5) 0.007

 Hypodensities, n (%) 29 (37.7) 29 (56.9) 0.033

 Swirl sign, n (%) 21 (27.3) 27 (52.3) 0.003

 Black hole sign, n (%) 7 (9.1) 13 (25.5) 0.012

 Blend sign, n (%) 18 (23.4) 19 (37.2) 0.09

 Satellite sign, n (%) 1 (1.3) 4 (7.8) 0.16

 Island Sign, n (%) 4 (5.2) 9 (17.6) 0.022

 Broken into ventricle, n (%) 15 (19.5) 13 (25.5) 0.421

 Hematoma volume in ventricle (ml) 0.0 (0.0) 0.0 (0.25) 0.41

 Hemorrhage from other sites, n (%) 15 (19.5) 14 (27.5) 0.292

 SAH, n (%) 0 (0) 2 (3.9) 0.157

GCS, Glasgow Coma Scale; FIB, Fibrinogen; INR, International Normalized Ratio; LYM, Lymphocyte; NLR, Neutrophil-to-Lymphocyte Ratio; SAH, Subarachnoid Hemorrhage.
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specificity, sensitivity and AUC, for both the training and testing sets, 
are presented in Figure 3 and Table 2.

Among the hematoma characteristics, features such as 
hypodensities, swirl signs, black hole signs and island signs are 
subjectively assessed. Therefore, to enhance objectivity, 
we constructed the hematoma expansion model using four purely 
objective imaging indicators. The specificity, sensitivity and AUC 
of these models for the training and testing sets are summarized 
in Figure 4 and Table 3.

Additionally, based on univariate analysis, the swirl sign—
identified as having the smallest p-value—was combined with the four 
objective imaging indicators to develop an enhanced hematoma 
expansion model. The specificity, sensitivity and AUC for this model 
in both the training and testing sets are also detailed in Table 4.

The random forest algorithm, which demonstrated superior 
performance based on AUC results, was selected for further analysis. 
The ROC curves for the random forest model in the training and 
testing sets are depicted in Figure 5.

The feature weight coefficients are displayed in Figure  6 and 
Table 5.

4 Discussion

Spontaneous intracerebral hemorrhage (sICH) is a severe 
condition characterized by rapid onset and expansion, resulting 
in significant disability and mortality rates that profoundly affect 
patients’ quality of life (11). Hemorrhage expansion complicates 
treatment decisions, exacerbates neurological deficits and often 
leads to unfavorable outcomes, including death (12). 
Consequently, the early and accurate identification of hematoma 
expansion is critical for guiding clinical interventions, reducing 
neurological damage and improving patient prognosis.

CT remains the imaging modality of choice for sICH due to its 
rapid acquisition speed and high sensitivity in detecting lesions (13). 
Previous studies have identified several non-contrast CT imaging 
features, such as the island sign, black hole sign, blend sign and 

irregular sign, as independent predictors of hematoma expansion (8, 
14). However, these features rely heavily on subjective interpretation, 
requiring significant expertise and experience, which limits their 
consistency and generalizability. Therefore, developing an objective, 
automated and accurate prediction model is imperative for advancing 
ICH management.

In this study, we utilized an AI-based image segmentation model 
to automate the analysis of non-contrast CT images, enabling the 
rapid and accurate quantification of hematoma volume, diameters and 
surrounding oedema. This automated approach demonstrated high 
reliability and effectively minimized human errors associated with 
slice selection and manual measurement (15).

To construct a robust prediction model, we  integrated readily 
available clinical data, including patient history and laboratory results, 
with imaging features derived from CT scans. Univariate analysis 
revealed no statistically significant differences in demographic or 
laboratory variables, suggesting that these factors have limited 
predictive value for hematoma expansion.

Through LASSO regression, we identified eight key imaging 
features—initial hematoma volume, short-to-long axis ratio of 
the hematoma, surrounding oedema volume, midline shift 

FIGURE 3

Logistic Regression (blue), Random Forest (green), and SVM (yellow) models specificity, sensitivity, and area under the curve (AUC) of the receiver 
operating characteristic curve (ROC) for the integrated model in both the training and testing sets.

TABLE 2 Specificity, sensitivity, and area under the curve (AUC) of the 
receiver operating characteristic curve (ROC) for the integrated model in 
both the training and testing sets.

Machine  
Learning  
Models

Dataset 
Type

AUC SEN SPE

LogisticRegression
Train 0.8546 0.9412 0.6883

Test 0.781 0.8636 0.6667

RandomForest
Train 0.9027 0.8235 0.8831

Test 0.7837 0.7727 0.697

SVM
Train 0.836 0.9412 0.7013

Test 0.7521 0.8182 0.5152

SVM, Support Vector Machine; AUC, Area Under the Curve; SEN, Sensitivity; SPE, 
Specificity.
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distance, hypodensities, swirl sign, black hole sign and island 
sign—for inclusion in a ‘comprehensive model’. This model 
achieved an AUC of 0.9027, with sensitivity and specificity values 
of 0.8235 and 0.8831, respectively, indicating strong predictive 
performance. However, the inclusion of subjective features such 
as hypodensities, swirl sign, black hole sign and island sign 

introduced variability dependent on the diagnostician’s expertise. 
To enhance objectivity, we  developed an ‘objective model’ by 
excluding subjective features and retaining only quantitative 
indicators: initial hematoma volume, short-to-long axis ratio, 
surrounding oedema volume and midline shift distance. This 
model achieved an AUC of 0.8897, sensitivity of 0.7451 and 
specificity of 0.9221, demonstrating slightly reduced predictive 
performance compared to the comprehensive model. 
Subsequently, we  constructed an ‘optimized model’ by 
reintroducing the swirl sign—a feature with the smallest p-value 
in univariate analysis—alongside the four objective indicators. 
The optimized model achieved an AUC of 0.9524, with sensitivity 
and specificity values of 0.9412 and 0.9091, respectively, 
demonstrating superior predictive accuracy compared to the 
other models. On the test set, this model achieved an AUC of 
0.7507, sensitivity of 0.7727 and specificity of 0.6667.

In the analysis of feature weights within the ‘optimized 
model’ for predicting hemorrhage expansion, the short-to-long 
axis ratio of the hematoma emerged as the most influential 
imaging feature, contributing a weight of 0.58. A larger ratio, 
approaching 1, correlates with a higher likelihood of expansion, 
reflecting a more rounded or irregular hematoma shape. This 
morphology suggests outward expansion and increased tension. 
Conversely, a smaller ratio, indicative of an elongated hematoma, 
implies expansion along interstitial spaces in brain tissue, 
associated with lower tension (16). Thus, the short-to-long axis 
ratio serves as a critical indicator of hematoma morphology and 
expansion potential. Previous studies have established a strong 
relationship between initial hematoma volume and ICH 
expansion and prognosis, with larger initial volumes associated 
with higher early hemorrhage rates (12). The timing of imaging 
relative to symptom onset further reinforces this relationship, as 
larger hematomas typically reflect greater instability (17). 
Surrounding oedema volume, another significant feature, is 
closely linked to hematoma size (18). Some studies also highlight 
its association with CTA indicators of hemorrhage expansion, 
suggesting that surrounding oedema volume may indirectly 

FIGURE 4

Logistic Regression (blue), Random Forest (green), and SVM (yellow) models specificity, sensitivity, and AUC of the ROC for the objective model in both 
the training and testing sets.

TABLE 3 Specificity, sensitivity, and AUC of the ROC for the objective 
model in both the training and testing sets.

Machine 
Learning 
Models

Dataset 
Type

AUC SEN SPE

LogisticRegression
Train 0.8388 0.7255 0.8312

Test 0.7851 0.7273 0.697

RandomForest
Train 0.8897 0.7451 0.9221

Test 0.7769 0.7273 0.697

SVM
Train 0.8133 0.7843 0.7143

Test 0.7548 0.8182 0.6667

SVM, Support Vector Machine; AUC, Area Under the Curve; SEN, Sensitivity; SPE, 
Specificity.

TABLE 4 Specificity, sensitivity, and AUC of the ROC for the optimized 
model in both the training and testing sets.

Machine 
Learning 
Models

Dataset 
Type

AUC SEN SPE

LogisticRegression
Train 0.8531 0.8824 0.7143

Test 0.7576 0.8636 0.5455

RandomForest
Train 0.9524 0.9412 0.9091

Test 0.7507 0.7727 0.6667

SVM
Train 0.8139 0.6863 0.8052

Test 0.7163 0.6818 0.6364

SVM, Support Vector Machine; AUC, Area Under the Curve; SEN, Sensitivity; SPE, 
Specificity.
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FIGURE 5

Specificity, sensitivity, and AUC of the ROC for the optimized model in both the training and testing sets.

FIGURE 6

Weighting factors for each clinical characteristic in the optimized model.
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reflect the likelihood of hematoma expansion (19). Midline shift 
distance, representing the hematoma’s mass effect, correlates 
with hematoma volume, surrounding oedema and the rate of 
expansion. Consequently, it serves as an important marker of 
hemorrhage expansion (20).

Subjective imaging features such as hypodensities, swirl signs, 
black hole signs and island signs have been widely recognized as 
independent predictors of hemorrhage expansion. However, their 
interpretation is subject to significant variability, heavily reliant 
on clinician expertise and experience. Studies have reported 
substantial inter-rater variability for these features, though the 
swirl sign demonstrates relatively higher consistency (8). In our 
univariate analysis, the swirl sign showed the most statistically 
significant association with hemorrhage expansion. While the 
comprehensive model, which incorporates all four subjective 
features, exhibited strong predictive efficacy, the optimized 
model—including only the swirl sign—achieved improved 
performance. This enhancement is likely due to the swirl sign’s 
superior diagnostic consistency.

Compared to previous analogous studies (21, 22), our model 
demonstrates superior accuracy and incorporates AI-driven 
automated segmentation, significantly enhancing its 
clinical applicability.

Despite these promising findings, this study has limitations. It is 
a single-center retrospective analysis with a limited sample size, 
introducing potential selection bias. Additionally, the timing of CT 
scans relative to symptom onset was uncertain in some emergency 
ICH cases, potentially affecting the accuracy of initial imaging 
features. Future research should employ prospective, multicenter 
studies with larger sample sizes to validate the reliability and 
generalizability of the proposed model.

5 Conclusion

This study confirms the effectiveness of an objective feature 
model derived from non-contrast CT images in predicting 
hematoma expansion in spontaneous sICH. The inclusion of the 
swirl sign, a feature with high diagnostic consistency, further 
enhances the model’s predictive performance. The objective 
indicators-initial hematoma volume, short-to-long axis ratio of 
the hematoma, volume of surrounding oedema and midline shift 
distance-can be rapidly and accurately quantified using AI-driven 
image segmentation models, ensuring intuitive and 
reliable results.
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TABLE 5 Weighting factors for each clinical characteristic in the 
optimized model.

Feature_name Importance

Baseline hematoma volume (ml) 0.126564

Midline shift (mm) 0.071180

Perihematoma edema volume (ml) 0.170349

Minor/major axis 0.584698

Swirl sign 0.047209

https://doi.org/10.3389/fneur.2025.1567525
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Yang et al. 10.3389/fneur.2025.1567525

Frontiers in Neurology 09 frontiersin.org

References
 1. The Writing Committee of the Report on Cardiovascular Health and Diseases in 

China. Report on cardiovascular health and diseases in China 2022: an updated 
summary. Biomed Environ Sci. (2023) 36:669–701. doi: 10.3967/bes2023.106

 2. Greenberg SM, Ziai WC, Cordonnier C, Dowlatshahi D, Francis B, Goldstein JN, 
et al. 2022 guideline for the Management of Patients with Spontaneous Intracerebral 
Hemorrhage: a guideline from the American Heart Association/American Stroke 
Association. Stroke. (2022) 53:e282–361. doi: 10.1161/STR.0000000000000407

 3. Puy L, Parry-Jones AR, Sandset EC, Dowlatshahi D, Ziai W, Cordonnier C. Intracerebral 
haemorrhage. Nat Rev Dis Primers. (2023) 9:14. doi: 10.1038/s41572-023-00424-7

 4. Xie H, Ma S, Wang X, Zhang X. Noncontrast computer tomography-based 
radiomics model for predicting intracerebral hemorrhage expansion: preliminary 
findings and comparison with conventional radiological model. Eur Radiol. (2020) 
30:87–98. doi: 10.1007/s00330-019-06378-3

 5. Zhong JW, Jin YJ, Song ZJ, Lin B, Lu XH, Chen F, et al. Deep learning for 
automatically predicting early haematoma expansion in Chinese patients. Stroke Vasc 
Neurol. (2021) 6:610–4. doi: 10.1136/svn-2020-000647

 6. Morotti A, Arba F, Boulouis G, Charidimou A. Noncontrast CT markers of 
intracerebral hemorrhage expansion and poor outcome: a meta-analysis. Neurology. 
(2020) 95:632–43. doi: 10.1212/WNL.0000000000010660

 7. Boulouis G, Morotti A, Brouwers HB, Charidimou A, Jessel MJ, Auriel E, et al. 
Association between Hypodensities detected by computed tomography and hematoma 
expansion in patients with intracerebral hemorrhage. JAMA Neurol. (2016) 73:961–8. 
doi: 10.1001/jamaneurol.2016.1218

 8. Nehme A, Ducroux C, Panzini MA, Bard C, Bereznyakova O, Boisseau W, et al. 
Non-contrast CT markers of intracerebral hematoma expansion: a reliability study. Eur 
Radiol. (2022) 32:6126–35. doi: 10.1007/s00330-022-08710-w

 9. Li Y, Ren S, Wang L, Mao Y, Wu G, Li Q, et al. Is the CT blend sign composed of 
two parts of blood with different age? Neurocrit Care. (2021) 35:367–78. doi: 
10.1007/s12028-020-01165-1

 10. Li Q, Liu QJ, Yang WS, Wang XC, Zhao LB, Xiong X, et al. Island sign: an imaging 
predictor for early hematoma expansion and poor outcome in patients with intracerebral 
hemorrhage. Stroke. (2017) 48:3019–25. doi: 10.1161/STROKEAHA.117.017985

 11. Li L, Poon MTC, Samarasekera NE, Perry LA, Moullaali TJ, Rodrigues MA, et al. 
Risks of recurrent stroke and all serious vascular events after spontaneous intracerebral 
haemorrhage: pooled analyses of two population-based studies. Lancet Neurol. (2021) 
20:437–47. doi: 10.1016/S1474-4422(21)00075-2

 12. You S, Zheng D, Delcourt C, Sato S, Cao Y, Zhang S, et al. Determinants of early 
versus delayed neurological deterioration in intracerebral hemorrhage. Stroke. (2019) 
50:1409–14. doi: 10.1161/STROKEAHA.118.024403

 13. Rindler RS, Allen JW, Barrow JW, Pradilla G, Barrow DL. Neuroimaging of 
intracerebral hemorrhage. Neurosurgery. (2020) 86:E414–23. doi: 
10.1093/neuros/nyaa029

 14. Yang WS, Zhang SQ, Shen YQ, Wei X, Zhao LB, Xie XF, et al. Noncontrast computed 
tomography markers as predictors of revised hematoma expansion in acute intracerebral 
hemorrhage. J Am Heart Assoc. (2021) 10:e018248. doi: 10.1161/JAHA.120.018248

 15. He S, Feng Y, Grant PE, Ou Y. Segmentation ability map: interpret deep features 
for medical image segmentation. Med Image Anal. (2023) 84:102726. doi: 
10.1016/j.media.2022.102726

 16. Gunda B, Böjti P, Kozák LR. Hyperacute spontaneous intracerebral hemorrhage 
during computed tomography scanning. JAMA Neurol. (2021) 78:365–6. doi: 
10.1001/jamaneurol.2020.4355

 17. Al-Shahi Salman R, Frantzias J, Lee RJ, Lyden PD, Battey TWK, Ayres AM, et al. 
Absolute risk and predictors of the growth of acute spontaneous intracerebral 
haemorrhage: a systematic review and meta-analysis of individual patient data. Lancet 
Neurol. (2018) 17:885–94. doi: 10.1016/S1474-4422(18)30253-9

 18. Ironside N, Chen CJ, Ding D, Mayer SA, Connolly ES. Perihematomal edema after 
spontaneous intracerebral hemorrhage. Stroke. (2019) 50:1626–33. doi: 
10.1161/STROKEAHA.119.024965

 19. Rodriguez-Luna D, Stewart T, Dowlatshahi D, Kosior JC, Aviv RI, Molina CA, et al. 
Perihematomal edema is greater in the presence of a spot sign but does not predict 
intracerebral hematoma expansion. Stroke. (2016) 47:350–5. doi: 
10.1161/STROKEAHA.115.011295

 20. Zhou Z, Wu X, Chen Y, Tan Y, Zhou Y, Huang T, et al. The relationship between 
perihematomal edema and hematoma expansion in acute spontaneous intracerebral 
hemorrhage: an exploratory radiomics analysis study. Front Neurosci. (2024) 18:1394795. 
doi: 10.3389/fnins.2024.1394795

 21. Tanioka S, Yago T, Tanaka K, Ishida F, Kishimoto T, Tsuda K, et al. Machine 
learning prediction of hematoma expansion in acute intracerebral hemorrhage. Sci Rep. 
(2022) 12:12452. doi: 10.1038/s41598-022-15400-6

 22. Tanioka S, Aydin OU, Hilbert A, Ishida F, Tsuda K, Araki T, et al. Prediction of 
hematoma expansion in spontaneous intracerebral hemorrhage using a multimodal 
neural network. Sci Rep. (2024) 14:16465. doi: 10.1038/s41598-024-67365-3

https://doi.org/10.3389/fneur.2025.1567525
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://doi.org/10.3967/bes2023.106
https://doi.org/10.1161/STR.0000000000000407
https://doi.org/10.1038/s41572-023-00424-7
https://doi.org/10.1007/s00330-019-06378-3
https://doi.org/10.1136/svn-2020-000647
https://doi.org/10.1212/WNL.0000000000010660
https://doi.org/10.1001/jamaneurol.2016.1218
https://doi.org/10.1007/s00330-022-08710-w
https://doi.org/10.1007/s12028-020-01165-1
https://doi.org/10.1161/STROKEAHA.117.017985
https://doi.org/10.1016/S1474-4422(21)00075-2
https://doi.org/10.1161/STROKEAHA.118.024403
https://doi.org/10.1093/neuros/nyaa029
https://doi.org/10.1161/JAHA.120.018248
https://doi.org/10.1016/j.media.2022.102726
https://doi.org/10.1001/jamaneurol.2020.4355
https://doi.org/10.1016/S1474-4422(18)30253-9
https://doi.org/10.1161/STROKEAHA.119.024965
https://doi.org/10.1161/STROKEAHA.115.011295
https://doi.org/10.3389/fnins.2024.1394795
https://doi.org/10.1038/s41598-022-15400-6
https://doi.org/10.1038/s41598-024-67365-3

	Evaluating the value of machine learning models for predicting hematoma expansion in acute spontaneous intracerebral hemorrhage based on CT imaging features of hematomas and surrounding oedema
	1 Introduction
	2 Materials and methods
	2.1 Study population
	2.2 Imaging protocol
	2.3 Hematoma imaging segmentation and feature extraction
	2.4 Statistical analysis

	3 Results
	4 Discussion
	5 Conclusion

	References

