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Introduction: In 2024, 11 European scientific societies/organizations and one 
patient advocacy association have defined a patient-centered biomarker-based 
diagnostic workflow for memory clinics evaluating neurocognitive disorders.

Methods: We tested the performance of an artificial intelligence (AI) tool applied 
to neuropsychological and magnetic resonance imaging (MRI) assessment 
for staging and causal hypothesis, which are the two recommended workflow 
steps guiding the next one recommending optimal biomarkers to be used for 
a biological diagnosis of neurocognitive disorders, according to intersocietal 
recommendations. Moreover, we assessed the AI performance in predicting the 
progression to Alzheimer’s disease (AD)-dementia.

Results: For the three-class classification of staging (n patients = 426), the inter-
rater AI-humans agreement was substantial for both healthy subjects/subjective 
cognitive impairment/worried-well vs. all the remaining groups (rest) (Cohen’s 
κ = 0.81) and mild cognitive impairment/mild dementia vs. rest κ = 0.70) 
classification, almost perfect for moderate/severe dementia vs. rest κ =0.90) 
classification. For the three-class classification of causal hypotheses (n = 112), 
the AI performance vs. biomarker-based diagnosis was: positive predictive 
value 91% [95% CI: 84–96%]; negative predictive value 100%, and accuracy 
91% [84–96%]. For the binary classification of progression or not progression 
to AD-dementia at 24-month, with clinical conversion as a reference standard 
(n = 341), the AI performance was: sensitivity 89% [84–94%], specificity 82% 
[77–87%]; accuracy 85% [81–89%]; and area under the receiver operating 
characteristic curve 83% [79–87%].

Discussion: The AI tool showed high agreement with human assessment for 
staging, high accuracy with biomarkers for causal hypotheses of neurocognitive 
disorders and predicted progression to AD at 24-month with 89% sensitivity and 
82% specificity.
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1 Introduction

Alzheimer’s disease (AD) is the most prevalent neurodegenerative 
disorder globally, caused by the accumulation of beta-amyloid protein 
and the development of neurofibrillary tangles that can lead over time 
to a severe form of dementia (1). It accounts for 60–70% of all 
dementia cases worldwide, with over 50 million individuals currently 
affected and nearly 10 million new cases diagnosed each year (2). The 
prevalence increases with age, with one new case occurring 
approximately every 3 s globally (3), and in the future, it is expected 
to increase in parallel with the aging of the population (4). The burden 
of AD intensifies as the condition progresses, encompassing not only 
direct medical expenses but also impacting caregivers and families, 
long-term health systems sustainability, economies, and society at 
large (5).

The literature agrees on the need to identify early stages of the 
disease to anticipate already known diagnostic protocols, as well as to 
allow a more efficient selection of subjects who could benefit from 
new disease-modifying therapies (6). The current scarcity of therapies 
may block or slow the progression to AD-dementia due to a low ability 
to select the appropriate population, taking also into account that the 
effectiveness of the treatment may increase with its anticipation.

The diagnosis of AD is based on biological tests following lumbar 
puncture and measurement of cerebrospinal fluid (CSF) biomarkers: 
phosphorylated-tau (p-tau) or total-tau (t-tau), amyloid-β42 (Aβ42), 
and amyloid-β42-to-amyloid-β40 ratio (Aβ42/Aβ40). Revised 
diagnostic criteria for AD introduced in 2011 emphasized the use of 
medical imaging to identify objective signs of the disease in the brain, 
such as amyloid-beta (Aβ) or tau-specific positron emission 
tomography (PET) imaging (7, 8). PET studies provide high specificity 
but are quite expensive, invasive (due to exposure to ionizing 
radiation), and with limited access for patients, particularly in low- 
and middle-income countries (9). In contrast, magnetic resonance 
imaging (MRI) is more widely available, noninvasive, and cost-
effective, making it a valuable tool for detecting AD-related 
neurodegeneration and monitoring disease progression and prognosis 
(10, 11).

However, the choice of a patient’s workflow and tests for 
biomarkers is often defined by organizational and logistical factors 
rather than by clinical factors and patient preferences. Currently, the 
clinical diagnosis of AD primarily relies on the self-reported cognitive 
complaints (or those reported by caregivers) as well as clinicians’ 
observations of cognitive, functional, and behavioral symptoms 
throughout the disease progression (12–14).

Delegates from 11 European scientific societies and 
organizations and a patient advocacy association (Alzheimer 
Europe), have recently defined a patient-centered, biomarker-
based diagnostic workflow to be  used in specialized clinical 
contests, in particular in memory clinics (15). Common practices 
in memory clinics guided the workflow (16, 17). The first wave 
(wave 0) is a clinical examination and assessment of the subject’s 
complaints, aimed at excluding secondary causes for the cognitive 
complaint and staging patients as having mild cognitive 

impairment (MCI) or mild dementia (MD) in order to undergo the 
following steps for a biomarker-based diagnosis. Individuals with 
moderate-to-severe dementia as well as subjective cognitive 
impairment (SCI) or worried well (WW) subjects are also 
important to be staged but they would not typically proceed in the 
workflow being generally not considered appropriate for a 
biomarker-based diagnosis. History, physical and neurological 
examinations, cognitive screening tests and functional assessment 
can be  used for this first purpose in wave 0. Patients are then 
categorized into clinical syndromes, according to the patient’s 
salient clinical, cognitive and structural neuroimaging findings. 
The clinical syndrome allows clinical diagnosis based on 
hypotheses of disease causation that direct the selection of first-
line biomarkers. According to the results of first-line biomarkers, 
other second-line biomarkers might be measured. Considering 
AD, the diagnostic process is conclusive for AD cause when CSF 
biomarkers indicate brain amyloidosis and tau pathology (based 
on reduced CSF Aβ42 or Aβ42/Aβ40 ratio and elevated p-tau 
protein) (18).

Currently, the prodromal stage of AD-dementia is considered to 
be  amnestic MCI (aMCI), a syndrome that causes objectifiable 
alterations mainly affecting the cognitive domain of memory, without 
satisfying the criteria for the diagnosis of dementia and therefore 
placing itself between the cognitive decline caused by normal aging 
and dementia itself (19, 20). The overall prevalence of aMCI in 
population epidemiological studies varies between 3 and 19% in the 
population over 65 years of age (21). Although the general tendency 
of subjects with aMCI is progression to AD-dementia, some subjects 
evolve faster than others; for this reason some authors have 
differentiated aMCI depending on whether or not they show an 
evolution to AD-dementia after 24-month from the first diagnosis of 
aMCI (22).

Regarding patient’s clinical and cognitive findings, although no 
standard neuropsychological battery tests have been defined around 
the world, experts agree that a detailed neuropsychological assessment 
should include tests assessing memory and learning, working memory, 
language, visuoconstructional reasoning, complex attention and 
functional abilities (23).

Regarding patient’s structural neuroimaging findings, manual 
segmentation of MRI images requires long times, limits reproducibility 
and does not allow for the best evaluation of the atrophy, also because 
some volumetric variations associated with the evolution into AD are 
not recognizable when viewed by human readers, particularly in early 
stages (24). To overcome these difficulties, MRI analysis methods are 
being spread mainly based on supervised machine learning 
techniques, i.e., on algorithms that automate classification and 
prediction tasks (12, 25).

The aim of this study was to evaluate the clinical performance of 
an AI tool applied to neuropsychological assessment and MRI for 
supporting the staging, clinical profiling, diagnosis, causal hypothesis, 
and progression of subjects at risk of AD following the above-
mentioned intersocietal recommendations. A graphical representation 
of the study pipeline is reported in Figure 1.
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2 Materials and methods

2.1 Study population

This observational, multicentric study included subjects clinically 
examined and assessed, excluding secondary causes for the cognitive 
complaint, and staged as healthy subjects (HS), with subjective 
cognitive impairment (SCI), MCI, or AD-dementia at baseline and at 
24-month follow-up. Patients were clinically profiled into AD clinical 
syndrome by summarizing the patient’s salient clinical/cognitive 
characteristics and structural neuroimaging findings. First-line 
biomarkers p-tau, t-tau, and Aβ42 were measured.

Patients were enrolled from 63 centers of the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) (US/Canada), (26), following the 
ADNI retrospective clinical protocol, from two Italian centers, Centro 
Diagnostico Italiano (Memory Clinic-CDI, Milan, Italy), IRCCS 
Policlinico San Donato-Università degli Studi di Milano, Milan, Italy 
(San Donato Milanese, Milan, Italy), following the retrospective and 
prospective clinical protocol “White Matter Hyperintensity” 
(WMH-AD, NCT06179680; date of approval: 8-June 2022), and from 
another Italian center, IRCCS Centro Neurolesi Bonino Pulejo (BP, 
Messina, Italy), following the retrospective clinical protocol (protocol 
code: 08/2022, date of approval: 21 July 2022). All the patients signed 
an informed consent to participate in the studies.

FIGURE 1

Graphical representation of the study pipeline. MRI, magnetic resonance imaging; MP-RAGE, magnetization prepared rapid gradient echo imaging; 
NPS, neuropsychological assessment; MMSE, mini-mental state examination; CSF, cerebrospinal fluid; Aβ42, amyloid-β protein 42; MSD, moderate-to-
severe dementia; MCI, mild cognitive impairment; MD, mild dementia; HS, healthy subjects; SCI, subjective cognitive decline; WW, worried well.
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ADNI was launched in 2003 as a public-private partnership, led 
by Principal Investigator Michael W. Weiner, MD, and supported by 
the National Institute on Aging, the foundation for the National 
Institutes of Health, the Alzheimer’s associations, and dozens of 
companies. The primary goal of ADNI has been to test whether 
serial MRI, PET, other biological markers, and clinical and 
neuropsychological assessment can be combined to measure the 
progression of MCI and early AD (26). For up-to-date information, 
see www.adni-info.org. The ADNI enrollment process is subdivided 
in different phases: ADNI 1 (2004–2009), ADNI GO (2009–2011), 
ADNI 2 (2010–2017), ADNI 3 (2017–2022), and ADNI 4 (2022–
current). Inclusion criteria for all the subjects subgroups are: (1) age 
between 55 and 90 years old, (2) a study partner able to provide 
independent functioning evaluation, (3) English or Spanish native 
speakers, (4) willingness to participate, and (5) ability to perform 
different tests, neuroimaging, at least one lumbar puncture and all 
follow-up visits [further information can be retrieved here (27)]. The 
inclusion criteria for HS were: Mini-Mental State Examination 
(MMSE) (28) between 24 and 30, Clinical Dementia Rating (CDR) 
(29) equal to zero, normal memory function documented by scoring 
at specific cutoffs on the Logical Memory II subscale from Wechsler 
Memory Scale (30), without significant impairment in cognitive 
functions or activity of daily living, absence of dementia, and 
Geriatric Depression Scale (GDS) score (31) minor than 6. The 
inclusion criteria for MCI were: MMSE between 24 and 30, CDR 
equal to 0.5, memory complaints by the subject or study partner, 
abnormal memory function documented by scoring below the 
education-adjusted cutoff on the Logical memory II subscale from 
the Wechsler Memory Scale-Revised, general cognition and 
functional performance sufficiently preserved, and GDS score minor 
than 6. The inclusion criteria for AD-dementia clinical syndrome 
were: MMSE between 20 and 26, CDR equal to 0.5 or 1.0, memory 
complaints by the subject or study partner, abnormal memory 
function documented by scoring below the education-adjusted 
cutoff on the Logical memory II subscale from the Wechsler 
Memory Scale-Revised, criteria for probable AD as defined by the 
National Institute of Neurological and Communicative Disorders 
and Stroke (NINCDS) and by the Alzheimer’s Disease and Related 
Disorders Association (ADRDA) (32, 33), and GDS score 
minor than 6.

The WMH-AD study was started in 2022 with the primary goal 
of measuring the extent and distribution of white matter 
hyperintensities in the brains of individuals with aMCI or a clinical 
diagnosis of AD. It is an observational clinical study, which included 
age- and sex-matched subjects without cognitive impairment or 
significant neurological disorders. Subjects underwent neurological, 
neuropsychological assessments, and neuroimaging procedures. The 
inclusion criteria for all the subject subgroups from CDI and 
Policlinico San Donato-Università degli Studi di Milano, Milan, Italy 
were age greater than or equal to 45 years old, The inclusion criteria 
for AD subjects: (1) meeting established criteria for AD diagnosis, 
including cognitive and memory deficits along with functional 
impairment, (2) without comorbidities that could affect cognitive 
function, and (3) without other forms of dementia. In particular, 
inclusion criteria for aMCI subjects: (1) subjects diagnosed with 
amnestic-MCI; (2) not meeting criteria for an AD diagnosis, and (3) 
absence of any form of neurological condition that might mimic or 
contribute to cognitive impairment. Inclusion criteria for HS: (1) 

normal cognitive function for their age; (2) absence of memory 
complaints; and (3) no history of neurological or 
psychiatric disorders.

2.2 Clinical data collection

2.2.1 Neuropsychological assessment
The patient’s salient cognitive characteristics were obtained by a 

detailed neuropsychological battery, including eight 
neuropsychological tests assessing different cognitive domains. Global 
cognitive efficiency was tested using Mini-Mental State Examination 
(MMSE) (28), auditory verbal memory and verbal learning by AVLT 
(immediate, delayed, and recognition) (34), attention and executive 
functions by Symbol Digit (35), Trail Making Test (TMT-A, TMT-B) 
(36), and Digit Span (Forward and Backward) (37), visuo-constructive 
abilities by Clock (38), language by Category Fluency Test (animals-
vegetables) (39), and the Boston Naming Test (BNT) (40). Functional 
Assessment Questionnaire (FAQ) was used to assess functional 
activities of daily living (41).

2.2.2 MRI studies
The subject’s structural neuroimaging findings were obtained 

from brain MRI studies. The acquisition protocol was designed to 
focus on brain morphometry, always utilizing a T1-weighted 3D 
volumetric imaging method through the Magnetization Prepared 
RApid Gradient Echo (MP-RAGE) protocol. The protocol began 
with a scout scan to achieve anatomical orientation in sagittal, 
coronal, and transverse planes. Following the scout scan, the main 
MP-RAGE scan was performed. This scan ensures the complete 
inclusion of the skull superiorly and laterally, as well as the 
cerebellum inferiorly, and incorporates the nose in the anterior–
posterior plane to prevent missing details that could affect data 
processing. Images were then reconstructed with isotropic voxel 
dimensions of approximately 1 mm3, with a maximum of 1.5 mm in 
any direction to eliminate directional bias and maintain high 
spatial resolution.

2.2.3 First-line biomarkers
CSF biomarkers were measured: p-tau, t-tau, and Aβ42. CSF was 

collected through a lumbar puncture using a small-caliber atraumatic 
needle, such as a 24- or 25-gauge Sprotte needle. To remove any 
blood from minor trauma caused during needle insertion, the first 
1–2 mL of CSF (or more if necessary) were discarded. Following this, 
20 mL of CSF were collected for analysis and processing: (1) initial 
testing (the first 3 mL of CSF were used for standard laboratory tests, 
including cell counts, glucose, and total protein, conducted at local 
laboratories); (2) further processing (the remaining CSF was 
collected and processed). All collected samples were placed in 
containers with dry ice, except samples designated for immortalized 
cell lines and ApoE genotyping, which were shipped at room 
temperature. Samples were dispatched the same day via express mail 
with overnight delivery to the Penn AD Biomarker Fluid Bank 
Laboratory. Upon receipt at the laboratory, samples were thawed, 
aliquoted into labeled plastic vials, and stored in designated −80°C 
freezers. The samples were inventoried and tracked using specialized 
software. A barcoding system ensured accurate tracking and 
data management.
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Aβ42, t-tau, and p-tau were analyzed using Elecsys 
amyloid-β42 CSF, Elecsys total-tau CSF, and Elecsys 
phosphorylated-tau (181P) CSF electrochemiluminescence 
immunoassays (Roche Diagnostics International Ltd., Rotkreuz, 
Switzerland) (42–44).

2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) PET biomarker was 
also measured giving information on patterns of cortical 
hypometabolism that are indicative of neurodegenerative diseases 
(e.g., Alzheimer’s disease, frontotemporal dementia, Lewy body 
disease, motor tauopathies).

[18F]FDG PET was reported as positive or negative based on the 
abnormal results specific for the clinical syndrome, i.e., the 
hypometabolic pattern involving the posterior cingulate cortex, 
precuneus, posterior temporoparietal cortex, and medial temporal 
lobe for AD; the hypometabolism of the frontal or anterior temporal 
regions for bvFTD; the hypometabolism pattern of the left posterior 
fronto-insular cortex for non-fluent PPA; and the hypometabolism of 
the anterior temporal regions for semantic PPA, according to 
European Intersocietal recommendation (15).

The diagnostic process was conclusive for AD cause when CSF 
biomarkers indicated brain amyloidosis (based on reduction of CSF 
Aβ42 or Aβ42/Aβ40 ratio) and tau pathology (based on elevated p-tau 
protein), based on the ratio t-tau and Aβ42 major than 0.23 (biological 
diagnosis) (45).

In case of Aβ42+ t-tau- or Aβ42− t-tau+, the diagnosis was 
concluded when [18F]FDG PET gave abnormal results specific for the 
clinical syndrome according to European Intersocietal 
recommendation (15).

2.3 Data processing

The AI-based software TRACE4AD™ (DeepTrace Technologies, 
Milan, Italy) (12) was used to automatically process the MRI brain 
study and the neuropsychological tests of each subject in order to 
obtain the patient’s salient cognitive and structural 
neuroimaging findings.

The software is a CE-marked medical device intended for use 
by neurologists, neuropsychologists and neuroradiologists, 
supporting them for staging, clinical profiling, clinical diagnosis 
and prognosis of subjects at risk of AD, leaving ultimate decision-
making to the clinicians for the patient biomarker’s based diagnosis, 
clinical diagnosis and management. Details on the TRACE4AD 
software can be  found in (12). TRACE4AD is a cloud-based 
solution offering a full PACS integration and also being compliant 
with standard data formats for both MRI images and clinical 
reports. A memory clinic can adopt the tool by uploading the MRI 
study of the patient or by automatically receiving the MRI study, 
when the PACS integration is preferred. Scores of 
neuropsychological tests can be  uploaded in the software in 
standard formats. The manufacturer (DeepTrace Technologies Srl) 
is ISO 13485 certified. TRACE4AD was developed in accordance 
with the latest and highest standards of safety and security for 
AI-based medical devices, including BS AAMI 34971:2023 (46), 
IEC 81001–5-1:2021 (47), MDCG 2019-16 (48), as well as with 
European Regulation 2024/1689 (AI ACT) (49), European 
Regulations 2016/679 (50), 2018/1725 (51) and European Directive 
2016/680 (52). TRACE4AD allows remotely controlled updates. 

Customer support is provided. Clinicians are provided with 
training material and live demonstrations. The tool offers an 
operating manual and other guidance documentation, including 
MRI and neuropsychological testing protocols and data for using 
the tool. An online remote training is provided by the product-
specialist team before starting to use the tool with verification of 
effectiveness. We  summarize herein the main steps of the 
software workflow.

For each subject, the software performs an automatic 
segmentation of the T1-weighted 3D brain MRI study in order to 
extract brain-volumetric features for atrophy assessment (in 
particular regarding the gray matter). Image pre-processing 
includes: (1) image re-orientation, (2) cropping, (3) skull-
stripping, and (4) image normalization to the Montreal 
Neurological Image (MNI) standard space by means of 
coregistration of brain volume to the MNI template (MNI152 T1 
1 mm brain) (53, 54). A voxel-based statistical inference method 
was used by an automatic AI classifier to identify areas of atrophy 
due to neuronal death, in particular in the entorhinal cortex, 
which is one of the first regions of the hippocampus to atrophy in 
the early stages of AD, or in the mid-temporal cortex and the 
temporal pole. These are biomarkers of clinical progression and 
evolution consistent with the pathological studies by Braak et al. 
(14), demonstrating that during the development of AD pathology, 
tau protein tangles increase, associated with synapse loss and 
neurodegeneration. The architecture of the AI classifier is based 
on an ensemble of Support Vector Machines (SVMs) with a 
classification voting scheme based on the ensemble consensus. The 
feature extraction and selection method is based on Principal 
Component Analysis (PCA) coupled to Fisher Discriminant Ratio 
(FDR). For each study, the software also performed an assessment 
and extracted cognitive features from a detailed battery of 
neuropsychological tests assessing memory and learning, attention 
and executive function, visuospatial ability, language and fluency, 
and functional activities. The Italian version of the 
neuropsychological tests used in TRACE4AD has been psycho-
linguistically adapted and made comparable to the American 
neuropsychological battery used in ADNI. Cognitive features were 
combined with atrophy features to automatically classify the 
subject in different classes. As final output, for each subject, the 
software provides a report with the cognitive deficits, the measured 
brain-volumetric features and the predicted individual risk of 
conversion to AD-dementia within the following 24-month (low 
risk, LR; high risk, HR), supporting neurologists, 
neuropsychologists and neuroradiologists in staging, clinical 
profiling, diagnosis, prognosis, and decision-making.

2.3.1 Subgroup analysis 0: staging
The tool was used to stage subjects in the following 

distinct classes:

 1) “Moderate-to-severe dementia (MSD)” was classified when, 
in the tool report, either three functional impairment or at 
least three cognitive impairments were reported, and 
MMSE ≤ 26;

 2) MCI or MD were classified when, in the tool report, one or 
more cognitive impairments and no significant functional 
impairments were reported, and MMSE > 26;
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 3) “HS, SCI or WW” were classified when, in the tool report, no 
memory impairment or no significant impairment in cognitive 
functions or activity of daily living was reported, and 
MMSE ≥ 24.

The cognitive features automatically processed by the AI tool were 
used to detect cognitive impairments in specific domains when 
compared with normative cut-offs (55–59).

The clinical performance of the AI tool in classifying subjects as 
HS/SCI/WW, MCI/MD, and MSD was evaluated with respect to 
clinical staging performed by clinicians at baseline and at 24-month 
follow-up in terms of percentage agreement for each stage 
(Performance 0 staging: AI tool vs. clinicians).

2.3.2 Subgroup analysis I: clinical profiling, 
clinical diagnosis and causal hypothesis

The tool was used to profile subjects in the following 
distinct classes:

 a) “Typical AD syndrome” was classified by the AI tool when, in 
the tool report, amnestic cognitive impairment and 
disproportionate medial temporal lobe atrophy were reported;

 b) Atypical AD syndrome, specifically Posterior Cortical Atrophy 
(PCA), was classified by the AI tool, when, in the tool report, 
visuospatial impairment and parieto-occipital atrophy 
were reported;

 c) Atypical AD syndrome, specifically logopenic variant of 
Primary Progressive Aphasia (lvPPA) was classified by the AI 
tool, when, in the tool report, language impairment (ie, 
logopenic) and consistent focal atrophy in the dominant 
hemisphere were reported;

 d) “Semantic PPA (svPPA)” was classified by the AI tool when, in 
the tool report, language impairment (ie, semantic) and 
consistent focal atrophy in the dominant hemisphere 
were reported;

 e) “Agrammatic/nonfluent PPA (nfvPPA)” was classified by the 
AI tool when, in the tool report, language impairment (i.e., 
agrammatic or non-fluent) and consistent focal atrophy in the 
dominant hemisphere were reported.

 f) “Behavioral variant of Frontotemporal dementia (bvFTD) or 
frontal variant AD (fvAD)” were classified by the AI tool when, 
in the tool report, frontal behavioral (i.e., disinhibition) or 
dysexecutive syndrome or both with frontotemporal atrophy 
were reported.

 g) “No clear hypothesis” was classified when, in the tool report, 
cognitive impairment and MRI with negative or inconsistent 
results were reported. In these cases, the AI tool classified 
subjects based on the risk level (high risk, low risk) of having 
AD-dementia or converting to AD-dementia within 24-month, 
which is reported in the tool report.

The brain-volumetric features automatically processed by the 
AI tool were used to detect regional atrophy in specific brain 
regions when compared with normative percentiles 
(<10st percentile).

The clinical performance of the AI tool in clinical profiling was 
evaluated with respect to the biomarker-based diagnosis [CSF or PET 
according to the Intersocietal recommendation for each clinical 

syndrome (15)] in terms of classification accuracy for each stage 
(Performance I  clinical profiling: AI tool vs. biomarkers in 
causal hypothesis).

2.3.3 Subgroup analysis II: progression
The tool was used to classify subjects in the following 

distinct classes:

 h) “Converter to AD-dementia” was classified by the AI tool 
when, in the tool report, an HR to convert to AD-dementia 
was reported;

 i) “Non-Converter to AD-dementia” was classified by the AI tool 
when, in the tool report, a LR to convert to AD-dementia 
was reported;

The clinical performance of the AI tool in predicting, at 
baseline, the conversion of subjects to AD-dementia within 
24-month was evaluated with respect to clinical diagnosis at 
24-month follow-up, when 24-month follow-up was available, in 
terms of classification accuracy for each risk class (Performance II: 
Performance of AI tool vs. Clinical progression at 24-month 
follow-up).

2.3.4 Statistical comparison with a similar tool
In order to compare TRACE4AD with a similar CE-marked 

tool, the 26 patients from IRCCS Policlinico San Donato-
Università degli Studi di Milano, Milan, Italy (5 AD, 10 MCI, 11 
HS) (Table 1, Center ID: PSD) were included in an independent 
analysis with the commercial tool Quantib ND (Quantib, 
Rotterdam, the Netherlands; now part of DeepHealth), available 
at that center. This tool allows the computation, from the brain 3D 
MRI (MP-RAGE) study of a subject, of volumetric measurements 
of lobes, cerebellum, and hippocampus (CSF and sum of gray and 
white matter) and provides a reference of these measurements 
with centile curves based on a population-derived sample of 
non-demented individuals (60). Similarly to TRACE4AD, as final 
output, for each subject, Quantib ND provides a report with the 
measured brain-volumetric features.

One MRI per subject was processed by Quantib ND and 
compared with the TRACE4AD report to assess any diagnostic 
differences. This included: (1) assessing the correlation between 
the brain-volumetric features CSF, lobe, cerebellum, and 
hippocampus volumes measured by the two tools; (2) evaluating 
the agreement in the analysis of brain volumes affected by atrophy; 
and (3) comparing the diagnostic performance of the brain-
volumetric features extracted by both tools in classifying HS, 
MCI, and AD. For these purposes, Spearman’s correlation 
coefficients were computed between the brain-volumetric features 
calculated by both the tools. Cohen’s k was computed to assess 
agreement in brain volumes atrophy analysis based on the two 
tools. ROC-AUC analysis with DeLong tests [‘pROC’, R package, 
IBM Inc. (61)] was used to compare the diagnostic performance 
in classifying HS, MCI, and AD based on the brain-volumetric 
features extracted by both the tools [as in (62)].

2.3.5 Statistical distributions
The sociodemographic characteristics were presented using 

descriptive statistics. Continuous variables were reported as range 
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TABLE 1 Descriptive analysis of demographic variables and distribution of HS, SCI, MCI, and AD-dementia subjects at baseline and at 24-month 
follow-up across centers.

Subjects N = 795

Baseline 24-month follow up

Center
ID

Country Ethnic 
group 
(not 

Hispanic 
or Latino/
Hispanic 

or Latino/
NA)

Race group 
(Asian/
Native 

Hawaiian 
or pacific 
islander/
Black or 
African 

American/
White/

More than 
one race/

NA)

N Age 
(min–
max)

HS MCI AD HS ncMCI cMCI AD

ADNI

002 US/Canada 18/0/0 0/0/0/18/0/0 18 65–83 8 10 0 8 7 3 0

003 US/Canada 8/0/0 0/0/1/6/1/0 8 55–89 5 2 1 5 1 1 1

005 US/Canada 5/0/0 0/0/0/5/0/0 5 71–86 1 4 0 1 2 2 0

006 US/Canada 13/0/0 1/0/0/12/0/0 13 69–85 5 6 2 5 3 3 2

007 US/Canada 13/1/0 0/0/1/13/0/0 14 67–88 5 7 2 5 5 2 2

009 US/Canada 7/0/0 0/0/0/7/0/0 7 63–77 3 4 0 3 2 2 0

010 US/Canada 6/1/0 0/0/1/5/0/0 7 65–79 3 2 2 3 0 2 2

011 US/Canada 16/0/0 0/0/3/13/0/0 16 60–82 7 8 1 7 6 2 1

012 US/Canada 13/1/0 0/1/0/13/0/0 14 60–85 3 10 1 3 8 2 1

013 US/Canada 9/1/0 0/0/0/8/1/1 10 58–87 5 4 1 5 3 1 1

014 US/Canada 13/1/0 0/0/1/12/1/0 14 86–85 7 5 2 7 1 4 2

016 US/Canada 8/3/0 0/0/0/11/0/0 11 55–86 2 7 2 2 2 5 2

018 US/Canada 22/1/0 0/0/2/21/0/0 23 66–86 7 11 5 7 10 1 5

019 US/Canada 11/2/0 0/0/0/13/0/0 13 57–90 3 8 2 3 6 2 2

020 US/Canada 6/0/0 0/0/0/6/0/0 6 66–83 6 0 0 6 0 0 0

021 US/Canada 12/0/0 0/0/1/11/0/0 12 60–83 3 6 3 3 4 2 3

022 US/Canada 18/2/0 0/0/1/7/2/0 20 60–81 7 9 4 7 9 0 4

023 US/Canada 20/0/0 0/0/0/19/1/0 20 59–84 4 12 4 4 5 7 4

024 US/Canada 11/0/0 1/0/0/7/2/0 11 62–84 5 4 2 5 3 1 2

027 US/Canada 8/0/0 0/0/0/8/0/0 8 73–88 2 2 4 2 1 1 4

029 US/Canada 7/0/0 1/0/0/6/0/0 7 66–86 0 6 1 0 5 1 1

031 US/Canada 18/0/0 0/0/2/16/0/0 18 56–89 4 10 4 4 5 5 4

032 US/Canada 11/0/0 0/0/0/11/0/0 11 60–85 5 4 2 5 1 3 2

033 US/Canada 11/0/0 0/0/0/11/0/0 11 57–83 5 3 3 5 2 1 3

035 US/Canada 4/0/0 1/0/0/3/0/0 4 74–81 1 3 0 1 2 1 0

036 US/Canada 17/0/0 0/0/2/15/0/0 17 57–84 5 11 1 5 6 5 1

037 US/Canada 22/0/0 1/0/1/20/0/0 22 59–89 6 13 3 6 10 3 3

041 US/Canada 29/0/0 0/0/2/26/0/0 29 60–89 15 14 0 15 13 1 0

051 US/Canada 1/0/0 0/0/0/1/0/0 1 76–76 0 1 0 0 0 1 0

052 US/Canada 3/0/0 0/0/0/3/0/0 3 61–85 1 2 0 1 2 0 0

053 US/Canada 6/0/0 0/0/0/6/0/0 6 66–83 1 4 1 1 3 1 1

057 US/Canada 6/0/0 0/0/0/6/0/0 6 72–82 1 3 2 1 1 2 2

067 US/Canada 12/0/0 0/0/0/10/0/0 12 58–83 3 4 5 3 3 1 5

(Continued)
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TABLE 1 (Continued)

Subjects N = 795

Baseline 24-month follow up

Center
ID

Country Ethnic 
group 
(not 

Hispanic 
or Latino/
Hispanic 

or Latino/
NA)

Race group 
(Asian/
Native 

Hawaiian 
or pacific 
islander/
Black or 
African 

American/
White/

More than 
one race/

NA)

N Age 
(min–
max)

HS MCI AD HS ncMCI cMCI AD

068 US/Canada 11/0/0 0/0/0/11/0/0 11 56–77 2 8 1 2 6 2 1

070 US/Canada 1/0/0 0/0/0/1/0/0 1 83–83 0 1 0 0 1 0 0

072 US/Canada 10/0/0 0/0/0/10/0/0 10 59–87 3 7 0 3 6 1 0

073 US/Canada 13/1/0 3/0/0/10/0/0 14 61–83 12 2 0 12 1 1 0

082 US/Canada 13/0/0 0/0/0/12/0/0 13 67–84 9 2 2 9 0 2 2

094 US/Canada 6/0/0 0/0/1/5/0/0 6 69–85 4 1 1 4 1 0 1

098 US/Canada 4/0/0 0/0/0/4/0/0 4 69–88 1 2 1 1 1 1 1

099 US/Canada 7/1/0 0/0/0/8/0/0 8 67–82 6 2 0 6 0 2 0

100 US/Canada 13/0/0 1/0/1/11/0/0 13 66–85 7 2 4 7 0 2 4

109 US/Canada 3/0/0 0/0/3/0/0/0 3 77–85 2 0 1 2 0 0 1

114 US/Canada 16/1/0 0/0/3/13/1/0 17 56–86 10 4 3 10 4 0 3

116 US/Canada 28/2/0 2/0/0/25/2/1 30 56–87 12 11 7 12 5 6 7

123 US/Canada 12/0/0 0/0/0/12/0/0 12 62–85 3 4 5 3 0 4 5

126 US/Canada 7/0/0 0/0/1/6/0/0 7 74–84 1 4 2 1 2 2 2

127 US/Canada 7/0/0 1/0/0/6/0/0 7 71–85 3 3 1 3 3 0 1

128 US/Canada 22/0/1 2/0/2/18/1/0 23 56–86 8 9 6 8 7 2 6

129 US/Canada 1/0/0 0/0/0/1/0/0 1 73–73 0 1 0 0 1 0 0

130 US/Canada 19/0/0 1/0/1/17/0/0 19 64–85 9 7 3 9 4 3 3

131 US/Canada 6/0/0 0/0/0/6/0/0 6 62–79 2 4 0 2 2 2 0

133 US/Canada 4/0/0 0/0/0/4/0/0 4 70–86 3 0 1 3 0 0 1

135 US/Canada 6/0/0 0/0/0/6/0/0 6 65–79 2 2 2 2 0 2 2

136 US/Canada 8/0/0 0/0/0/8/0/0 8 66–81 4 4 0 4 0 4 0

137 US/Canada 25/0/0 1/0/0/24/0/0 25 55–85 8 11 6 8 5 6 6

141 US/Canada 14/0/0 1/0/1/12/0/0 14 63–84 6 4 4 6 0 4 4

153 US/Canada 4/0/0 0/0/0/5/0/0 4 70–76 3 0 1 3 0 0 1

168 US/Canada 12/1/0 0/0/0/12/0/0 13 58–68 7 5 1 7 3 2 1

177 US/Canada 3/0/0 0/0/0/3/0/0 3 58–68 3 0 0 3 0 0 0

301 US/Canada 2/1/0 0/0/0/3/0/0 3 65–81 0 3 0 0 3 0 0

341 US/Canada 2/0/0 0/0/0/2/0/0 2 66–76 1 1 0 1 1 0 0

941 US/Canada 20/0/1 1/0/0/19/1/0 21 57–86 19 1 1 19 1 0 1

CDI Italy (EU) 34/0/0 0/0/0/0/0/34 34 39–83 1 31 2 NA NA NA NA

PSD Italy (EU) 26/0/0 0/0/0/0/0/26 26 60–85 10 11 5 NA NA NA NA

BP Italy (EU) 30/0/0 0/0/0/0/0/30 30 67–88 1 15 14 NA NA NA NA

ADNI, Alzheimer’s Disease Neuroimaging Initiative; HS, Healthy subjects; cMCI, converter-Mild Cognitive Impairment; nc-MCI, non converter-Mild Cognitive Impairment; AD, Alzheimer’s 
Disease; CDI, Centro Diagnostico Italiano; MCI, Mild Cognitive Impairment; NA, Not Available. The identification of ADNI centers is not made available from the ADNI protocol. CDI, 
Centro Diagnostico Italiano; PSD, IRCCS Policlinico San Donato; EU, Europe; BP, IRCCS Bonino-Pulejo.

https://doi.org/10.3389/fneur.2025.1568086
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Aresta et al. 10.3389/fneur.2025.1568086

Frontiers in Neurology 09 frontiersin.org

(min to max) and categorical variables were presented as frequency 
and proportions (%).

The agreement in staging between AI tool and humans was 
computed using Cohen’s k in each staging class and in the 
overall subgroup.

The AI tool diagnostic performances were presented with mean 
value and 95% confidence intervals (CI), calculated using the 
Exact method.

Brain-volumetric features, cognitive measures, automatically 
processed by the AI tool, and CSF biomarkers were statistically 
reported according to the different stages, clinical syndromes and 
progression profiles and their subgroup analysis. Cognitive measures, 
brain-volumetric features, and CSF biomarkers were reported as 
mean ± standard deviation (SD). Normal distributions of quantitative 
variables were tested using the Shapiro–Wilk test. To assess differences 
between groups, a statistical analysis based on the null hypothesis 
significance test was applied. Normal distributed variables were tested 
using the parametric t-test, while for not normally distributed 
variables the non-parametric U Mann–Whitney test was used. The 
Bonferroni correction method was used to adjust for 
multiple comparisons.

Spearman’s correlation tests between brain-volumetric features, 
and CSF biomarkers (Aβ42, t-tau, and p-tau) were performed in 
its subgroup.

Spearman’s correlation coefficients were calculated between 
cognitive measures and brain-volumetric features were performed 
across the different stages.

The significance level adopted was 5% (p < 0.05), with 95% 
confidence intervals (CI). Data were analyzed using the RStudio (63) 
program version 2024.04.2.

3 Results

3.1 Study population

A total of 795 subjects were included: mean-age (calculated on 
761 subjects) 73.54 ± 7.52; sex (%) 52/45/3, males/females/
missing; mean education (y) (calculated on 705 subjects): 
16.38 ± 2.70; ethnicity (%): 2.6/97.1/0.4, Hispanic-or-Latino/
not-Hispanic-or-Latino/missing; racial category (%): 
2.6/0.1/4.1/81.4/1.8/10, Asian/native Hawaiian or pacific islander/
black or African American/white/more than one race/missing; 
primary language (%): 88.7/0.5/1/9.8, English/Spanish/others/
missing; handness (%): 84/6/10 right/left/missing). The 
distribution of HS, SCI, MCI, and AD-dementia subjects at 
baseline and at 24-month follow-up is shown in Table 1 across the 
66 centers.

3.2 Clinical data collection

3.2.1 MRI studies
Among the 795 participants (Whole cohort), all subjects 

performed 3D T1-weighted MP-RAGE MRI at baseline: 391 at 1.5 T, 
and 390 at 3 T. 705 subjects had 3D T1-weighted MP-RAGE MRI at 
both baseline and 24-month follow-up (Subgroup II).

3.2.2 Neuropsychological studies
Among the 795 participants, 426 subjects had completed all the 

neuropsychological test scores (in addition to 3D T1-weighted 
MP-RAGE MRI) at baseline (Subgroup 0), and 341 at both baseline 
and clinical follow-up (Subgroup IV).

3.2.3 First line biomarkers
Among the 795 participants, 485 subjects underwent lumbar 

puncture at baseline: 482 subjects had all three proteins measured 
(Subgroup III) (two subjects had only Aβ-42 concentrations, one 
subject had only Aβ-42 and t-tau proteins concentration).

159 subjects had neuroimaging studies, neuropsychological tests 
and biological biomarkers (CSF or PET) (Subgroup Ia).

3.3 Data processing

All subjects’ MRI data (795 subjects) and neuropsychological data 
(341 subjects) were safely processed by TRACE4AD.

3.3.1 Subgroup analysis 0: staging
In order to evaluate the AI-tool performance with respect to 

subjects’ staging (Performance 0), 426 subjects were considered and 
re-staged by the software, being already clinically staged by clinicians 
at baseline at their sites (Subgroup  0: N =  426). In Table  2, the 
agreement is presented for different stages (HS/SCI/WW, MCI/
MD, MSD).

Inter-rater agreement (Cohen’s k) between AI and clinicians was 
substantial for both MCI/MD-vs-rest (0.70) and HS/SCI/WW-vs-rest 
(0.81) classification, almost perfect for MSD-vs-rest (0.90) 
classification. Also, the inter-rater agreement between AI and 
clinicians for 3-classes categorization (MSD vs. MCI/MD vs. HS/SCI/
WW) was substantial (Cohen’s k = 0.64). However, the AI tool 
restaged HS as MCI in 42% cases (47/112). Among these subjects, 
based on the detailed neuropsychological assessment including eight 
neuropsychological tests (see Section 2.2.1), 42/47 had a memory 
impairment, 1/47 had functional impairment, and 4/47 had a 
significant cognitive impairment. Additionally, looking at biological 
findings,18 had biomarkers available for a biological diagnosis: 7 on 
18 (39%, about ⅓) were AD, 3 had Aβ42 + t-tau- (1 with negative [18F]

TABLE 2 TRACE4AD staging performance compared to clinical staging.

Performance 0 Staging: Agreement of AI tool vs. clinicians (Subgroup 0: N = 426)

MSD MCI/MD HS/SCI/WW

N = 95 N = 219 N = 112

Cohen’s k 0.90 0.70 0.81

3-classes Cohen’s k 0.64
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FDG PET) (HS/SCI/WW), 1 had Aβ42- t-tau+ with negative [18F]
FDG PET (HS/SCI/WW), 7 had excluded AD.

3.3.2 Subgroup analysis I: clinical profiling, 
clinical diagnosis and causal hypothesis

In order to evaluate the AI-tool performance with respect to 
clinical profile for clinical syndrome classification, clinical diagnosis 
and causal hypothesis at baseline (Performance I), 130 subjects from 
Subgroup Ia staged by AI as MCI-MD (64) or MSD (48) with available 
biomarkers were considered (Subgroup Ib: N = 130). In Table 3, the 
clinical syndrome classification, clinical diagnosis and causal 
hypothesis at baseline using AI tool is presented.

Regarding the results, AI classified 79 subjects based on MRI and 
neuropsychological markers with clinical syndrome compatible with 
typical AD (amnestic cognitive impairment and disproportionate 
medial temporal lobe atrophy), two subjects with clinical syndrome 
compatible with PCA (visuospatial impairment and parieto-occipital 
atrophy), 15 subjects with clinical syndrome compatible lv-PPA 
(language impairment and consistent focal atrophy in the dominant 
hemisphere), nine subjects with clinical syndrome compatible bvFTD 
or fvAD according to intersocietal classification (frontal behavioral 
or dysexecutive syndrome or both with fronto-temporal atrophy); 25 
subjects were classified as no clear hypothesis. Related causal 
hypotheses identified by AI were suspected AD for 96 subjects, 
frontotemporal lobe degeneration (FTLD) for nine subjects, and no 
clear hypothesis for 25 subjects. Considering the AI-based risk of 
progression to AD within 24 months, eight subjects previously 
classified as “bvFTD or fvAD” were re-classified as “suspected AD”; 

seven subjects previously classified as “no clear hypothesis” were 
re-classified as “suspected AD.”

Considering CSF biomarkers and [18F]FDG PET (reference 
standard for the biological diagnosis):

 a) among the 96 + 7 subjects classified by AI as suspected AD, 93 
had a biological diagnosis of AD (t-tau/Aβ42+), 3 had positive 
[18F]FDG PET for AD, while 7 had CSF biomarkers that 
excluded AD (t-tau/Aβ42-);

 b) among the nine subjects classified by AI as suspected FTLD, 4 
had CSF biomarkers that excluded AD (t-tau/Aβ42-), while 5 
had a biological diagnosis of AD (t-tau/Aβ42+);

 c) among the 18 subjects classified by AI as “No clear hypothesis,” 
8 had a biological diagnosis of AD (t-tau/Aβ42+), 8 had CSF 
biomarkers that excluded AD (t-tau/Aβ42-), 1 had 
Aβ42 + t-tau- but negative [18F]FDG PET for AD, and 1 had 
Aβ42- t-tau+ but negative [18F]FDG PET for AD.

Considering all subjects classified by AI as suspected AD or 
suspected FTLD, AI accuracy in comparison with biomarker-based 
diagnosis (CSF or PET) was 89.3% (100/112).

Overall, in Table 4, AI tool clinical performances in AD vs. FTLD 
clinical syndrome (excluded subjects with no clear hypothesis) are 
presented in terms of positive predictive value (PPV), negative 
predictive value (NPV), and accuracy in classifying AD vs. FTLD 
(CSF or PET biomarkers as reference standards).

Sensitivity and specificity were not calculated because subjects 
classified by AI as suspected AD, but with CSF biomarkers that 

TABLE 3 Clinical syndrome classification, clinical diagnosis and causal hypothesis at baseline using AI tool.

AI-based assessment

Clinical syndrome Amnestic cognitive 

impairment and 

disproportionate medial 

temporal lobe atrophy

Visuospatial impairment 

and parietooccipital 

atrophy

Language impairment 

(i.e., logopenic, 

agrammatic or non-

fluent, or semantic) and 

consistent focal atrophy 

in the dominant 

hemisphere

Frontal behavioral or 

dysexecutive syndrome or 

both with frontotemporal 

atrophy

No clear hypothesis

Clinical diagnosis Typical AD

syndrome

N = 79

PCA

N = 2

lv-PPA

N = 15

bvFTD or fvAD

N = 9

No clear hypothesis

N = 25

Causal hypothesis Suspected AD

N = 96

Suspected FTLD

N = 9

No clear hypothesis

N = 25

Risk of progression to 

AD-dementia

HR N = 8

LR N = 1

HR N = 7

LR N = 18

Causal Hypothesis Suspected AD

N = 96 + 8 + 7

Suspected FTLD

N = 1

No clear hypothesis

N = 18

CSF Biomarkers + [18F]

FDG PET

t-tau/Aβ42 + N = 87 + 3 + 3 + 5

t-tau/Aβ42- N = 7 + 3

Aβ42- t-tau+, [18F]FDG PET+ N = 1

[18F]FDG PET+ N = 2

t-tau/Aβ42- N = 1 t-tau/Aβ42 + N = 8

t-tau/Aβ42- N = 1 + 7

Aβ42 + t-tau-, [18F]FDG 

PET- N = 1

Aβ42- t-tau+, [18F]FDG 

PET- = 1

TOT = 130 N = 111 N = 1 N = 18

Accuracy 101/111 = 91.0% 1/1 = 100%
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excluded AD, do not necessarily belong to the “suspected FTLD” 
causal hypothesis. Calculating these metrics under such conditions 
could lead to misleading conclusions.

3.3.3 Subgroup analysis II: progression
In order to evaluate the AI tool performance to predict clinical 

progression of dementia at 24-month follow-up (Performance II), 705 
subjects with 24-month follow-up were considered (Subgroup II: 
N =  705). In Tables 5, 6, AI-tool clinical performances in clinical 
progression (sensitivity, specificity, accuracy, ROC-AUC) 
are presented.

Two hundred seventy-two subjects were predicted as LR, and 
433 as HR to convert to AD-dementia at 24-month follow-up by 
TRACE4AD using MRI data: sensitivity, specificity, accuracy, and 
ROC-AUC of the tool in predicting subjects converting or not to 
AD-dementia within 24-month compared to clinical diagnosis 
were 79% [74–84%95 CI], 81% [77–85%95 CI], 80% [77–83%95 
CI], and 85% [82–87%95 CI], respectively. To be noted, the AI 
tool has a high ROC-AUC (85%), sensitivity, and specificity 
(80%), thus it is useful to predict conversion or not to 

AD-dementia and to support clinical profiling at 24-month 
follow-up.

One hundred seventy-four subjects were predicted as LR, and 167 
as HR to convert to AD-dementia at 24-month follow-up by 
TRACE4AD using MRI and neuropsychological data: sensitivity, 
specificity, accuracy, and ROC-AUC of the tool in predicting subjects 
converting or not to AD-dementia within 24-month compared to 
clinical diagnosis were 89% [84–94%95 CI], 82% [77–87%95 CI], 85% 
[81–89%95 CI], and 83% [79–87%95 CI], respectively.

3.3.4 Statistical comparison between different 
tools

In Table 7, Quantib ND and TRACE4AD correlation results are 
presented; normative regional data interpreted for diagnosis showed 
strong to very strong and statistically significant correlation 
(rs = 0.70–0.94).

Table 8 shows the Quantib ND and TRACE4AD atrophy analysis 
agreement. The two tools demonstrated a fair and statistically 
significant agreement for the occipital lobe (whole: k = 0.35, p = 0.02; 
left: k = 0.40, p = 0.01). Similarly, a moderate-to-substantial and 

TABLE 4 AI tool clinical performances in AD vs. FTLD clinical syndrome (excluded subjects with no clear hypothesis) in classifying AD vs. FTLD using 
CSF or PET biomarkers as reference standards.

Performance I: Performance of AI tool vs. biomarkers in causal hypothesis (Subgroup I: N = 130–18* = 112)

AD FTLD

PPV NPV Accuracy

91%

[84–96%95 CI]
100%

91%

[84–96%95 CI]

N = 101/111 N = 1/1 N = 102/112

ROC-AUC, Receiver Operating Characteristics-Area Under Curve; PPV, Positive Predictive Value; NPV, Negative Predictive Value; %95CI, Confidence Interval 95%; *no clear hypothesis.

TABLE 5 Performance of the AI tool in clinical progression at 24-month follow-up using MRI data, compared to clinicians.

Performance II: Performance of AI tool vs. Clinical progression at 24-month follow-up (Subgroup II: N = 705)

Converter to AD-dementia
N = 272

Non converter to AD-
dementia
N = 433

Sensitivity Specificity Accuracy ROC-AUC

79%

[73–83%95 CI]

81%

[77–84%95 CI]

80%

[77–83%95 CI]

85%

[82–88%95 CI]

N. 180/272 N. 384/433 N. 384/705

ROC-AUC, Receiver Operating Characteristics-Area Under Curve; PPV, Positive Predictive Value; NPV, Negative Predictive Value; %95CI, Confidence Interval 95%.

TABLE 6 Performance of the AI tool in clinical progression at 24-month follow-up using MRI data and cognitive measures, compared to clinicians.

Performance II: Accuracy of AI tool vs. Clinical progression at 24-month follow-up (Subgroup IV: N = 341)

Converter to AD-dementia
N = 167

Non converter to AD-
dementia
N = 174

Sensitivity Specificity Accuracy ROC-AUC

89%

[82–93%95 CI]

82%

[76–87%95 CI]

85%

[80–88%95 CI]

83%

[79–87%95 CI]

N. 132/149 157/192 N. 289/341

ROC-AUC, Receiver Operating Characteristics-Area Under Curve; PPV, Positive Predictive Value; NPV, Negative Predictive Value; %95CI, Confidence Interval 95%.
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statistically significant agreement was observed for the temporal lobe 
(whole: k = 0.61, p = 0.001; left: k = 0.40, p < 0.01; right: k = 0.57, 
p < 0.01) and for the hippocampus (whole: k = 0.47, p = 0.01; left: 
k = 0.43, p = 0.02; right: k = 0.30, p = 0.03).

In Table 9, the diagnostic performance comparisons are presented. 
Quantib ND and TRACE4AD brain-volumetric features were not 
statistically different in differentiating HS, MCI, and AD (p > 0.05).

3.3.5 Statistical distributions
The brain-volumetric features and the cognitive features 

automatically processed by the AI tool are reported in Tables 10–14 
according, respectively, to different stages of AD clinical syndromes, 
progression to AD-dementia and their subgroup analysis.

Spearman’s correlation results between brain-volumetric features 
and CSF proteins, calculated on the 482 participants with all CSF 
protein data, are presented in Table 15.

Spearman’s pairwise correlation results between brain-volumetric 
features and cognitive measures are presented in 
Supplementary Table 1.

4 Discussion

In this work, the performance of an AI tool applied to 
neuropsychological/neuroimaging assessment for supporting the 
staging, clinical profiling, diagnosis, causal hypothesis and progression 

TABLE 7 Spearman’s correlation between brain volumetric features extracted with either Quantib or TRACE4AD.

Spearman’s rho p-value

Whole brain volume 0.94 p < 0.001***

TIV 0.93 p < 0.001***

CSF 0.80 p < 0.001***

Frontal lobe 0.88 p < 0.001***

Occipital lobe 0.78 p < 0.001***

Temporal lobe 0.92 p < 0.001***

Parietal lobe 0.92 p < 0.001***

Cerebellum 0.70 p < 0.001***

Hippocampus 0.88 p < 0.001***

CSF, cerebrospinal fluid; TIV, total intracranial volume. * for 0.01 < p-value < 0.05, ** for p-value < 0.01, *** for p-value < 0.001.

TABLE 8 Atrophy analysis agreement between TRACE4AD and Quantib ND.

Cohen’s k p-value

Frontal lobe

Whole 0.15 0.35

Left 0.28 0.10

Right 0.08 0.65

Parietal lobe

Whole −0.07 0.70

Left −0.03 0.88

Right 0.03 0.88

Occipital lobe

Whole 0.35 0.02*

Left 0.40 0.01*

Right 0.20 0.09

Temporal lobe

Whole 0.61 0.001***

Left 0.43 p < 0.01**

Right 0.57 p < 0.01**

Hippocampus

Whole 0.47 0.01**

Left 0.43 0.02*

Right 0.30 0.03*

* for 0.01 < p-value < 0.05, ** for p-value < 0.01, *** for p-value < 0.001.
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of subjects at risk of AD, following Intersocietal recommendations, 
was assessed for a large population of subjects at risk of AD (795 
subjects at risk of AD from 66 centers in US/Canada/Italy).

Patients performed neuropsychological tests, 3D MRI brain 
studies, CSF and PET studies. The cognitive and brain-volumetric 
features automatically processed by the AI tool were used to detect 
regional atrophy in specific brain regions and cognitive impairments 
in specific domains when compared with normative percentiles/
cut-offs.

Performance of the AI tool were evaluated in: (1) classifying 
subjects as HS/SCI/WW, MCI/MD, and MSD, with respect to clinical 
staging performed by clinicians at baseline and at 24-month follow-up; 
(2) clinical profiling subjects, with respect to biomarker-based 
diagnosis for each stage; (3) predicting, at baseline, the conversion to 
AD-dementia within 24-month, with respect to clinical diagnosis at 
24-month follow-up.

AI had a staging performance similar to that of clinicians in 
staging (Table 2). Inter-rater agreement (Cohen’s k) between AI and 
clinicians was substantial for both MCI/MD-vs-all (0.70) and HS/
SCI/WW-vs-all (0.81) classification, almost perfect for MSD-vs-all 
(0.90) classification. However, 42% (47/112) HS/SCI/WW cases were 
restaged by AI as MCI and about ⅓ were AD based on CSF 
biomarkers. This was due to the more sensitive neuropsychological 
tests used by the AI for cognitive impairment assessment included 
in the battery of seven tests (see Section 2.2.1), not performed in 
baseline neurological visits. A more sensitive staging (more MCI 
detection for subjects with positive biomarkers) allows an earlier 
diagnosis and intervention with disease-modifying drugs for 
AD patients.

AI performance in causal hypothesis vs. biomarker-based 
diagnosis was 91% [84–96%95 CI] (positive predictive value), 100% 

[43.0–85.4%95 CI] (negative predictive value), and 91% [84–96%95 
CI] (accuracy) (Table 4).

AI performance in predicting conversion to AD-dementia vs. 
clinical conversion to AD-dementia at 24-month follow-up was 89% 
[84–94%95 CI] (sensitivity), 82% [77–87%95 CI] (specificity), 85% 
[81–89%95 CI] (accuracy), 83% [79–87%95 CI] (ROC-AUC) 
(Tables 5, 6). This performance supports clinical profiling, clinical 
diagnosis and causal hypothesis and the optimal choice of first-line 
recommended biomarkers. To be noted, the AI tool was able to reduce 
the class of “no clear hypothesis” by the provision of the LR/HR to 
progress to AD-dementia within 24-month. However, a limitation of 
the study is the lack of subjects with Lewy body spectrum, motor 
tauopathy, or vascular dementia since these subjects were excluded by 
inclusion criteria during enrollment. This limitation can have an 
impact on the performance when the AI tool is used for clinical 
profiling of these clinical syndromes.

As expected, cognitive features decrease from MCI/MD to MSD 
(Table 10): major decreases occur in AVLT test (in the number of 
words recalled at stage 5, the last recall), in TMT-B test (in time taken 
for the task, in the number of omissions and committed errors); in 
Symbol Digit test (in the total score), in the test of Category fluency 
vegetables (in the number of vegetables), in FAQ (in activities related 
to finance and transportation). Consistently, brain-volumetric 
features, cognitive features and biomarkers change with subjects’ stage 
(Table 11). Brain-volumetric features decrease of about 3–10%: about 
4% in WB, tiv, LX, RX, about 8% in medio-temporal cortex, about 6% 
in frontotemporal-cortex and in parieto-occipital cortex, and 10% in 
hippocampus. Consistently, CSF biomarkers decrease although not 
statistically significantly (Table 12).

Similarly, brain-volumetric, cognitive features and biomarkers 
change with subjects’ risk of conversion to AD-dementia (Tables 13, 

TABLE 9 Diagnostic performance of each brain-volumetric feature according to AI extraction tool.

TRACE4AD Quantib ND

Brain-volumetric features ROC-AUC
[%95CI]

ROC-AUC
[%95CI]

p-value

Whole brain [mL]
0.77

[0.56–0.99]

0.70

[0.46–0.94]
0.15

TIV [mL]
0.65

[0.40–0.89]

0.66

[0.41–0.92]
0.80

CSF [mL]
0.68

[0.44–0.92]

0.65

[0.40–0.89]
0.68

Frontal lobe [mL]
0.75

[0.52–0.98]

0.67

[0.42–0.93]
0.22

Parietal lobe [mL]
0.75

[0.54–0.97]

0.67

[0.43–0.92]
0.15

Occipital lobe [mL]
0.73

[0.48–0.95]

0.72

[0.49–0.95]
0.94

Temporal lobe [mL]
0.76

[0.54–0.99]

0.69

[0.45–0.92]
0.21

Cerebellum [mL]
0.79

[0.59–0.99]

0.78

[0.58–0.98]
0.92

Hippocampus [mL]
0.79

[0.57–1.00]

0.69

[0.44–0.93]
0.09

CSF, cerebrospinal fluid; TIV, total intracranial volume.
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TABLE 10 Descriptive analysis of cognitive measures, for subjects with AD clinical syndromes at different stages (Subgroup I: N = 130).

MCI/MD (N = 79) MSD (N = 51)

Cognitive 
measures

Mean ± SD Mean ± SD Difference (%) p-value p-value☨

MMSE ‡ 27.48 ± 1.77 24.14 ± 1.97 12.15 p < 0.001*** p < 0.001***

AVLT

Trial1 ‡ 4.14 ± 1.45 3.51 ± 1.45 15.22 0.02* 1

Trial1 errors ‡ 0.48 ± 0.78 0.37 ± 0.77 22.92 0.28 1

Trial2 ‡ 5.52 ± 1.77 4.49 ± 1.74 18.66 p < 0.01** 0.08

Trial2 errors ‡ 0.57 ± 0.98 0.53 ± 1.10 7.02 0.67 1

Trial3 ‡ 6.61 ± 2.01 5.28 ± 1.89 20.12 p < 0.001*** 0.02*

Trial3 errors ‡ 0.63 ± 0.89 0.61 ± 0.90 3.17 0.92 1

Trial4 ‡ 6.92 ± 2.16 5.61 ± 1.96 18.93 p < 0.01** 0.06

Trial4 errors ‡ 0.48 ± 0.78 0.53 ± 0.86 −10.42 0.72 1

Trial5 ‡ 7.43 ± 2.44 5.47 ± 2.22 26.38 p < 0.001*** p < 0.01**

Trial5 errors ‡ 0.49 ± 0.81 0.39 ± 0.72 20.41 0.49 1

Trial6 ‡ 3.56 ± 2.59 2.16 ± 2.04 39.33 p < 0.01** 0.07

Trial6 errors ‡ 1.00 ± 1.26 1.29 ± 1.50 −29.00 0.31 1

Delayed ‡ 2.33 ± 2.31 1.53 ± 2.60 34.33 0.01* 0.59

Delayed errors ‡ 1.77 ± 2.00 1.18 ± 1.97 33.33 p < 0.01** 0.44

Recognitions ‡ 9.68 ± 3.52 8.08 ± 3.98 16.53 0.02* 1

Recognitions errors ‡ 1.91 ± 2.05 2.63 ± 2.08 −37.70 0.03* 1

Digit Span Forward ‡ 6.68 ± 1.06 6.45 ± 1.08 3.44 0.29 1

Digit Span Backward ‡ 4.80 ± 1.16 4.12 ± 1.11 14.17 p < 0.01** 0.09

TMT-A

Time taken ‡ 43.00 ± 21.10 64.04 ± 36.76 −48.93 p < 0.001*** 0.01*

Committed errors ‡ 0.06 ± 0.29 0.23 ± 0.62 −283.33 0.04* 1.00

Omission errors ‡ 0.01 ± 0.11 0.08 ± 0.44 −700.00 0.33 1.00

TMT-B

Time taken ‡ 115.18 ± 59.08 211.20 ± 86.69 −83.37 p < 0.001*** p < 0.001***

Committed errors ‡ 0.77 ± 1.26 1.96 ± 2.02 −154.55 p < 0.001*** p < 0.01**

Omission errors ‡ 0.14 ± 0.62 4.51 ± 7.09 −3,121.43 p < 0.001*** p < 0.001***

Clock

Contour ‡ 0.98 ± 0.16 0.98 ± 0.14 0.00 0.84 1.00

Number order ‡ 0.73 ± 0.44 0.47 ± 0.50 35.62 p < 0.01** 0.14

Numbers present ‡ 0.84 ± 0.37 0.71 ± 0.46 15.48 0.08 1.00

Hands ‡ 0.95 ± 0.22 0.84 ± 0.37 11.58 0.04* 1.00

Time signed ‡ 0.66 ± 0.48 0.45 ± 0.50 31.82 0.02* 1.00

Total score ‡ 4.15 ± 1.03 3.45 ± 1.30 16.87 p < 0.01** 0.06

Symbol digit 40.19 ± 9.91 28.67 ± 11.43 28.66 p < 0.001*** p < 0.001***

Category fluency

Animals 16.08 ± 4.70 13.94 ± 4.88 13.31 0.02* 0.83

Animals perseveration ‡ 1.23 ± 1.63 1.49 ± 1.64 −21.14 0.23 1.00

Animals intrusion ‡ 0.06 ± 0.29 0.20 ± 0.85 −233.33 0.79 1.00

Vegetables 11.89 ± 3.42 8.45 ± 3.67 28.93 p < 0.001*** p < 0.001***

Vegetables perseveration ‡ 0.57 ± 0.80 0.51 ± 1.08 10.53 0.21 1.00

(Continued)
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14): all brain-volumetric features except for features representative of 
asymmetries and the thalamus and the cerebellum, as well as most 
cognitive features are significantly different. All biomarkers, except for 
Aβ42 are significantly different between the two groups (Table 14).

To be  noted, all brain-volumetric features, except those 
representing asymmetries, are statistically significantly correlated 
with CSF biomarkers (Table 15). Moreover, most cognitive features 
are statistically significantly correlated with the brain-volumetric 
features (Supplementary Table 1), in particular: losses in AVLT 
and DIGIT SPAN FORWARD scores, most CLOCK scores and 
DIGIT SYMBOL total score are directly correlated with atrophy 
of the medio-temporal cortex and hippocampus. TMT-A time 
taken and TMT-B time taken/committed errors are inversely 
correlated with atrophy of the medio-temporal cortex and 
hippocampus. Interestingly, the number of animals/vegetables is 
directly correlated with the medio-temporal cortex and 
hippocampus and the number of animal perseverations is inversely 
correlated with the medio-temporal cortex and hippocampus. 

BNT total score and spontaneous answers are directly correlated 
with the medio-temporal cortex and hippocampus, while the 
phonological cues were inversely correlated with the medio-
temporal cortex and hippocampus. Consistently, all FAQ subscores 
were inversely correlated with the medio-temporal cortex 
and hippocampus.

Previous studies have demonstrated the applicability of AI systems 
in analyzing MRI-T1 brain features and cognitive measures for 
supporting early diagnosis of AD and predicting subject-related risk 
of AD-dementia.

Among these studies, there are some that were conducted by 
researchers to support the safe design of software to be used as medical 
devices, based on SVM automatic classifiers using, as input, MRI-T1 
brain features, eventually combined with cognitive measures of the 
subjects at risk of AD-dementia. In particular, we found the following 
studies reported in (65–67), that support the architectural choice of: 
(1) the image pre-processing method; (2) the feature extraction and 
selection method; (3) the classification metrics and validation 

TABLE 10 (Continued)

MCI/MD (N = 79) MSD (N = 51)

Cognitive 
measures

Mean ± SD Mean ± SD Difference (%) p-value p-value☨

Vegetables intrusion ‡ 0.51 ± 1.15 0.80 ± 1.72 −56.86 0.41 1.00

Boston Naming Test

Correct spontaneous 

answers ‡
25.86 ± 3.52 23.41 ± 5.49

9.47
p < 0.01** 0.33

Semantic cues ‡ 2.09 ± 3.16 3.02 ± 3.75 −44.50 0.11 1.00

Correct answer after 

semantic cue ‡

0.27 ± 0.69 0.61 ± 1.46 −125.93 0.05 1.00

Phonological cues ‡ 3.73 ± 3.40 5.72 ± 5.58 −53.35 0.04* 1.00

Correct answer after 

phonological cue ‡

0.27 ± 0.69 0.61 ± 1.46 −125.93 0.05 1.00

Total score ‡ 26.13 ± 3.43 24.02 ± 5.47 8.08 0.02* 1.00

FAQ

Finances ‡ 0.90 ± 1.46 3.00 ± 1.81 −233.33 p < 0.001*** p < 0.001***

Bills ‡ 0.85 ± 1.41 3.37 ± 1.61 −296.47 p < 0.001*** p < 0.001***

Buying ‡ 0.62 ± 1.27 2.51 ± 1.81 −304.84 p < 0.001*** p < 0.001***

Social life ‡ 0.51 ± 1.12 1.67 ± 1.67 −227.45 p < 0.001*** p < 0.001***

Housekeeping ‡ 0.22 ± 0.76 1.00 ± 1.62 −354.55 p < 0.001*** 0.04*

Cooking ‡ 0.52 ± 0.97 1.80 ± 1.70 −246.15 p < 0.001*** p < 0.001***

Keeping up with external 

events ‡

0.48 ± 1.19 2.12 ± 1.81 −341.67 p < 0.001*** p < 0.001***

Entertainment and 

learning ‡

0.56 ± 1.22 1.51 ± 1.65 −169.64 p < 0.001*** 0.02*

Memory ‡ 1.37 ± 1.61 3.69 ± 1.05 −169.34 p < 0.001*** p < 0.001***

Transports ‡ 0.48 ± 1.15 2.51 ± 2.19 −422.92 p < 0.001*** p < 0.001***

Total score ‡ 2.48 ± 3.66 11.04 ± 6.40 −345.16 p < 0.001*** p < 0.001***

☨Bonferroni correction.
‡Non-parametric test.
SD, Standard deviation; MCI, Mild Cognitive Impairment; MD, Mild Dementia; MSD, Moderate-to-severe dementia; MMSE, Mini-Mental State Examination; AVLT, Auditory Verbal Learning 
Test; TMT, Trail Making Test; FAQ, Functional Assessment Questionnaire.
* for 0.01 < p-value < 0.05, ** for p-value < 0.01, *** for p-value < 0.001.
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TABLE 11 Descriptive analysis of brain-volumetric features for subjects with AD clinical syndromes at different stages (Subgroup I: N = 130).

MCI/MD (N = 79) MSD (N = 51)

Brain-volumetric 
features

Mean ± SD Mean ± SD Difference (%) p-value p-value☨

whole brain total volume 1,393.58 ± 86.72 1,338.75 ± 89.36 3.93 p < 0.001*** 0.07

whole brain perc over tiv 70.47 ± 4.32 67.74 ± 4.43 3.87 p < 0.001*** 0.06

whole brain rx 700.72 ± 42.94 671.11 ± 44.99 4.23 p < 0.001*** 0.03*

whole brain lx 692.85 ± 44.53 667.64 ± 45.68 3.64 p < 0.01** 0.20

whole brain asymmetry 

index
0.57 ± 0.85 0.26 ± 1.15

54.39
0.10 1.00

gray matter total volume 731.80 ± 46.72 697.54 ± 51.09 4.68 p < 0.001*** 0.02*

gray matter perc over tiv 37.01 ± 2.34 35.30 ± 2.53 4.62 p < 0.001*** 0.02*

gray matter rx 368.07 ± 23.34 349.20 ± 26.75 5.13 p < 0.001*** p < 0.01**

gray matter lx 363.74 ± 24.06 348.34 ± 25.56 4.23 p < 0.001*** 0.07

gray matter asymmetry 

index ‡
−0.60 ± 1.12 −0.11 ± 1.65

81.67
0.06 1.00

white matter total volume 661.78 ± 54.48 641.21 ± 54.30 3.11 0.04* 1.00

white matter perc over tiv 33.47 ± 2.73 32.45 ± 2.72 3.05 0.04* 1.00

white matter rx 332.66 ± 26.90 321.92 ± 26.70 3.23 0.03* 1.00

white matter lx 329.12 ± 27.87 319.30 ± 27.82 2.98 0.05 1.00

white matter asymmetry 

index
−0.55 ± 0.85 −0.43 ± 0.77

21.82
0.38 1.00

csf total volume 583.80 ± 84.91 637.32 ± 86.48 −9.17 p < 0.001*** 0.06

csf perc over tiv 29.53 ± 4.32 32.26 ± 4.43 −9.24 p < 0.001*** 0.06

tiv total volume ‡ 1,977.37 ± 7.34 1,976.08 ± 7.89 0.07 0.35 1.00

cerebellum total volume 102.68 ± 11.22 101.25 ± 11.00 1.39 0.47 1.00

cerebellum rx 50.95 ± 5.64 50.29 ± 5.49 1.30 0.51 1.00

cerebellum lx 51.73 ± 5.69 50.96 ± 5.60 1.49 0.45 1.00

cerebellum asymmetry 

index
−0.76 ± 1.58 −0.66 ± 1.40

13.16
0.70 1.00

insula total volume 18.21 ± 1.82 17.58 ± 2.08 3.46 0.08 1.00

insula rx 8.96 ± 0.91 8.59 ± 1.07 4.13 0.04* 1.00

insula lx 9.25 ± 0.95 8.99 ± 1.06 2.81 0.15 1.00

insula asymmetry index −1.60 ± 2.08 −2.34 ± 2.62 −46.25 0.09 1.00

cingulate cortex total 

volume
30.45 ± 2.49 29.22 ± 2.95

4.04
0.01* 1.00

cingulate cortex rx 15.34 ± 1.32 14.80 ± 1.69 3.52 0.06 1.00

cingulate cortex lx 15.11 ± 1.34 14.41 ± 1.41 4.63 p < 0.01** 0.50

cingulate cortex asymmetry 

index ‡
0.78 ± 3.16 1.23 ± 3.56

−57.69
0.18 1.00

hippocampus total volume 8.13 ± 1.43 7.36 ± 1.53 9.47 p < 0.01** 0.38

hippocampus rx 3.97 ± 0.76 3.55 ± 0.78 10.58 p < 0.01** 0.20

hippocampus lx 4.16 ± 0.72 3.81 ± 0.81 8.41 0.01* 1.00

hippocampus asymmetry 

index
−2.47 ± 4.76 −3.72 ± 5.95

−50.61
0.21 1.00

parahippocampus total 

volume
8.08 ± 1.04 7.54 ± 0.94

6.68
p < 0.01** 0.23

(Continued)
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procedures; (4) the output maps; (5) the ensemble of classifiers; and 
(6) the classification voting scheme.

Salvatore et al. (65) gave a state-of-the-art overview about the 
applicability of SVM automatic classifiers for the early and differential 
diagnosis of AD-related pathologies by means of MRI-T1 features, 
starting from preliminary steps such as image pre-processing, feature 
extraction, feature selection and ending with classification, validation 

strategies and extraction of MRI-related biomarkers. This study aims 
to provide a systematic overview about the SVM architecture in the 
automatic classification of AD subjects and in the prediction of 
conversion from MCI to AD-dementia. Both main achievements in 
terms of classification performance (e.g., accuracy, specificity and 
sensitivity) and limitations are described, including: (1) the effects of 
pre-processing on classification performances; (2) the effects of feature 

TABLE 11 (Continued)

MCI/MD (N = 79) MSD (N = 51)

Brain-volumetric 
features

Mean ± SD Mean ± SD Difference (%) p-value p-value☨

parahippocampus rx 4.39 ± 0.59 4.05 ± 0.55 7.74 p < 0.01** 0.10

parahippocampus lx 3.69 ± 0.53 3.50 ± 0.44 5.15 0.02* 1.00

parahippocampus 

asymmetry index
8.56 ± 5.16 7.24 ± 4.67

15.42
0.13 1.00

amygdala total volume 2.51 ± 0.39 2.34 ± 0.36 6.77 0.01* 0.83

amygdala rx 1.24 ± 0.20 1.16 ± 0.18 6.45 0.02* 1.00

amygdala lx 1.27 ± 0.21 1.18 ± 0.22 7.09 0.02* 1.00

amygdala asymmetry index −1.29 ± 5.54 −0.67 ± 7.22 48.06 0.60 1.00

ventral striatum total 

volume

1.79 ± 0.23 1.78 ± 0.22 0.56 0.68 1.00

ventral striatum rx 0.85 ± 0.12 0.84 ± 0.11 1.18 0.69 1.00

ventral striatum lx 0.94 ± 0.12 0.93 ± 0.12 1.06 0.70 1.00

ventral striatum asymmetry 

index ‡

−5.07 ± 3.69 −5.11 ± 3.44 −0.79 0.99 1.00

thalamus total volume 10.35 ± 1.52 9.84 ± 1.81 4.93 0.10 1.00

thalamus rx 5.38 ± 0.80 5.12 ± 0.98 4.83 0.11 1.00

thalamus lx 4.96 ± 0.74 4.73 ± 0.87 4.64 0.12 1.00

thalamus asymmetry index ‡ 4.11 ± 3.12 3.87 ± 4.34 5.84 0.81 1.00

precuneus total volume 23.12 ± 2.32 21.82 ± 2.41 5.62 p < 0.01** 0.25

precuneus rx 11.45 ± 1.24 10.78 ± 1.34 5.85 p < 0.01** 0.39

precuneus lx 11.67 ± 1.23 11.05 ± 1.20 5.31 p < 0.01** 0.42

precuneus asymmetry index −0.95 ± 3.59 −1.35 ± 3.85 −42.11 0.55 1.00

ft cortex total volume 288.49 ± 20.38 272.06 ± 23.09 5.70 p < 0.001*** p < 0.01**

ft cortex rx ‡ 145.44 ± 10.23 136.48 ± 12.11 6.16 p < 0.001*** 0.01*

ft cortex lx 143.05 ± 10.49 135.58 ± 11.63 5.22 p < 0.001*** 0.03*

ft cortex asymmetry index ‡ 0.84 ± 1.31 0.31 ± 2.08 63.10 0.12 1.00

mt cortex total volume 16.21 ± 2.38 14.90 ± 2.40 8.08 p < 0.01** 0.23

mt cortex rx 8.36 ± 1.29 7.59 ± 1.29 9.21 p < 0.01** 0.11

mt cortex lx 7.85 ± 1.19 7.31 ± 1.20 6.88 0.01* 1.00

mt cortex asymmetry index 3.05 ± 4.37 1.83 ± 4.86 40.00 0.15 1.00

po cortex total volume 123.91 ± 9.99 115.61 ± 12.04 6.70 p < 0.001*** p < 0.01**

po cortex rx 58.59 ± 4.63 54.27 ± 6.03 7.37 p < 0.001*** p < 0.01**

po cortex lx 65.32 ± 5.61 61.33 ± 6.52 6.11 p < 0.001*** 0.04*

po cortex asymmetry index −5.40 ± 1.90 −6.13 ± 3.11 −13.52 0.14 1.00

☨Bonferroni correction.
‡Non-parametric test.
SD, Standard deviation; Difference (%), Percentage difference; MCI, Mild Cognitive Impairment; MD, Mild Dementia; MSD, Moderate-to-severe dementia; rx, right; lx, left; CSF, cerebrospinal 
fluid; tiv, Total Intracranial Volume; ft, fronto-temporal: frontal lobe + temporal lobe + anterior cingulate cortex; mt, mediotemporal; po, parieto-occipital: parietal lobe + occipital lobe.
* for 0.01 < p-value < 0.05, ** for p-value < 0.01, *** for p-value < 0.001.
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extraction and selection methods; (3) the effects of classification and 
validation procedure; (4) the interpretation of maps showing the 
importance of each MRI image voxel for the classification. The study 
is important because it provides evidence of the safe design choices 
that the manufacturer implemented in TRACE4AD in (1) image 
pre-processing method; (2) feature extraction and selection method; 
(3) classification metrics and validation procedures; (4) output maps 
showing the importance of each MRI image voxel for the classification 
for high explainability and interpretability of results of processing. No 
safety concerns were reported in this study.

Nanni et  al. (66) proposed an ensemble of SVM automatic 
classifiers for the early diagnosis of AD similar to that developed by 
Salvatore et al. (25) based on different MRI-T1 features. The study 
reported results on testing the ensemble of SVM classifiers on different 
datasets of patients, including the same 509 ADNI patients tested in 
Salvatore et  al. (25). Results showed that the proposed ensemble 
performs well in all the tested datasets. While the different feature 
selection approaches work differently in the different datasets, the 
proposed ensemble of SVM classifiers obtained good performance in 
all the datasets, allowing to prove high reliability. The study is 
important because it demonstrates the optimal choice of an 
architecture consisting of an ensemble of SVM classifiers for a reliable 
tool. No safety concerns were reported in this study.

Salvatore et al. (67), presented the results of the SVM automatic 
classifier for the analysis of MRI-T1 features, developed in the pivotal 
study of TRACE4AD published by Salvatore et al. (25), in the task of 
multi-label automatic classification of subjects: HS, ncMCI, cMCI, and 
AD, being cMCI and ncMCI those MCI subjects progressing or not 
to AD-dementia, respectively. This classifier was based on the 
previously developed SVM classifier and was combined with multi-
label decision functions optimized and tested on the Kaggle web 
platform within the international challenge “A Machine learning 
neuroimaging challenge for automated diagnosis of Mild Cognitive 
Impairment.” The number of subjects enrolled was 400 subjects from 
the ADNI cohort, including 100 HS, 100 MCI not converter to 
Alzheimer’s dementia (ncMCI), 100 MCI converter to Alzheimer’s 
dementia (cMCI), and 100 AD. This 400-subjects dataset was then 
split into a training set and a testing set. The training set consisted of 
240 subjects, while the testing set consisted of 160 subjects. The testing 
set was further inflated with 340 dummy subjects, reaching a total of 
500 subjects in its final configuration. Results showed that the 
performance of multi-label automatic-classification systems strongly 
depends on the choice of the voting scheme used for combining 
binary-classification labels. Indeed, the voting scheme mainly based 
on the binary-classification performances on the different four groups 

is the best choice to model the multi-label decision function for AD, 
when compared with a simple majority-vote scheme or with a scheme 
aimed at discriminating patients with high vs. low risk of conversion 
to AD and therapy addressing. The accuracy of the SVM classifier was 
higher than or comparable to the previously published one. No safety 
concerns were reported in this study.

A study on a new automatic classification system for the early 
diagnosis and prognosis of AD was published by Nanni et al. (68) and 
is reported here since the system has many similar features with 
TRACE4AD. The study proposed a combination of texture descriptors 
with voxel-based features, extracted from the MRI-T1 study of the 
subjects’ brain, as input to an ensemble of SVM classifiers for the early 
diagnosis of AD. The authors compared the performance of their 
system with the performance of the SVM ensemble developed by 
Salvatore et al. in 2015. and found an improvement in the sensitivity 
performance, although specificity was <70%. In particular, on the sole 
binary comparison between “patients with AD or developing AD” 
(AD and cMCI) and “patients without AD or not-converter to 
Alzheimer’s dementia” (HS and ncMCI), thus excluding any further 
multi-label decision function, the proposed classification system was 
able to correctly predict the two groups of subjects with an accuracy 
of 77%, a sensitivity of 90%, and a specificity of 64%. No safety 
concerns were reported in this study. However, the tool is not 
registered in any medical device databases.

Relevant performance and clinical outcome parameters for the 
intended clinical benefits from the above-mentioned published 
clinical data were obtained from cohorts of patients on the order of a 
few hundred at risk of AD-dementia. Overall, the state of the art 
confirmed the safety and effective performance of SVM systems for 
the analysis of MRI-T1 brain features and cognitive measures and 
their positive impact on the clinical workflow in supporting physicians 
for the reporting, diagnosis and prognosis of patients at risk of 
AD-dementia.

The evaluation of other medical device software highlights the 
landscape of automated MRI volumetry tools used for AD and other 
neurodegenerative conditions. Similar medical devices available on 
the market have been identified in medical device databases sharing 
similar characteristics with TRACE4AD.

Icobrain (Icometrix) reports abundant clinical data in the 
scientific literature. The most important ones include clinical data on 
the validation and the diagnostic performance of the software, 
published by Struyfs et al. (62). In this study the authors describe and 
validate icobrain dm, an automatic tool that segments brain structures 
that are relevant for differential diagnosis of dementia, such as the 
hippocampi and cerebral lobes. When comparing volumes obtained 

TABLE 12 Descriptive analysis of CSF biomarkers, for subjects with AD clinical syndromes at different stages (Subgroup I: N = 130).

MCI/MD (N = 79) MSD (N = 51)

CSF biomarkers Mean ± SD Mean ± SD Difference (%) p-value p-value☨
Aβ42‡ 796.53 ± 403.38 686.69 ± 428.29 13.79 0.03* 0.13

t-tau ‡ 322.93 ± 123.38 361.32 ± 134.24 −11.89 0.06 0.24

p-tau ‡ 31.97 ± 14.14 36.54 ± 15.88 −14.29 0.07 0.28

t-tau/Aβ42 ‡ 0.51 ± 0.28 0.63 ± 0.29 −23.53 0.02* 0.06

☨Bonferroni correction.
‡Non-parametric test.
SD, Standard deviation; MCI, Mild Cognitive Impairment; MD, Mild Dementia; MSD, Moderate-to-severe dementia; CSF, cerebrospinal fluid; Aβ42, amyloid-beta 42; t-tau, total-tau; p-tau, 
phosphorylated-tau.
* for 0.01 < p-value < 0.05, ** for p-value < 0.01, *** for p-value < 0.001.
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TABLE 13 Descriptive analysis of cognitive and brain-volumetric features according to the AI-tool predicted risk of conversion or not to AD-dementia 
within 24-month using MRI and cognitive data (Subgroup IV: N = 341).

Low risk (N = 174) High risk (N = 167)

Mean ± SD Mean ± SD p-value p-value☨
Brain-volumetric features

whole brain total volume 1,413.51 ± 84.52 1,339.25 ± 88.43 p < 0.001*** p < 0.001***

whole brain perc over tiv 71.47 ± 4.22 67.84 ± 4.38 p < 0.001*** p < 0.001***

whole brain rx 710.28 ± 42.58 672.95 ± 45.12 p < 0.001*** p < 0.001***

whole brain lx 703.24 ± 42.39 666.30 ± 44.74 p < 0.001*** p < 0.001***

whole brain asymmetry index ‡ 0.50 ± 0.63 0.50 ± 1.19 0.75 1.00

gray matter total volume 743.43 ± 48.84 700.34 ± 49.78 p < 0.001*** p < 0.001***

gray matter perc over tiv 37.59 ± 2.45 35.48 ± 2.48 p < 0.001*** p < 0.001***

gray matter rx 373.26 ± 24.64 351.77 ± 25.65 p < 0.001*** p < 0.001***

gray matter lx 370.17 ± 24.63 348.57 ± 25.51 p < 0.001*** p < 0.001***

gray matter asymmetry index ‡ −0.42 ± 0.88 −0.46 ± 1.72 0.92 1.00

white matter total volume 670.08 ± 52.35 638.91 ± 54.16 p < 0.001*** p < 0.001***

white matter perc over tiv 33.88 ± 2.63 32.36 ± 2.70 p < 0.001*** p < 0.001***

white matter rx 337.01 ± 26.17 321.18 ± 27.12 p < 0.001*** p < 0.001***

white matter lx 333.06 ± 26.40 317.73 ± 27.36 p < 0.001*** p < 0.001***

white matter asymmetry index −0.60 ± 0.70 −0.55 ± 0.92 0.60 1.00

csf total volume 564.18 ± 83.24 634.68 ± 85.78 p < 0.001*** p < 0.001***

csf perc over tiv 28.53 ± 4.22 32.16 ± 4.38 p < 0.001*** p < 0.001***

tiv total volume ‡ 1,977.69 ± 7.45 1,973.93 ± 12.83 p < 0.01** 0.28

cerebellum total volume 103.12 ± 10.78 100.16 ± 11.25 0.01* 1.00

cerebellum rx 51.20 ± 5.35 49.75 ± 5.70 0.02* 1.00

cerebellum lx 51.92 ± 5.54 50.41 ± 5.67 0.01* 1.00

cerebellum asymmetry index ‡ −0.69 ± 1.54 −0.66 ± 1.58 0.86 1.00

insula total volume 18.52 ± 2.00 17.40 ± 1.93 p < 0.001*** p < 0.001***

insula rx 9.06 ± 0.99 8.49 ± 0.96 p < 0.001*** p < 0.001***

insula lx 9.46 ± 1.05 8.91 ± 1.03 p < 0.001*** p < 0.001***

insula asymmetry index −2.12 ± 2.30 −2.38 ± 2.68 0.34 1.00

cingulate cortex total volume 31.15 ± 2.92 29.10 ± 2.91 p < 0.001*** p < 0.001***

cingulate cortex rx 15.65 ± 1.50 14.71 ± 1.60 p < 0.001*** p < 0.001***

cingulate cortex lx 15.50 ± 1.56 14.39 ± 1.44 p < 0.001*** p < 0.001***

cingulate cortex asymmetry index 0.48 ± 2.91 1.04 ± 3.26 0.10 1.00

hippocampus total volume ‡ 8.95 ± 1.45 7.30 ± 1.35 p < 0.001*** p < 0.001***

hippocampus rx 4.36 ± 0.74 3.53 ± 0.72 p < 0.001*** p < 0.001***

hippocampus lx ‡ 4.59 ± 0.76 3.77 ± 0.69 p < 0.001*** p < 0.001***

hippocampus asymmetry index ‡ −2.60 ± 4.34 −3.58 ± 6.29 0.14 1.00

parahippocampus total volume 8.60 ± 0.96 7.52 ± 0.93 p < 0.001*** p < 0.001***

parahippocampus rx ‡ 4.66 ± 0.55 4.05 ± 0.56 p < 0.001*** p < 0.001***

parahippocampus lx ‡ 3.94 ± 0.48 3.46 ± 0.47 p < 0.001*** p < 0.001***

parahippocampus asymmetry 

index ‡
8.47 ± 4.36 7.78 ± 5.74 0.25 1.00

amygdala total volume 2.72 ± 0.34 2.32 ± 0.36 p < 0.001*** p < 0.001***

amygdala rx 1.34 ± 0.16 1.14 ± 0.19 p < 0.001*** p < 0.001***

(Continued)

https://doi.org/10.3389/fneur.2025.1568086
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Aresta et al. 10.3389/fneur.2025.1568086

Frontiers in Neurology 20 frontiersin.org

TABLE 13 (Continued)

Low risk (N = 174) High risk (N = 167)

Mean ± SD Mean ± SD p-value p-value☨
amygdala lx 1.38 ± 0.19 1.18 ± 0.20 p < 0.001*** p < 0.001***

amygdala asymmetry index ‡ −1.57 ± 4.58 −1.29 ± 6.26 0.59 1.00

ventral striatum total volume 1.84 ± 0.22 1.74 ± 0.22 p < 0.001*** p < 0.01**

ventral striatum rx 0.88 ± 0.11 0.82 ± 0.11 p < 0.001*** p < 0.01**

ventral striatum lx 0.97 ± 0.12 0.92 ± 0.12 p < 0.001*** p < 0.01**

ventral striatum asymmetry index 

‡
−4.99 ± 2.93 −5.39 ± 4.17 0.35 1.00

thalamus total volume 10.39 ± 1.72 9.75 ± 1.75 p < 0.001*** 0.06

thalamus rx ‡ 5.39 ± 0.94 5.06 ± 0.96 p < 0.01** 0.15

thalamus lx 5.01 ± 0.81 4.69 ± 0.82 p < 0.001*** 0.03*

thalamus asymmetry index ‡ 3.57 ± 3.40 3.66 ± 4.09 0.37 1.00

precuneus total volume 23.86 ± 2.01 21.88 ± 2.25 p < 0.001*** p < 0.001***

precuneus rx 11.77 ± 1.05 10.83 ± 1.19 p < 0.001*** p < 0.001***

precuneus lx 12.10 ± 1.10 11.05 ± 1.21 p < 0.001*** p < 0.001***

precuneus asymmetry index −1.37 ± 3.12 −1.02 ± 3.88 0.36 1.00

ft cortex total volume 292.06 ± 21.43 273.64 ± 22.89 p < 0.001*** p < 0.001***

ft cortex rx 146.95 ± 10.88 137.76 ± 11.87 p < 0.001*** p < 0.001***

ft cortex lx 145.11 ± 10.81 135.88 ± 11.70 p < 0.001*** p < 0.001***

ft cortex asymmetry index ‡ 0.63 ± 1.16 0.68 ± 2.08 0.74 1.00

mt cortex total volume 17.55 ± 2.30 14.82 ± 2.19 p < 0.001*** p < 0.001***

mt cortex rx 9.03 ± 1.22 7.58 ± 1.23 p < 0.001*** p < 0.001***

mt cortex lx ‡ 8.53 ± 1.16 7.24 ± 1.09 p < 0.001*** p < 0.001***

mt cortex asymmetry index ‡ 2.84 ± 3.73 2.20 ± 5.51 0.28 1.00

po cortex total volume 126.43 ± 9.43 117.08 ± 11.28 p < 0.001*** p < 0.001***

po cortex rx 59.56 ± 4.46 55.30 ± 5.47 p < 0.001*** p < 0.001***

po cortex lx 66.86 ± 5.20 61.78 ± 6.24 p < 0.001*** p < 0.001***

po cortex asymmetry index ‡ −5.76 ± 1.65 −5.52 ± 2.77 0.14 1.00

Neuropsychological measures

MMSE ‡ 28.34 ± 1.59 25.38 ± 2.55 p < 0.001*** p < 0.001***

AVLT

Trial1 ‡ 4.89 ± 1.59 3.59 ± 1.41 p < 0.001*** p < 0.001***

Trial1 errors ‡ 0.36 ± 0.74 0.49 ± 0.85 0.07 1.00

Trial2 ‡ 6.94 ± 2.24 4.70 ± 1.49 p < 0.001*** p < 0.001***

Trial2 errors ‡ 0.39 ± 0.78 0.50 ± 0.92 0.14 1.00

Trial3 ‡ 8.38 ± 2.63 5.51 ± 1.83 p < 0.001*** p < 0.001***

Trial3 errors ‡ 0.53 ± 0.90 0.51 ± 0.80 0.79 1.00

Trial4 ‡ 9.29 ± 2.72 5.71 ± 1.92 p < 0.001*** p < 0.001***

Trial4 errors ‡ 0.41 ± 0.96 0.53 ± 0.83 0.03* 1.00

Trial5 ‡ 9.98 ± 2.86 5.91 ± 2.14 p < 0.001*** p < 0.001***

Trial5 errors ‡ 0.25 ± 0.61 0.44 ± 0.78 0.01* 0.76

Trial6 ‡ 6.87 ± 3.73 2.32 ± 2.09 p < 0.001*** p < 0.001***

Trial6 errors ‡ 0.93 ± 1.31 1.08 ± 1.35 0.22 1.00

Delayed ‡ 5.96 ± 4.02 1.33 ± 2.10 p < 0.001*** p < 0.001***
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TABLE 13 (Continued)

Low risk (N = 174) High risk (N = 167)

Mean ± SD Mean ± SD p-value p-value☨
Delayed errors ‡ 1.49 ± 1.63 1.27 ± 1.83 0.03* 1.00

Recognitions ‡ 12.12 ± 2.89 8.09 ± 3.91 p < 0.001*** p < 0.001***

Recognitions errors ‡ 1.34 ± 1.85 2.31 ± 2.32 p < 0.001*** p < 0.001***

Digit Span Forward ‡ 6.67 ± 1.09 6.39 ± 1.05 0.02* 1.00

Digit Span Backward ‡ 4.89 ± 1.22 4.28 ± 1.09 p < 0.001*** p < 0.001***

TMT-A

Time taken ‡ 34.71 ± 11.79 56.31 ± 28.66 p < 0.001*** p < 0.001***

Committed errors ‡ 0.09 ± 0.43 0.22 ± 0.68 0.02* 0.97

Omission errors ‡ 0.03 ± 0.38 0.05 ± 0.31 0.09 1.00

TMT-B

Time taken ‡ 85.95 ± 32.49 182.77 ± 83.80 p < 0.001*** p < 0.001***

Committed errors ‡ 0.44 ± 0.68 1.62 ± 2.37 p < 0.001*** p < 0.001***

Omission errors ‡ 0.10 ± 0.42 2.09 ± 4.86 p < 0.001*** p < 0.001***

Clock

Contour ‡ 0.99 ± 0.08 0.98 ± 0.13 0.30 1.00

Number order ‡ 0.86 ± 0.35 0.63 ± 0.48 p < 0.001*** p < 0.001***

Numbers present ‡ 0.93 ± 0.25 0.78 ± 0.41 p < 0.001*** p < 0.01**

Hands ‡ 0.99 ± 0.11 0.87 ± 0.33 p < 0.001*** p < 0.01**

Time signed ‡ 0.86 ± 0.35 0.48 ± 0.50 p < 0.001*** p < 0.001***

Total score ‡ 4.64 ± 0.75 3.75 ± 1.15 p < 0.001*** p < 0.001***

Symbol digit 45.76 ± 9.42 30.08 ± 10.50 p < 0.001*** p < 0.001***

Category fluency

Animals ‡ 19.27 ± 5.38 14.12 ± 4.55 p < 0.001*** p < 0.001***

Animals perseveration ‡ 0.84 ± 1.23 1.29 ± 1.68 0.02* 1.00

Animals intrusion ‡ 0.06 ± 0.28 0.11 ± 0.67 0.89 1.00

Vegetables ‡ 14.01 ± 4.13 9.22 ± 3.33 p < 0.001*** p < 0.001***

Vegetables perseveration ‡ 0.52 ± 0.80 0.55 ± 0.93 0.98 1.00

Vegetables intrusion ‡ 0.39 ± 1.00 0.92 ± 1.84 p < 0.01** 0.07

Boston Naming Test

Correct spontaneous answers ‡ 27.27 ± 2.94 23.63 ± 4.92 p < 0.001*** p < 0.001***

Semantic cues ‡ 1.66 ± 2.62 3.48 ± 4.35 p < 0.001*** p < 0.01**

Correct answer after semantic cue 

‡

0.30 ± 0.76 0.53 ± 1.13 0.04* 1.00

Phonological cues ‡ 2.32 ± 2.69 5.58 ± 4.80 p < 0.001*** p < 0.001***

Correct answer after phonological 

cue ‡

0.30 ± 0.76 0.53 ± 1.13 0.04* 1.00

Total score ‡ 27.57 ± 2.72 24.16 ± 4.79 p < 0.001*** p < 0.001***

FAQ

Finances ‡ 0.33 ± 0.91 2.44 ± 1.82 p < 0.001*** p < 0.001***

Bills ‡ 0.41 ± 0.99 2.71 ± 1.86 p < 0.001*** p < 0.001***

Buying ‡ 0.16 ± 0.62 1.84 ± 1.84 p < 0.001*** p < 0.001***

Social life ‡ 0.21 ± 0.73 1.53 ± 1.65 p < 0.001*** p < 0.001***

Housekeeping ‡ 0.02 ± 0.23 0.71 ± 1.44 p < 0.001*** p < 0.001***
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from AD patients against age-matched HS, all measures achieved high 
diagnostic performance levels when discriminating patients from HS, 
with the temporal cortex volume measured by icobrain dm reaching 
the highest diagnostic performance level (area under the receiver 
operating characteristic curve = 0.99) in this dataset. Results on the 
diagnostic value of Icobrain are also published by Wittens et al. (69). 
This study examines the diagnostic value of icobrain dm for AD in 
routine clinical practice, including a comparison to the widely used 
FreeSurfer software, and investigates if combined brain volumes 
contribute to establishing an AD diagnosis. The study population 
included HS (n = 90), SCI (n = 93), MCI (MCI, n = 357), and 
AD-dementia (n = 280) patients. Through automated volumetric 
analyses of global, cortical, and subcortical brain structures on clinical 
brain MRI-T1w (n = 820) images from a retrospective, multi-center 
study [REMEMBER, (70)], icobrain dm’s (v.4.4.0) ability to 
differentiate disease stages via ROC analysis was compared to 
FreeSurfer (v.6.0). Stepwise backward regression models were 
constructed to investigate if combined brain volumes can differentiate 
between AD stages. Results show that icobrain dm outperformed 
FreeSurfer in processing time (15–30 min versus 9–32 h), robustness 
(0 versus 67 failures), and diagnostic performance for whole brain, 
hippocampal volumes, and lateral ventricles between HS and 
AD-dementia patients. Stepwise backward regression showed 
improved diagnostic accuracy for pairwise group differentiations, with 
the highest performance obtained for distinguishing HS from 
AD-dementia (AUC = 0.914; specificity 83.0%; sensitivity 86.3%). The 
authors concluded that the automated volumetry has a diagnostic 

value for AD diagnosis in routine clinical practice. Their findings 
indicate that combined brain volumes improve diagnostic accuracy, 
using real-world imaging data from a clinical setting.

Clinical data on the medical device software Quantib ND (Quantib, 
Rotterdam, the Netherlands; now part of DeepHealth) are published by 
Poos et al. (60). This study highlights the value of normative volumetry 
software for disease tracking and staging biomarkers in genetic fronto-
temporal dementia (FTD) showing how these techniques can help in 
identifying the optimal time window for starting treatment and 
monitoring treatment response. More specifically, the study investigates 
longitudinal brain atrophy rates in the presymptomatic stage of genetic 
FTD using the normative brain volumetry software Quantib for brain 
structures. Presymptomatic GRN, MAPT, and C9orf72 pathogenic 
variant carriers underwent longitudinal volumetric MRI-T1w of the brain 
as part of a prospective cohort study. Images were automatically analyzed 
with Quantib ND, which consisted of volume measurements (CSF and 
sum of gray and white matter) of lobes, cerebellum, and hippocampus. 
All volumes were compared with reference centile curves based on a large 
population-derived sample of nondemented individuals. Mixed-effects 
models were fitted to analyze atrophy rates of the different gene groups as 
a function of age. Thirty-four GRN, 8 MAPT, and 14 C9orf72 pathogenic 
variant carriers were included (mean age = 52.1, standard deviation = 7.2; 
66% female). The mean follow-up duration of the study was 
64 ± 33 months (median = 52; range 13–108). GRN pathogenic variant 
carriers showed a faster decline than the reference centile curves for all 
brain areas, though relative volumes remained between the 5th and 75th 
percentiles between the ages of 45 and 70 years. In MAPT pathogenic 

TABLE 13 (Continued)

Low risk (N = 174) High risk (N = 167)

Mean ± SD Mean ± SD p-value p-value☨
Cooking ‡ 0.18 ± 0.53 1.63 ± 1.63 p < 0.001*** p < 0.001***

Keeping up with external events ‡ 0.12 ± 0.60 1.78 ± 1.83 p < 0.001*** p < 0.001***

Entertainment and learning ‡ 0.05 ± 0.39 1.53 ± 1.66 p < 0.001*** p < 0.001***

Memory ‡ 0.60 ± 1.30 3.07 ± 1.58 p < 0.001*** p < 0.001***

Transports ‡ 0.07 ± 0.49 2.18 ± 2.10 p < 0.001*** p < 0.001***

Total score ‡ 0.75 ± 1.72 9.02 ± 6.72 p < 0.001*** p < 0.001***

☨Bonferroni correction.
‡Non-parametric test.
SD, Standard deviation; rx, right; lx, left; CSF, cerebrospinal fluid; tiv, total intracranial volume; ft, fronto-temporal: frontal lobe + temporal lobe + anterior cingulate cortex; mt, mediotemporal; 
po, parieto-occipital: parietal lobe + occipital lobe; MMSE, Mini-Mental State Examination; AVLT, Auditory Verbal Learning Test; TMT, Trail Making Test; FAQ, Functional Assessment 
Questionnaire.
* for 0.01 < p-value < 0.05, ** for p-value < 0.01, *** for p-value < 0.001.

TABLE 14 Descriptive analysis of CSF biomarkers according to the AI-tool predicted risk of conversion or not to AD-dementia within 24-month using 
MRI and neuropsychological data (Subgroup V: N = 130).

Low risk (N = 44) High risk (N = 86)

CSF biomarkers Mean ± SD Mean ± SD p-value p-value☨
Aβ42‡ 899.85 ± 473.11 678.53 ± 362.78 0.01* 0.05

t-tau ‡ 283.08 ± 91.80 366.08 ± 135.96 p < 0.001*** p < 0.01**

p-tau ‡ 27.73 ± 10.73 36.85 ± 15.90 p < 0.01** p < 0.01**

t-tau/Aβ42 ‡ 0.42 ± 0.26 0.62 ± 0.29 p < 0.001*** p < 0.001***

☨Bonferroni correction.
‡Non-parametric test.
SD, Standard deviation; CSF, cerebrospinal fluid; Aβ42, amyloid-beta42; t-tau, total-tau; p-tau, phosphorylated-tau.
* for 0.01 < p-value < 0.05, ** for p-value < 0.01, *** for p-value < 0.001.
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TABLE 15 Spearman’s correlation between brain-volumetric features and CSF proteins (Aβ42, t-tau, and p-tau) Subgroup III (N = 482).

Aβ42 t-tau p-tau

whole brain total volume
0.28 −0.18 −0.2

p < 0.001*** p < 0.001*** p < 0.001***

whole brain perc over tiv
0.28 −0.18 −0.2

p < 0.001*** p < 0.001*** p < 0.001***

whole brain rx
0.28 −0.18 −0.2

p < 0.001*** p < 0.001*** p < 0.001***

whole brain lx
0.28 −0.19 −0.2

p < 0.001*** p < 0.001*** p < 0.001***

whole brain asymmetry index
−2.90E-03 0.01 0.01

0.95 0.76 0.78

gray matter total volume
0.32 −0.17 −0.19

p < 0.001*** p < 0.001*** p < 0.001***

gray matter perc over tiv
0.32 −0.17 −0.19

p < 0.001*** p < 0.001*** p < 0.001***

gray matter rx
0.32 −0.16 −0.19

p < 0.001*** p < 0.001*** p < 0.001***

gray matter lx
0.32 −0.17 −0.19

p < 0.001*** p < 0.001*** p < 0.001***

gray matter asymmetry index
0.03 −3.49E-03 −0.01

0.54 0.94 0.79

white matter total volume
0.13 −0.12 −0.12

p < 0.01** p < 0.01** 0.01*

white matter perc over tiv
0.12 −0.12 −0.11

p < 0.01** p < 0.01** 0.01*

white matter rx
0.14 −0.12 −0.12

p < 0.01** p < 0.01** 0.01*

white matter lx
0.12 −0.12 −0.11

0.01* 0.01* 0.01*

white matter asymmetry index
−0.07 −0.02 6.32E-04

0.15 0.73 0.99

csf total volume
−0.28 0.18 0.2

p < 0.001*** p < 0.001*** p < 0.001***

csf perc over tiv
−0.28 0.18 0.2

p < 0.001*** p < 0.001*** p < 0.001***

tiv total volume
0.24 −0.09 −0.1

p < 0.001*** 0.06 0.03*

frontal lobe total volume
0.26 −0.1 −0.12

p < 0.001*** 0.03* p < 0.01**

frontal lobe rx
0.25 −0.09 −0.11

p < 0.001*** 0.06 0.01*

frontal lobe lx
0.27 −0.1 −0.13

p < 0.001*** 0.02* p < 0.01**

frontal lobe asymmetry index
−0.1 0.04 0.05

0.02* 0.35 0.3

(Continued)
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TABLE 15 (Continued)

Aβ42 t-tau p-tau

temporal lobe total volume
0.38 −0.22 −0.25

p < 0.001*** p < 0.001*** p < 0.001***

temporal lobe rx
0.37 −0.21 −0.24

p < 0.001*** p < 0.001*** p < 0.001***

temporal lobe lx
0.36 −0.22 −0.24

p < 0.001*** p < 0.001*** p < 0.001***

temporal lobe asymmetry index
5.51E-04 −0.03 −0.01

0.99 0.58 0.75

parietal lobe total volume
0.31 −0.19 −0.22

p < 0.001*** p < 0.001*** p < 0.001***

parietal lobe rx
0.3 −0.18 −0.22

p < 0.001*** p < 0.001*** p < 0.001***

parietal lobe lx
0.3 −0.18 −0.2

p < 0.001*** p < 0.001*** p < 0.001***

parietal lobe asymmetry index
0.01 −0.04 −0.04

0.75 0.4 0.34

occipital lobe total volume
0.28 −0.18 −0.2

p < 0.001*** p < 0.001*** p < 0.001***

occipital lobe rx
0.28 −0.15 −0.17

p < 0.001*** p < 0.001*** p < 0.001***

occipital lobe lx
0.27 −0.2 −0.21

p < 0.001*** p < 0.001*** p < 0.001***

occipital lobe asymmetry index
0.02 0.07 0.06

0.69 0.15 0.16

cerebellum total volume
0.13 −0.04 −0.04

p < 0.01** 0.42 0.34

cerebellum rx
0.13 −0.03 −0.04

p < 0.01** 0.48 0.41

cerebellum lx 0.14 −0.04 −0.05

p < 0.01** 0.34 0.25

cerebellum asymmetry index −0.06 0.07 0.08

0.19 0.12 0.08

insula total volume 0.2 −0.04 −0.06

p < 0.001*** 0.39 0.2

insula rx 0.19 −0.04 −0.06

p < 0.001*** 0.39 0.21

insula lx 0.21 −0.03 −0.05

p < 0.001*** 0.46 0.24

insula asymmetry index −0.02 −0.02 −0.02

0.63 0.59 0.72

cingulate cortex total volume 0.26 −0.15 −0.17

p < 0.001*** p < 0.001*** p < 0.001***

cingulate cortex rx 0.25 −0.12 −0.14

p < 0.001*** p < 0.01** p < 0.01**

(Continued)
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TABLE 15 (Continued)

Aβ42 t-tau p-tau

cingulate cortex lx 0.26 −0.17 −0.18

p < 0.001*** p < 0.001*** p < 0.001***

cingulate cortex asymmetry index −0.02 0.08 0.08

0.62 0.07 0.07

hippocampus total volume 0.41 −0.3 −0.32

p < 0.001*** p < 0.001*** p < 0.001***

hippocampus rx 0.4 −0.3 −0.32

p < 0.001*** p < 0.001*** p < 0.001***

hippocampus lx 0.4 −0.28 −0.3

p < 0.001*** p < 0.001*** p < 0.001***

hippocampus asymmetry index 6.63E-03 −0.06 −0.05

0.88 0.19 0.27

parahippocampus total volume 0.37 −0.29 −0.31

p < 0.001*** p < 0.001*** p < 0.001***

parahippocampus rx 0.37 −0.3 −0.31

p < 0.001*** p < 0.001*** p < 0.001***

parahippocampus lx 0.35 −0.26 −0.28

p < 0.001*** p < 0.001*** p < 0.001***

parahippocampus asymmetry index 0.04 −0.08 −0.08

0.37 0.06 0.08

amygdala total volume 0.41 −0.32 −0.33

p < 0.001*** p < 0.001*** p < 0.001***

amygdala rx 0.39 −0.31 −0.33

p < 0.001*** p < 0.001*** p < 0.001***

amygdala lx 0.39 −0.29 −0.31

p < 0.001*** p < 0.001*** p < 0.001***

amygdala asymmetry index −0.08 0.04 0.05

0.08 0.38 0.31

ventral striatum total volume 0.21 −0.07 −0.09

p < 0.001*** 0.11 0.06

ventral striatum rx 0.2 −0.09 −0.1

p < 0.001*** 0.06 0.03*

ventral striatum lx 0.19 −0.06 −0.07

p < 0.001*** 0.22 0.12

ventral striatum asymmetry index 0.06 −0.05 −0.04

0.22 0.28 0.32

thalamus total volume 0.23 −0.04 −0.07

p < 0.001*** 0.33 0.12

thalamus rx 0.23 −0.05 −0.08

p < 0.001*** 0.25 0.09

thalamus lx 0.23 −0.03 −0.06

p < 0.001*** 0.49 0.2

thalamus asymmetry index 8.62E-03 −0.08 −0.07

0.85 0.1 0.14

(Continued)
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variant carriers, frontal lobe volume was already at the 5th percentile at 
age 45 years and showed a further decline between the ages of 50 and 
60 years. Temporal lobe volume started in the 50th percentile at age 
45 years but showed a faster decline over time compared with other brain 
structures. Frontal, temporal, parietal, and cerebellar volume already 
started below the 5th percentile compared with the reference centile 
curves at age 45 years for C9orf72 pathogenic variant carriers, but there 
was minimal decline over time until the age of 60 years. Other clinical 
data have been reported and compared for the devices Quibim Precision 
Brain Atrophy Screening and Quantib ND by Zak et al. (71). The authors 
compared the two AI software packages performing normative brain 

volumetry and explored whether they could differently impact dementia 
diagnostics in a clinical context. Sixty patients (20 AD, 20 FTD, 20 MCI) 
and 20 HS were included retrospectively. One MRI per subject was 
processed by software packages from the two proprietary manufacturers, 
producing two quantitative reports per subject. Two neuroradiologists 
assigned forced-choice diagnoses using only the normative volumetry 
data in these reports. They classified the volumetric profile as “normal,” 
or “abnormal,” and if “abnormal,” they specified the most likely dementia 
subtype. Differences between the packages’ clinical impact were assessed 
by comparing (1) agreement between diagnoses based on software 
output; (2) diagnostic accuracy, sensitivity, and specificity; and (3) 

TABLE 15 (Continued)

Aβ42 t-tau p-tau

precuneus total volume 0.31 −0.24 −0.27

p < 0.001*** p < 0.001*** p < 0.001***

precuneus rx 0.3 −0.23 −0.26

p < 0.001*** p < 0.001*** p < 0.001***

precuneus lx 0.28 −0.23 −0.26

p < 0.001*** p < 0.001*** p < 0.001***

precuneus asymmetry index 0.03 −3.04E-03 −0.01

0.45 0.95 0.79

ft cortex total volume 0.32 −0.16 −0.19

p < 0.001*** p < 0.001*** p < 0.001***

ft cortex rx 0.31 −0.15 −0.17

p < 0.001*** p < 0.01** p < 0.001***

ft cortex lx 0.32 −0.16 −0.19

p < 0.001*** p < 0.001*** p < 0.001***

ft cortex asymmetry index −0.06 7.83E-03 0.02

0.16 0.86 0.71

mt cortex total volume 0.41 −0.3 −0.33

p < 0.001*** p < 0.001*** p < 0.001***

mt cortex rx 0.4 −0.31 −0.33

p < 0.001*** p < 0.001*** p < 0.001***

mt cortex lx 0.4 −0.28 −0.31

p < 0.001*** p < 0.001*** p < 0.001***

mt cortex asymmetry index 0.01 −0.08 −0.07

0.77 0.09 0.14

po cortex total volume 0.32 −0.2 −0.23

p < 0.001*** p < 0.001*** p < 0.001***

po cortex rx 0.31 −0.19 −0.22

p < 0.001*** p < 0.001*** p < 0.001***

po cortex lx 0.32 −0.2 −0.23

p < 0.001*** p < 0.001*** p < 0.001***

po cortex asymmetry index −0.01 0.03 0.02

0.78 0.49 0.59

rx, right; lx, left; CSF, cerebrospinal fluid; tiv, total intracranial volume; ft, fronto-temporal; mt, mediotemporal; po, posterior-occipital; Aβ42, amyloid-beta 42; t-tau, total-tau; p-tau, 
phosphorylated-tau. * for 0.01 < p-value < 0.05, ** for p-value < 0.01, *** for p-value < 0.001.
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diagnostic confidence. Quantitative outputs were also compared to 
provide context to any diagnostic differences. Diagnostic agreement 
between packages was moderate, for distinguishing normal and abnormal 
volumetry (K = 0.41–0.43) and for specific diagnoses (K = 0.36–0.38). 
However, each package yielded high inter-observer agreement when 
distinguishing normal and abnormal profiles (K = 0.73–0.82). Accuracy, 
sensitivity, and specificity were not different between packages. Diagnostic 
confidence was different between packages for one rater. Whole brain 
intracranial volume output differed between software packages (10.73%, 
p < 0.001), and normative regional data interpreted for diagnosis 
correlated weakly to moderately (rs = 0.12–0.80). The authors concluded 
that different artificial intelligence software packages for quantitative 
normative assessment of brain MRI can produce distinct effects at the 
level of clinical interpretation and that clinics should not assume that 
different packages are interchangeable, thus recommending internal 
evaluation of packages before adoption.

Based on the features and performance reported in this study, 
TRACE4AD can play a significant role in the evolving landscape of 
AD diagnosis and treatment, particularly when combined with 
emerging disease-modifying therapies. From an individual-patient 
perspective, TRACE4AD facilitates the identification of MCI likely to 
progress to AD within 2 years. This targeted approach can enable a 
more efficient evaluation of therapeutic effects over different time 
frames, in particular at intervals of 24-months, ultimately increasing 
the power to detect cognitive impairment progression.

From a different perspective, by identifying individuals likely to 
convert to dementia within 24-months, TRACE4AD helps shorten 
clinical trials. The tool aids in evaluating the effects of treatment when 
selecting MCI patients at higher risk of progressing to AD within 
2 years, rather than those with a more stable cognitive condition, 
during the screening process for eligibility assessment in clinical trials 
and in stratifying AD subjects into rapid and slow progressors. This 
approach can ultimately reduce trial-associated costs, and address 
challenges related to high screen failure rates and the inclusion of 
heterogeneous participants in patients’ groups (72).

We highlight that a longer follow-up period would offer more 
comprehensive results into the tool’s ability to predict longer-term 
outcomes. Moreover, although beyond the scope of the present study, 
the presence of more subjects with non-AD dementia types in 
TRACE4AD analysis (e.g., FTD, motor tauopathy and Lewy body 
dementia) would add more findings.

Even though the present study and the current state-of-the-art 
literature have proven the usefulness of AI in neuroimaging, several 
ethical challenges should be  taken into account. AI should support 
clinicians in their decision-making process, not favoring job displacement 
but promoting the powerful cooperation between AI and healthcare 
professionals. In a clinical setting, this cooperation should be encouraged 
by an explainable AI model reasoning to clinicians and patients following 
transparency and accountability principles. A responsible implementation 
and use of AI tools must be ensured by the definition of data security and 
privacy measures (73). In the case of TRACE4AD, this is ensured by the 
manufacturer’s declared compliance of the development process with the 
latest and highest standards of safety and security for AI-based medical 
devices, including BS AAMI 34971 (46) and MDCG 2019–16 (48), as well 
as with European Regulation 2024/1689 (AI ACT) (49), European 
Regulations 2016/679 (50), 2018/1725 (51) and European Directive 
2016/680 (52).

Moreover, AI models should be  trained and validated on varied 
datasets to improve model generalizability, to guarantee biases/errors 
prevention (73) and to ensure the adherence to fairness principles (74). 
Although different ethnicities and racial categories were represented in 
the considered validation population, non-Hispanic or Latino patients 
accounted for 97.1% of the total population, while 2.6% were Hispanic or 
Latino (ethnicity of 0.4% could not be determined); with respect to racial 
category, the population consisted predominantly of white patients 
(81.4%), black or African American (4.1%), asian (2.6%), native Hawaiian 
or pacific islander (0.1%), while for 1.8% the racial categories were more 
than one and for 10% it could not be determined; socio-economic groups 
were determined according to the level of education, whose mean value 
across the entire set of patients was calculated to be 16.38 years with a 
standard deviation of 2.70.

An assessment of the cost-effectiveness of TRACE4AD is out of the 
purpose of the present study. However, the commercial tool with similar 
intended use and operational aspects of TRACE4AD in clinical settings, 
Icobrain (Icometrix), above mentioned, has published an independent 
assessment of cost-effectiveness on feasibility for widespread clinical 
adoption. The assessment showed that the health economic impact per 
patient per year in using such a tool is estimated as $1,500–$2,200 in cost 
savings (75). Based on these findings, the American Medical Association 
(AMA) has issued a Current Procedural Terminology (CPT®) code for 
the tool FDA-cleared, (“AI-related brain MRI quantification software”), 
thereby creating a path to reimbursement (codes 0865 T and 0866 T). 
Thus, in the US, Medicare, Medicaid, and commercial health plans use 
CPT® codes to identify healthcare procedures and services. Once in effect, 
hospitals and imaging centers can use the new CPT® codes to submit 
claims for Icometrix’s AI-based analysis of brain MRI scans. It is 
mentioned that quantitative imaging analysis reported by code 0866 T is 
used for patients with multiple sclerosis, AD, traumatic brain injury, 
stroke, epilepsy, and Parkinson’s disease. Subtle areas of abnormality that 
are not easily detected by the human eye are identified and compared with 
previous MR imaging to determine changes and disease progression. 
These cost-effectiveness assessments provide indirect information on the 
positive benefits that AI devices that support medical specialists in the 
process of assessing patients to reach an accurate AD diagnosis can have.

AI tools could benefit from including additional neuroimaging 
techniques (such as functional MRI or PET scans) to compare the 
efficacy of the AI tool across different types of brain imaging (64, 76). 
However, it must be underlined that the aim of the present study was 
to assess the support of AI to automatically process structural MRI 
brain studies combined with neuropsychological scores, as required 
by the Intersocietal recommendations for all patients in Wave 1, 
irrespectively from the suspected diagnosis (15); PET is recommended 
only in Wave 2 for a suspected FTLD or motor tauopathy, as alternative 
to CSF biomarkers for a suspected diagnosis of AD; functional MRI is 
not recommended in the proposed clinical brain imaging protocol 
proposed by the societies’ consensus.

In conclusion, the performance of an AI tool was assessed when 
applied to the neuropsychological/neuroimaging assessment of 
subjects at risk of AD, following recommendations from 11 European 
scientific societies/organizations and a patient advocacy association 
(Alzheimer’s Europe) for the optimal patient-centered biomarker-
based diagnostic workflow in memory clinics.

The AI tool was proved effective in supporting staging, clinical 
profiling, diagnosis, causal hypothesis and progression (risk to 
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convert) to AD-dementia within 24-month supporting clinical 
management of AD patients.

The tool is intended to be  used by specialized clinicians, in 
particular in memory clinics, as a decision support system for a 
personalized early diagnosis, prognosis and intervention of patients at 
risk of AD.
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