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Introduction: This study aimed to investigate the shared molecular mechanisms

underlying cardioembolic stroke (CS) and ischemic stroke (IS) using integrated

bioinformatics analysis.

Methods: Microarray datasets for the CS (GSE58294, blood samples fromCS and

controls) and IS (GSE16561, blood from IS and controls; GSE22255, peripheral

blood mononuclear cells from IS and matched controls) were acquired from

the Gene Expression Omnibus database. Di�erential expression analysis and

weighted gene co-expression network analysis were utilized to identify shared

genes between the two diseases. Protein-protein interaction (PPI) network and

topology analyses were conducted to identify the core shared genes. Three

machine learning algorithms were employed to detect biomarkers from the

core shared genes, and the diagnostic value of the hub genes was evaluated

by establishing a predictive nomogram. Immune infiltration was evaluated

using single-sample gene set enrichment analysis (ssGSEA), and pathways were

analyzed with gene set enrichment analysis.

Results: There were 125 shared up-regulated genes and 2 shared

down-regulated between CS and IS, which were mainly involved in immune

inflammatory response-related biological functions. The Maximum Clique

Centrality algorithm identified 25 core shared genes in the PPI network

constructed using the shared genes. ABCA1, CLEC4E, and IRS2 were identified

as biomarkers for both CS and IS and performed well in predicting the onset

risk of CS and IS. All three biomarkers were highly expressed in both CS and

IS compared to their corresponding controls. These biomarkers significantly

correlated with neutrophil infiltration and autophagy activation in both CS

and IS. Particularly, all three biomarkers were associated with the activation of

neutrophil extracellular trap formation, but only in the IS.

Conclusion: ABCA1, CLEC4E, and IRS2 were identified as potential key

biomarkers and therapeutic targets for CS and IS. Autophagy and neutrophil

infiltration may represent the common mechanisms linking these two diseases.
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1 Introduction

Stroke is one of the leading causes of death worldwide, placing

a heavy burden on both individuals and society, particularly

as population aging has become a key feature of demographic

development (1, 2). The stroke burden has increased substantially

(70% and 102% increase in incidence and prevalence, and

43% increase in deaths) from 1990 to 2019, based on the

Global Stroke Fact Sheet 2022 published by the World Stroke

Organization (3). In China, the incidence and mortality rates of

stroke increased by 86.0% and 32.3%, respectively, from 1990

to 2019 (4). Ischemic stroke (IS) is the most common type

of stroke, accounting for 87% of all strokes (5). IS can be

caused by an interruption of cerebral blood flow from multiple

events, such as embolism of cardiac origin, occlusion of small

vessels in the brain, and atherosclerosis, which initiate a series of

pathophysiological processes, including immune cell infiltration

and neuronal death (6). Despite current advances in medical

intervention, treatment options for IS remain limited (7, 8),

emphasizing the need to illustrate the mechanisms of IS and

develop new therapeutic targets.

Cardiogenic cerebral embolism, also termed cardioembolic

stroke (CS), refers to the clinical syndrome of cerebral artery

embolism caused by cardioembolic embolism from the heart

and aortic arch through circulation (9). CS is a major subtype

of IS, which accounts for approximately 20%-30% of all IS

cases worldwide (10, 11). Compared with IS caused by other

etiologies, CS is more severe, has a worse prognosis, and has

a higher recurrence rate (12). However, it is worth noting that

CS has a missed diagnosis rate as high as 10%−15% (13). In

addition, differences in etiology and embolus composition across

different stroke subtypes determine the differences in treatment

methods (9, 14). For example, patients with CS often requires

oral anticoagulants to prevent recurrent events (15, 16). Therefore,

illustrating the similarities and differences in the molecular

expression and regulatory mechanisms between CS and other

IS is of great significance in the clinical management of stroke.

Nevertheless, this issue has rarely been investigated.

In this study, genes associated with CS and IS were

screened independently using differential analysis and weighted

gene co-expression network analysis (WGCNA), followed by

screening for shared genes between these two stroke subtypes.

Next, three machine learning algorithms were employed to

identify core biomarkers for these two diseases. Subsequently,

the associations of these biomarkers with immune infiltration

and biological pathways as well as the molecular drug regulatory

network for biomarkers were explored in both CS and IS.

This study revealed inherent connections between the CS

and IS, which may contribute to the clinical management

of stroke.

Abbreviations: CS, cardioembolic stroke; IS, ischemic stroke; DEGs,

di�erentially expressed genes; WGCNA, weighted gene co-expression

network analysis; PPI, protein-protein interaction; GSEA, gene set

enrichment analysis; MCC, Maximum Clique Centrality; NETs, neutrophil

extracellular traps.

2 Materials and methods

2.1 Data acquisition and preprocessing

The gene expression profiles of CS (GSE58294) and IS

(GSE16561 and GSE22255) used in this analysis were downloaded

from the Gene Expression Omnibus database using the R package

GEOquery (version 2.66.0). Dataset GSE58294 for CS comprised

of 90 blood samples from 69 CS patients and 23 normal controls.

Dataset GSE16561 for IS contained 63 blood samples from 39

patients with IS and 24 healthy controls and was used as the

discovery dataset. Dataset GSE22255 for IS contained 40 peripheral

blood mononuclear cells samples from 20 patients with IS and

20 healthy controls; 15 IS samples and 17 control samples were

retained after eliminating outlier samples. This dataset was used

as the validation dataset for IS. No additional dataset for CS

was retrieved from the GEO database, and therefore no external

validation dataset was utilized for CS in this study. The raw

microarray data were pre-processed individually for quality control

(including background adjustment and normalization) by robust

multi-array average (RMA). The count value was converted to

log2 (cpm+1) expression data for analysis. Probes ID were

converted into gene symbol based on the corresponding annotation

file of the platform, and the probes matched no gene symbol

were removed.

2.2 Di�erential expression analysis

Differentially expressed genes (DEGs) between the CS and

control samples in the GSE58294 dataset and between the IS and

control samples in the GSE16561 dataset were screened using

the R package Limma (version 3.54.2), followed by Benjamini

& Hochberg corrections for multiple tests. The cut-off values of

|logFC| > 0.263 and adjusted P < 0.05 were utilized for screening

of DEGs.

2.3 WGCNA

The R package WGCNA (version 1.72-1) was run to identify

the CS- and IS-associated gene modules. The top 5,000 genes

ranked by the median absolute deviation in the discovery

dataset were selected for analysis. To remove outliers from the

sample, hierarchical clustering analysis was conducted utilizing

the “hclust” function, coupled with “method = average” as

parameter for calculating distance. Next, a soft-threshold power

was determined (the scale-free topological fit index R2 reached

0.8 for the first time) to establish an unsupervised co-expression

matrix that approached a scale-free network. A gene hierarchical

clustering dendrogram and dynamic tree cutting were conducted

to identify highly correlated gene modules. Finally, Pearson

correlations were performed to identify CS and IS-associated

gene modules.

Frontiers inNeurology 02 frontiersin.org

https://doi.org/10.3389/fneur.2025.1567902
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Wang and Liu 10.3389/fneur.2025.1567902

2.4 Shared genes between CS and IS

The DEGs of CS and IS, as well as the corresponding

module genes, were intersected to obtain the shared genes

across the two diseases. Gene ontology and Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway enrichment analysis

were performed utilizing R package clusterProfiler (version

4.6.2) to explore potential biological functions and signaling

pathways associated with these shared genes, with Benjamini

and Hochberg method employed for multiple-testing correction.

The adjusted P < 0.05 and count ≥ 2 was utilized as cut-off

values. Protein–protein interactions (PPI) among these shared

genes were predicted utilizing the Search Tool for the Retrieval

of Interacting Genes/Proteins (STRING) database, and the PPI

network was visualized using Cytoscape software (version 3.10.2).

TheMaximumClique Centrality (MCC)method of the CytoHubba

plug-in was applied to screen the top 25 genes in the PPI network.

2.5 Machine learning for identifying
diagnostic biomarkers

Three machine learning algorithms, lasso-logistic, Boruta,

and Support Vector Machine-Recursive Feature Elimination

(SVM-REF), were employed to select potential diagnostic

biomarkers from shared genes. Specifically, lasso-logistic analysis

was conducted utilizing the R package glmnet (version 4.1-8)

with 5-fold cross-validation, while Boruta analysis was conducted

using the R packages Boruta (version 8.0.0). SVM-RFE is a feature

selection method based on SVM, which was carried out with

10-fold cross validation by using R package e1071 (version 1.7-14).

The feature genes identified by each algorithm were merged to

obtain candidate diagnostic biomarkers. The expression of these

candidate biomarkers in both discovery and validation datasets was

analyzed. The predictive power of these candidate biomarkers was

assessed by plotting receiver operating characteristic (ROC) and

precision-recall (PR) curves. Only those with consistent differential

expression in both discovery and validation datasets and an area

under the ROC curve (AUROC) and PR curve (AUPRC) over

0.6 were finally selected as biomarkers. To facilitate the clinical

use of these identified biomarkers, a predictive Nomogram was

established using the R package “rms” (version 6.7-1). The accuracy

and clinical value of the Nomogram model was further evaluated

through calibration curve and decision curve analysis, which were

plotted utilizing the calibrate method provided in “rms” package

and the R package rmda (version 1.6), respectively.

2.6 Evaluation of immune infiltration

The infiltration fractions of 28 types of immune cells in tissue

samples were inferred using single-sample gene set enrichment

analysis (ssGSEA), which was conducted through the R package

GSVA (version 1.46.0). In addition, differences in the infiltration

fractions of each immune cell type across the disease and control

groups were assessed using t-tests (P < 0.05). Pearson’s correlation

analysis was performed to determine the relationship between

biomarkers and infiltrating immune cells.

2.7 Construction of regulatory networks

The interacting genes and their functions in the identified

biomarkers were further analyzed using the GeneMANIA database

(http://genemania.org/). Transcription factors and microRNA

(miRNAs) that may target biomarkers were predicted utilizing the

online tool NetworkAnalyst.

2.8 Small molecule drug prediction and
molecular docking

Small molecule drugs that may target biomarkers were

predicted using the dgidb database. To gain insight into how

the drugs bind to key genes, we performed a molecular docking

analysis. Briefly, the three-dimensional (3D) structures of the

drugs were acquired from the PubChem database, and the protein

structures corresponding to the biomarkers were predicted using

the R package AlphaFold (version 2.0). Subsequently, CB-Dock

(version 1.0) was employed to simulate molecular docking, and the

results were visualized using the PyMOL software (version 3.0).

2.9 Gene set enrichment analysis

To illustrate the biological functions of biomarkers, disease

samples were categorized into high- and low-expression groups

based on the median value, and the deregulated pathways across

the expression groups were explored through GSEA. Briefly, with

the KEGG gene set as an enrichment reference, GSEA analysis was

performed utilizing the R package clusterProfiler, and the threshold

values were adjusted to P < 0.05 and |normalized enrichment Score

(NES)| > 1.

3 Results

3.1 Screening of key dysregulated genes in
CS and IS

In the GSE58294 dataset, there were 4,591 DEGs between

the CS and control samples. Of which, the expression of 2,272

genes increased, whereas the expression of 2,319 genes decreased

in the CS samples (Figure 1A). Gene modules highly associated

with CS were further screened utilizing WGCNA, and a soft-

threshold power of 10 was selected to balance the relationship

between mean connectivity and scale independence (Figure 1B).

A total of 15 gene modules were identified, with a minimum

of 50 genes per gene module, and 10 modules were determined

when merging the modules with 75% correlation (Figure 1C).

Heatmap of module–trait relationships showed that “blue” module

was positively correlated with CS (r = 0.66, P = 5e-13, Figure 1D).

Therefore, the 817 genes in this “blue” module were regarded as

CS-associated module genes.
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FIGURE 1

Identification of gene modules associated with cardioembolic stroke (CS) and ischemic stroke (IS). (A, E) Volcano plots showing the di�erentially

expressed genes (DEGs) between CS and control samples or between IS and control samples. The red and blue dots refer to the up-regulated and

down-regulated genes, and the gray dots refer the genes with no significant changes on their expression; (B, F) calculation of soft threshold (power)

in weighted gene co-expression network analysis (WGCNA); (C, G) cluster dendrogram generated through hierarchical clustering based on

dissimilarity measures of genes; (D, H) heatmaps of module-trait relationships.
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In the GSE16561 dataset, there were 2,473 DEGs between

the IS and control samples, including 1,069 upregulated and

1,404 downregulated genes (Figure 1E). WGCNA was conducted

to identify gene modules highly associated with IS, and a soft

threshold power of 7 was selected (Figure 1F). A total of 21 gene

modules were identified, with the minimum number of genes per

gene module set to 50, and 13 modules were determined when

merging the modules with 75% correlation (Figure 1G). Among

the 13 modules, “blue” module was positively correlated with IS

(r=0.58, P = 7e-07, Figure 1H), and 673 genes in this module

were obtained.

3.2 Shared hub genes in CS and IS

Among the upregulated DEGs for CS (n = 2,272) and IS

(n = 1,069), as well as the module genes for CS (n = 817)

and IS (n = 673), 125 shared genes were screened (Figure 2A).

These genes were significantly enriched in biological processes

related to the immune inflammatory response, such as leukocyte

activation, negative regulation of immune effector processes,

and inflammatory responses. Consistently, these genes were also

markedly enriched in the molecular function terms of immune

receptor activity (Figure 2B), indicating their involvement in

immune inflammation-related functions. Only KEGG pathway of

inflammatory bowel disease was enriched with the cut-off values

of adjusted P < 0.05 and count ≥2 (Supplementary Table 1).

Two shared genes were further screened from the downregulated

DEGs for CS (n = 2,319) and IS (n = 1,404), as well as the

module genes for CS (n = 817) and IS (n = 673), as shown in

Figure 2C. The enrichment results of these two genes (ZNF83

and THOC1) are displayed in Supplementary Table 1. However,

no significant enrichment terms were determined under the

cut-off values of adjusted P < 0.05 and count ≥2 owing to the

limited gene number. Interestingly, we found that THOC1 was

enriched in multiple immune-related terms such as negative

regulation of immunoglobulin-mediated immune response,

negative regulation of B cell activation, and negative regulation

of lymphocyte-mediated immunity (Supplementary Table 1). We

further investigated the interactions between 127 shared genes and

constructed a PPI network (Figure 2D). From this network, the

top 25 genes were determined using the MCC algorithm, and close

interactions were observed among these 25 hub genes (Figure 2D).

These 25 genes were selected for subsequent analysis.

FIGURE 2

Identification of the shared genes in cardioembolic stroke (CS) and ischemic stroke (IS). (A) Venn diagram showing the shared upregulated genes

between CS and IS; (B) the top five terms of three gene ontology categorizations; (C) Venn diagram depicting the shared downregulated genes

between CS and IS; (D) the PPI network of the shared genes, in which the red nodes represent the top 25 hub genes identified from the PPI network

using the Maximum Clique Centrality (MCC) method.
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FIGURE 3

Determination of the shared feature genes in cardioembolic stroke (CS) and ischemic stroke (IS). (A, D) Parameter selection for the LASSO regression.

(left) Cross-validation to select the optimal parameter lambda, and (right) distribution of the LASSO coe�cient for feature genes; (B, E) results of the

Boruta algorithm for identifying feature genes by assessing their importance; (C, F) results of SVM-RFE algorithm for screening feature genes with the

highest accuracy, in which the horizontal coordinate refers to the number of genes, and the vertical coordinate refers to the accuracy under 10-fold

cross-validation; (G) Venn diagram showing the eight shared feature genes between CS and IS.

3.3 Determination of candidate biomarkers
through machine learning

Feature selection from the 25 shared hub genes was conducted

using three machine learning algorithms. In the context of

CS, LASSO logistic regression (Figure 3A) and Boruta analysis

(Figure 3B) each identified 13 feature genes. SVM-RFE identified

eight feature genes with the highest accuracy of 0.976 in 10-fold

cross-validation (Figure 3C). In total, 18 genes that were considered

candidate biomarkers in CS were obtained through these three

algorithms after removing redundancies (Supplementary Table 2).

For feature gene screening in the context of IS, LASSO

regression determined seven genes (Figure 3D), and Boruta

analysis identified 10 genes (Figure 3E). Among the 25 hub

genes, only one was identified as a key feature gene for IS

using the SVM-RFE algorithm, with the highest accuracy of 0.9

(Figure 3F). Following the union of the genes obtained from the

three algorithms, 13 feature genes were determined in the IS

(Supplementary Table 2). Ultimately, eight candidate biomarkers

shared between CS and IS were screened: IGF2R, IRAK3, TLR4,

ABCA1, CXCL16, CLEC4E, ARG1, and IRS2 (Figure 3G).

3.4 Determination of diagnostic biomarkers
by assessing expression and predictive
performance

Further screening of the eight candidate biomarkers was

performed to identify additional weighted diagnostic biomarkers.

As described above, only those with consistent differential

expression in both the discovery and validation datasets and

an AUC over 0.6 were finally selected. This screening step was

conducted in the IS but not in the CS because there was only

one CS dataset. In both the training set GSE16561 and validation

set GSE22255, the expression of ABCA1, CLEC4E, and IRS2

was elevated in IS samples compared to that in normal controls

(Figures 4A, B). In addition, these three genes performed well in
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FIGURE 4

Expression and predictive performance of diagnostic biomarkers in ischemic stroke (IS). Expression of the three biomarkers in training set GSE16561

(A) and validation set GSE22255 (B); Receiver operating characteristic (ROC) curves showing the predictive power of the three biomarkers for IS in

training set GSE16561 (C) and validation set GSE22255 (D). Precision-recall (PR) curves showing the predictive power of the three biomarkers for IS in

training set GSE16561 (E) and validation set GSE22255 (F). *P < 0.05; **P < 0.01.

distinguishing IS samples, with AUROC of 0.819, 0.843, and 0.861

for ABCA1, CLEC4E, and IRS2, respectively, in the training set

GSE16561 (Figure 4C). Similarly, in the validation set GSE22255,

the AUROC for ABCA1, CLEC4E, and IRS2 were 0.753, 0.706,

and 0.694 (Figure 4D), respectively, indicating moderate predictive

power for IS. The predictive performance of these three genes

were also assessed by PR curves. In the training set GSE16561,

the AUPRC for ABCA1, CLEC4E, and IRS2 were 0.895, 0.899,

and 0.916, respectively (Figure 4E). In the validation set GSE22255,

the AUPRC for ABCA1, CLEC4E, and IRS2 were 0.640, 0.741,

and 0.619 (Figure 4F). The AUROC and AUPRC were all over

0.6 for these three genes in both training and validation sets.

Therefore, ABCA1, CLEC4E, and IRS2 were identified as potential

diagnostic biomarkers.

3.5 Construction of clinical predictive
nomogram for CS and IS

To facilitate the clinical use of the identified biomarkers,

a predictive nomogram was established for CS and IS based

on the three identified biomarkers, ABCA1, CLEC4E, and IRS2

(Figures 5A, B). In the Nomogram for both CS and IS, CLEC4E

harbored the highest weight among the three genes (Figures 5A,

B). The high conformance of the predicted dotted line with

the actual calibration curve suggested that the nomogram had

outstanding accuracy in predicting the onset risk of CS and IS

(Figures 5C, D). The greatest net benefit of the model with all

three genes compared with that with a single characteristic gene

in the decision curve further demonstrated the high accuracy of

the predictive nomogram in predicting the risk of CS and IS

(Figures 5E, F). The clinical impact curve further confirmed the

conformance between the predicted and actual probabilities in

CS and IS (Figures 5G, H), implying the clinical applicability of

the nomogram.

3.6 Biomarkers expression correlated with
immune cell abundance in CS and IS

Immune cells in the samples were inferred using ssGSEA

based on gene expression profiles. In the CS samples, there

were 19 immune cells with an abundance markedly different

from that in the normal controls (Figure 6A). For instance,

CS samples harbored a lower abundance of activated/immature

B cells and effector memory CD4+/CD8+ T cells and a

higher abundance of macrophages, mast cells, and neutrophils

(Figure 6A). The correlations between biomarker expression and

immune cell abundance were analyzed. All three biomarkers

positively correlated with the levels of multiple cells, such as

neutrophils, macrophages, and regulatory T cells (Tregs) and

negatively correlated with cells including activated/immature B

cells and effector memory CD4+/CD8+ T cells (Figure 6B,

Supplementary Figure 1A).
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FIGURE 5

Establishment and evaluation of predictive Nomogram. Nomogram established using three biomarkers for predicting the onset risk of cardioembolic

stroke (CS) (A) and ischemic stroke (IS) (E); calibration curve for assessing the accuracy of nomogram in predicting CS (B) and IS (F); decision curve

for evaluating the clinical benefit of nomogram in CS (C) and IS (G); clinical impact curve for evaluating the clinical benefit of nomogram in CS (D)

and IS (H).
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FIGURE 6

Correlations of biomarkers with immune cells. Boxplots showing the di�erences in the infiltration levels of 28 immune cells between disease and

control samples in cardioembolic stroke (CS) (A) and ischemic stroke (IS) (C). The comparisons between disease and control groups were conducted

using t-tests; correlation heatmaps revealing the relationships between the three biomarkers and the immune cells in CS (B) and IS (D). *P < 0.05; **P

< 0.01.

In the context of IS, there were 17 immune cells, with their

abundance markedly differing between IS and normal controls

(Figure 6C). Consistently, the IS samples also exhibited a lower

abundance of activated/immature B cells and effector memory

CD8+ T cells and a higher abundance of macrophages, mast cells,

and neutrophils (Figure 6C). Correlation analysis suggested that

the three biomarkers were positively correlated with the levels

of neutrophils, plasmacytoid/activated dendritic cells, and natural

killer cells and negatively correlated with effector memory CD8+

T cells, activated B cells, and activated CD8+ T cells (Figure 6D,

Supplementary Figure 1B).

3.7 Biomarker-associated pathways in CS
and IS

To discover the KEGG pathways probably affected by

biomarkers expression, we performed GSEA for each biomarker

in both diseases. In the context of CS, pathways such as antigen

processing and presentation, NK cell-mediated cytotoxicity,

lipids, and atherosclerosis were activated, with increased ABCA1

expression (Figure 7A). Elevated expression of CLEC4E and

IRS2 was activated through the activation of autophagy and

the B-cell receptor signaling pathway (Figures 7B, C). However,

multiple pathways related to metabolism and nucleotide excision

repair were inhibited (Supplementary Figures 2A–C). Interestingly,

the elevated expression of biomarkers was accompanied by

the activation of autophagy in the IS. In addition, neutrophil

extracellular trap (NET) formation was observed (Figures 7D–F).

Ribosome biogenesis-related pathways were inhibited with the

expression of these three biomarkers (Supplementary Figures 2D–

F). Overall, autophagy was a common pathway activated in both CS

and IS.

3.8 Regulatory networks for biomarkers

A potential molecular regulatory mechanism was identified to

provide a comprehensive understanding of the three biomarkers.

GeneMANIA analysis revealed that ABCA1, CLEC4E, IRS2, and

their interacting genes were mainly involved in the cellular

response to insulin stimulus, cellular response to peptide

hormones, and regulation of cholesterol efflux (Figure 8A).

Regarding molecular regulation, both ABCA1 and IRS2 were likely

targeted by multiple miRNAs and transcription factors (Figure 8B),

indicating the potential of these two genes as therapeutic targets.

Therefore, we predicted the drugs that could target these three

genes. Sixteen drugs were predicted for ABCA1, while four and

five drugs were predicted for IRS2 and CLEC4E, respectively

(Figures 9A–C). Molecular docking was conducted to confirm the

binding of the genes to predicted representative drug molecules.

For ABCA1, docking was conducted for ABCA1 and the top
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FIGURE 7

Gene set enrichment analysis. Top 10 activated KEGG pathways with ABCA1 expression in cardioembolic stroke (CS) (A) and ischemic stroke (IS) (D);

top 10 activated KEGG pathways with CLEC4E expression in CS (B) and IS (E); top 10 activated KEGG pathways with IRS2 expression in CS (C) and IS

(F).
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FIGURE 8

Regulatory network for biomarkers. (A) Interaction network and involved functions of ABCA1, CLE4E, and IRS2 using GeneMANIA; (B) microRNAs and

transcription factors for ABCA1, CLE4E, and IRS2, in which the purple nodes represent transcription factors and the green nodes indicate miRNAs.

three drugs: probucol, mefloquine, and istradefylline. Five docking

models were obtained, and the model with the lowest binding

energy (best affinity) was selected. The binding energy of ABCA1

with probucol, mefloquine, and istradefylline were−8.8,−8.8, and

−7.5 kcal/mol, respectively (Figure 9D, Supplementary Table 3).

For the five drugs predicted for IRS2, docking was only

conducted for aspirin and dexamethasone (Figure 9E) because

of the unavailability of 3D structures of the other three drugs.

The binding energy of IRS2 with aspirin and dexamethasone

were −5.4 and −6.7 kcal/mol (Supplementary Table 3). Similarly,

docking was conducted for CLEC4E with Cianidanol and

Tetradioxin (Figure 9F), and the binding energy was −6.4 and

−6.0 kcal/mol, respectively (Supplementary Table 3). The docking

results confirmed the binding of these genes to the predicted drugs

with high affinity.

4 Discussion

CS is the major IS subtype. The etiology and pathogenesis of

different stroke subtypes are diverse, leading to variations in their

treatment. Therefore, illustrating the similarities and differences

in the molecular mechanisms of different stroke subtypes can

contribute to an accurate early diagnosis and a more targeted

therapeutic schedule for patients with stroke. In this study, we

revealed the overlapping molecular mechanisms across the two

stroke subtypes through integrated bioinformatics analyses.

Based on differential analysis and WGCNA, we identified

127 shared differential genes between CS and IS. These genes

were mainly implicated in biological processes related to immune

inflammatory responses, such as leukocyte activation and

negative regulation of immune effector processes. Immune-

inflammatory response exerts vital and bidirectional roles in

the pathological process of IS (17, 18). Immune cell infiltration

is the core mechanism involved in the modulation of nerve

injury and repair after stroke (19). In stroke brain tissue, some

types of infiltrated T cells promote inflammatory responses to

aggravate tissue injury, while T cells contribute to protecting

neurons from ischemic injury by inducing immunosuppression

(20–23). Currently, immunological mechanisms are a hotspot

of research in the field of IS, and targeting the immune-

inflammatory response has been proposed as a promising

therapeutic strategy to improve the injury post stroke (18, 23).

A previous study demonstrated that FOXP3+ macrophages are

beneficial for stroke outcomes by inhibiting IS-induced neural

inflammation (24). Therefore, exploring alterations in the immune

status of IS may provide novel insights into its management

and treatment.

Machine learning is a burgeoning field in medicine

that provides superior predictive power in comparison with

conventional statistical models, capturing non-linear relations

across predictive factors and outcomes and complex interactions

within predictive factors (25, 26). Given their high accuracy,

machine learning approaches are increasingly being applied in

the medical field, particularly in stroke (27, 28). In this study,

three machine-learning algorithms, LASSO-logistic, Boruta, and

SVM-RFE, were employed to identify more weighted feature

genes from shared genes. Eight feature genes were identified,

which were considered candidate biomarkers for the two

diseases. Further expression and predictive power assessments

determined three diagnostic biomarkers—ABCA1, CLEC4E,

and IRS2.
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FIGURE 9

Small molecular drugs for targeting biomarkers. Small molecular drug network for ABCA1 (A), CLE4E (B) and IRS2 (C), in which the green nodes refer

to the drugs; (D) results of molecular docking for ABCA1 and the corresponding top three drugs probucol, mefloquine, and istradefylline; (E) results of

molecular docking for CLEC4E and drugs Cianidanol and Tetradioxin; (F) results of molecular docking for IRS2 and drugs aspirin and dexamethasone.
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Cholesterol plays important structural and functional roles in

both the gray and white matter. ABCA1, an ATP-binding cassette

transporter A1, is a major membrane transporter that functions

as a cholesterol efflux pump to mediate cholesterol homeostasis

in the brain, particularly the efflux of cholesterol from astrocytes

(29, 30). Excessive cholesterol causes fat to build up in the arteries,

forming atherosclerosis and increasing the risk of cerebrovascular

disease, one of the main causes of stroke (31, 32). Besides, ABCA1

modulates a variety of brain functions, such as neuroinflammation

(a crucial process following stroke) and blood-brain barrier leakage,

and both these two are key factors to worsen stroke outcomes (30,

33). Genetic variants of ABCA1 have been implicated in etiology

and the onset risk of IS (34, 35). ABCA1 expression is implicated

in the neurorestoration post stroke. For instance, specific deletion

of brain-ABCA1 could reduce the density of white matter and

gray matter in the ischemic brain and harm post stroke functional

outcomes (29). Upregulation of ABCA1 is involved in the effects

of LXR agonists in decreasing neuroinflammation, facilitating

neuroprotection, and improving neurological functional-outcomes

post stroke (36, 37).

CLEC4E encodes a member of the C-type lectin superfamily,

which modulates immune and inflammatory responses, as well

as cell-to-cell adhesion (38, 39). Although CLEC4E has not

been reported in patients with stroke, other members of this

superfamily have been shown to play important roles. For example,

CLEC14A deficiency can exacerbate the neuronal loss post stroke

by enhancing the pro-inflammatory response and blood-brain

barrier permeability (40). Particularly, C-Type lectin receptor 2

has been recognized as a biomarker of platelet activation and is

associated with pathological features and prognosis of strokes (41,

42). IRS2 encodes insulin receptor substrate (IRS) 2; ISR signaling

mediates cardiac energy metabolism and heart failure (43) and is

associated with CS (44). Gene polymorphism of IRS1 has been

proposed as a risk factor for IS (45). IRS proteins are key molecular

that regulates insulin signaling pathways and is strongly associated

with the development of diabetes (46), while diabetes has been

shown to be a risk factor for a significantly increased risk of stroke

(47, 48). Nevertheless, the exact role of IRS2 in strokes remains

unclear. We found that IRS2 and CLEC14A were overexpressed in

both CS and IS and that their expression was associated with the

risk of disease onset.

Neutrophil targeting has been proposed as a promising strategy

for IS therapy (49–51). Specifically, there was a rapid increase

of neutrophils in peripheral blood and in the peri-infarct cortex

during all stages of IS, with enhanced neutrophil frequency linked

to poor clinical outcomes (50, 52). NETs induce thrombosis by

activating the clotting pathway and endothelium by acting as a

scaffold for tissue factors and platelets, resulting in a procoagulant

state (53). In addition, NETs released by neutrophils can mediate

cerebral injury after IS. For instance, NETs facilitate thrombus

formation (54) and repress vascular remodeling post-IS (52).

Treatment with NET-inhibitory factors reduce cerebral infarcts

and improve overall outcomes in a stroke mouse model (51). In

this study, we found that all three biomarkers, ABCA1, CLEC4E,

and IRS2, were associated with the activation of NET formation

and infiltration levels of neutrophils in the IS, implying their

importance in stroke. Autophagy was found to be a shared pathway

associated with biomarkers of both diseases. Autophagy is an

adaptive mechanism of the cell response to stroke and plays a

vital role in maintaining cell homeostasis and survival by clearing

damaged cell components via autophagic lysosomal degradation.

During IS, the lack of oxygen and glucose supply caused by cerebral

ischemia leads to activation of the AMPK pathway, activating

autophagy in various cell types in the brain (55). Autophagy appears

to play a “double-edged sword” role in the pathogenesis of IS, and

its exact role in IS remains controversial, despite extensive study

(56, 57). These findings further highlight the close involvement of

the three identified biomarkers in stroke.

Despite the above findings, several limitations in this study

should be admitted. First at all, since there was only one CS

dataset, the determination of diagnostic biomarkers by assessing

expression and predictive performance was conducted based solely

on the IS datasets. The sample size of the dataset analyzed in

this study is not large enough, which may reduce statistical

power and generalizability, thus leading to certain unrobustness

of the results. Second, we observed an association between the

expression of three biomarkers and the activity of NET pathway,

but this association appears to be observed only in IS. Such

differences might be explained by the differential expression

pattern of genes in the context of these two strokes. In future,

the NET levels in serum/plasma samples should be tested in

large number of patients to further discover whether there are

differences on NETs levels between CS and IS. Besides, the causal

relationship of the dysregulated status of biomarkers and NET

activity should be investigated by functional experiments. Third,

functional experiments are required to further confirm exact role of

these three genes in stroke, mainly the similarities and differences

of the actions of these three genes in the CS and IS. The last one, the

drug molecules that may target these tree key genes were predicted,

and the binding of the genes to predicted representative drug

molecules were confirmed bymolecular docking. In future, binding

assays are required to confirm such drug-target interactions, and

the potential applications of these drugs in strokes need to be

further explored.

In summary, the current study discovered the similarities

and differences in gene expression and molecular mechanisms

between the two stroke subtypes to illustrate their associations.

ABCA1, CLEC4E, and IRS2 were identified as common diagnostic

biomarkers of both CS and IS, and their expression was associated

with neutrophil infiltration and autophagy activation.
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