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Background and objective: Cognitive decline progresses rapidly in stroke 
patients, increasing risks of stroke recurrence. Predicting deterioration within 
a year in patients with poststroke cognitive impairment (PSCI) could guide 
targeted interventions for dementia prevention and better prognosis. In this 
PreventIon of CArdiovascular events in iSchemic Stroke patients with high risk 
of cerebral hemOrrhage for reducing cognitive decline substudy, machine 
learning on clinical and imaging data was used to predict cognitive decline over 
9 months in PSCI patients.

Methods: This retrospective study included 109 patients with acute ischemic 
stroke and high-risk cerebral hemorrhage with PSCI (baseline Korean-Mini 
Mental Status Examination [K-MMSE] < 24), along with baseline clinical imaging 
and K-MMSE assessments at baseline and after 9 months. Four machine learning 
algorithms were trained, Categorical Boosting (CatBoost), Adaptive Boosting 
(AdaBoost), eXtreme Gradient Boosting (XGBoost), and logistic regression, 
to predict cognitive decliners, defined as a decline of ≥3 K-MMSE points 
over 9 months, and ranked variable importance using the SHapley Additive 
exPlanations methodology.

Results: CatBoost outperformed the other models in classifying cognitive 
decliners within 9 months. In the test set, CatBoost achieved a mean area under 
the curve (AUC) of 0.897, with an accuracy of 0.873; other models performed 
as follows: logistic regression (AUC 0.775), AdaBoost (AUC 0.767), and XGBoost 
(AUC 0.722). Higher baseline K-MMSE scores (total, language, orientation to 
place, and recall), longer interval between stroke and baseline K-MMSE, initial 
National Institutes of Health Stroke Scale scores, and lesion volume ratio were 
identified as key predictors of cognitive decline in CatBoost. Cognitive decliners 
showed longer interval between stroke onset and pharmacotherapy initiation 
than non-decliners.

Conclusion: CatBoost effectively recognized patients with ischemic stroke 
at high risk of cognitive decline over 9 months. Recognizing these high-risk 
individuals and their risk and protective factors allows for timely and targeted 
interventions to improve prognosis in PSCI patients.
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1 Introduction

Stroke, which causes long-term disability, is a global health 
challenge (1). Cognitive impairment frequently follows a stroke, 
remarkably exacerbating disability and quality of life (2, 3). Individuals 
who have experienced a stroke typically show rapider decline in 
cognitive functions, increased risk of recurrent strokes, and higher 
mortality rates (4, 5). Recurrent strokes are considered strong 
predictors of cognitive decline, with affected patients exhibiting higher 
rates of dementia than those with a first-ever stroke (6, 7).

Higher risk of poststroke cognitive impairment (PSCI) is related 
to ischemic stroke with intracerebral hemorrhage or small vessel 
occlusive disease, requiring optimal secondary prevention (8, 9). 
Although conventional antiplatelet or statin therapy may increase 
hemorrhage risks (10, 11), cilostazol (a phosphodiesterase-3 inhibitor) 
or probucol (a non-statin lipid-lowering agent) may reduce the 
incidence of cardiovascular events without increasing hemorrhage 
risk (12–14). Preserving cognitive function and preventing dementia 
are vital for patients with ischemic stroke and high risk of cerebral 
hemorrhage, particularly in Asian populations due to regional stroke 
differences (15, 16).

Recent meta-analyses highlight the multifactorial nature of PSCI, 
involving vascular, demographic, and neuroanatomical factors (17). 
PSCI typically manifests within 3–6 months poststroke, with recovery 
often plateauing beyond this period (18, 19). Given the heterogeneity 
in cognitive trajectories, accurate prediction of cognitive deterioration 
beyond this window could support the development of personalized 
interventions aimed at preventing dementia and enhancing quality of 
life (17, 20). In this context, machine learning algorithms offer a 
promising approach by capturing non-linear interactions among 
baseline variables—such as stroke severity, white matter hyperintensity, 
and initial cognitive status—and identifying key predictors through 
feature importance analysis (20, 21).

In this substudy of PreventIon of CArdiovascular events in 
iSchemic Stroke patients with high risk of cerebral hemOrrhage for 
reducing COGnitive decline (PICASSO-COG) (12, 22), we propose 
machine learning algorithms leveraging clinical and imaging data to 
predict cognitive decline over a 9-month period in patients with acute 
ischemic stroke with cognitive impairment and high risk of cerebral 
hemorrhage  – a population that requires timely prevention and 
intervention strategies.

2 Materials and methods

2.1 Participants and study design

This retrospective analysis focused on a subset of PICASSO-COG 
substudy, which evaluated the effects of cilostazol and/or probucol on 
cognitive functions in patients with ischemic stroke and high risk of 
cerebral hemorrhage from the PICASSO cohort (22). PICASSO 
(PreventIon of CArdiovascular events in iSchemic Stroke patients 
with high risk of cerebral hemOrrhage) trial is a multicenter, 

randomized, double-blind, placebo-controlled 2 × 2 factorial trial that 
compared the efficacy and safety of cilostazol versus aspirin, with and 
without probucol, for preventing hemorrhagic stroke and major 
vascular events ischemic in these patients (ClinicalTrials.gov, no. 
NCT01013532) (12). PICASSO study was approved by the site ethics 
committees and conducted according to Good Clinical Practice and 
the Declaration of Helsinki, with written consent obtained from 
all participants.

Key inclusion criteria for the PICASSO cohort were (1) age 
>20 years; (2) non-cardioembolic ischemic stroke or transient 
ischemic attack within the 180 days prior to screening; (3) previous 
intracerebral hemorrhage or multiple cerebral microbleeds based on 
clinical or radiological findings; and (4) asymptomatic intracerebral 
hemorrhage identified as a slit-like curvilinear lesion on magnetic 
resonance imaging, with no obvious history of intracerebral 
hemorrhage. Key exclusion criteria included cerebral hemorrhage 
within the past 6 months, contraindications to long-term antiplatelet 
therapy, severe cardiomyopathy or heart failure, and recent myocardial 
infarction or coronary procedures within the previous 4 weeks (12).

Figure 1 shows the subject flow diagram. From the PICASSO 
cohort, 892 patients were included in the PICASSO-COG cohort after 
excluding those unable to undergo cognitive testing due to severe 
dysphasia or neurological deficits. Of these, 376 patients both the 
baseline evaluation (3–7 months post-stroke) and the first follow-up 
evaluation (≥9 months post-stroke) using the Korean Mini-Mental 
Status Examination (K-MMSE). Baseline Fluid-Attenuated Inversion 
Recovery (FLAIR) MRI scans for quantifying stroke lesion volume 
ratios were available for 376 of these patients. The final analysis 
included 109 patients with PSCI, defined by baseline K-MMSE scores 
<24 (23). No demographic, clinical, or imaging data were missing in 
the final analytic sample. Patients with incomplete cognitive 
assessments or missing imaging data were excluded during cohort 
selection; thus, imputation was not required.

2.2 Demographic and clinical assessment

We evaluated baseline characteristics of the participants, including 
demographics and clinical data (Table 1). Demographics included age, 
gender, and years of education, and clinical data included vital signs, 
lipid levels, blood glucose levels, and smoking history. We  also 
included the concomitant pharmacotherapy assigned in the PICASSO 
trial (cilostazol vs. aspirin with probucol vs. no probucol) and the time 
between stroke onset and randomization in the PICASSO trial. 
Stroke-related factors included time since stroke onset, classification 
of ischemic events, and a high-risk index for intracerebral hemorrhage, 
which encompassed a history or radiological evidence of intracerebral 
hemorrhage and multiple microbleeds. Stroke severity was assessed 
using the National Institutes of Health Stroke Scale (NIHSS) score at 
admission (24). Fazekas scores, which indicate the extent of white 
matter hyperintensities (25), and lesion volume ratio, assessed by a 
neuroradiologist based on FLAIR images, were included as stroke-
related imaging features. Volume of ischemic stroke lesions on 
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baseline FLAIR images was automatically quantified using the lesion 
prediction algorithm, implemented in the Lesion Segmentation Tool 
(LST) within SPM12 (26). The algorithm generated a lesion probability 
map in which each voxel was assigned a probability of being a lesion. 
Voxels with a probability ≥0.5 were considered lesional. The total 
lesion volume (cm3) was calculated by multiplying the number of 
suprathreshold voxels by the spatial resolution of the scan. To 
normalize for interindividual differences in brain size, the lesion 
volume ratio was computed by dividing the segmented lesion volume 
by the total intracranial volume.

2.3 Cognitive impairment assessment

Our study focused on patients with acute ischemic stroke, 
cognitive impairment, and a high risk of cerebral hemorrhage— a 
population in urgent need of timely prevention and intervention 
strategies. The K-MMSE, administered by a certified neurologist, was 
used at baseline and follow-up to assess cognitive impairment and its 
progression, with total scores ranging from 0 to 30, where lower scores 
indicate greater impairment. Scores <24 indicated cognitive 
impairment (23). We focused on patients with acute ischemic stroke, 
cognitive impairment, and a high risk of cerebral hemorrhage— a 
population that requires timely prevention and intervention strategies. 

The K-MMSE evaluated the following seven domains: orientation to 
time, orientation to place, registration, attention and calculation, 
memory recall, language, and visuospatial ability (23). The total scores 
and seven domain subscores of the K-MMSE at baseline are presented 
in Table 1.

Baseline K-MMSE was conducted 3–7 months after stroke onset 
(mean ± standard deviation, 4.7 ± 0.6 months; minimum–maximum, 
3.5–6.6). The follow-up K-MMSE, conducted after 9 months 
(9.3 ± 1.0 months; minimum–maximum, 8.3–13.3), was between 12 
and 20 months after stroke onset (14.0 ± 1.2 months; minimum–
maximum 12.2–19.3). A ≥ 3-point decline in K-MMSE total scores 
over 9 months indicated cognitive decline, according to studies 
suggesting significant MMSE changes of four points over 5 years and 
reliable annual changes of 1.3–2.7 points (27, 28).

2.4 Training and testing

Participants were randomly divided into a training (n = 87) set 
and a test (n = 22) set in an 8:2 ratio, with no significant differences 
observed in baseline characteristics (Table  2). Patients were 
categorized into two groups for labeling: those with a decrease of 
≥3 K-MMSE points over 9 months received a positive label (cognitive 
decliners, n = 27, 24.7%), whereas those with a < 3-point decrease in 

FIGURE 1

Flowchart of the inclusion criteria. The flowchart illustrates the inclusion criteria of the study participants. The participants included 109 patients who 
had poststroke cognitive impairment (PSCI) (K-MMSE at baseline <24). They were divided into training (87 patients) and test (22 patients) sets at an 8:2 
ratio. From the patients with ischemic stroke with a history of intracerebral hemorrhage or two or more microbleeds (PICASSO cohort), patients who 
underwent K-MMSE at baseline between 3 and 7 months after stroke onset and 9-month follow-up and acquired baseline FLAIR data were included. 
PICASSO, PreventIon of CArdiovascular events in iSchemic Stroke patients with high risk of cerebral hemOrrhage; PICASSO-COG, PICASSO for 
reducing COGnitive decline; K-MMSE, Korean-Mini Mental Status Examination; K-MoCA, Korean-Montreal cognitive Assessment; FLAIR, fluid-
attenuated inversion recovery.
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TABLE 1 Baseline characteristics between cognitive decliners and cognitive non-decliners.

Baseline characteristics Decliners Non-decliners p

(n = 27) (n = 82)

Age (years) 69.2 ± 7.9 72.3 ± 8.7 0.070

Female 15 (55.6) 52 (63.4) 0.500

Education years 6.4 ± 5.2 4.3 ± 4.2 0.080

Follow-up duration (months) 9.5 ± 1.3 9.2 ± 0.9 0.293

Months between stroke onset and baseline K-MMSE 4.9 ± 0.8 4.6 ± 0.6 0.089

K-MMSE score at baseline 23.0 ± 4.1 17.9 ± 3.8 <0.001*

  Orientation to time subscore 4.0 ± 1.3 3.0 ± 1.6 0.004*

  Orientation to place subscore 4.7 ± 0.6 4.1 ± 1.0 0.008*

  Registration subscore 2.9 ± 0.4 2.7 ± 0.6 0.011*

  Attention and calculation subscore 2.1 ± 1.8 0.9 ± 1.2 0.001*

  Recall subscore 1.9 ± 1.1 1.3 ± 1.1 0.018*

  Language subscore 6.9 ± 1.6 5.6 ± 1.4 <0.001*

  Visuospatial ability subscore 0.5 ± 0.5 0.2 ± 0.4 0.006*

NIHSS score on admission 2.1 ± 1.9 2.1 ± 2.0 0.914

Lesion ratio in the whole brain (%) 2.9 ± 1.8 3.3 ± 1.8 0.326

Fazekas score

  0 1 (3.7) 0 (0)

0.463
  1 3 (11.1) 8 (9.80)

  2 10 (37.0) 34 (41.5)

  3 13 (48.2) 40 (48.8)

Ischemic events

  Ischemic stroke 27 (100) 80 (97.6)
<0.999

  Transient ischemic event 0 (0) 2 (2.4)

High-risk index intracerebral hemorrhage

  History of intracerebral hemorrhage 5 (18.5) 14 (17.1)

0.821  Radiological findings of intracerebral hemorrhage 5 (18.5) 21 (25.6)

  Multiple microbleeds 17 (63.0) 47 (57.3)

Months between stroke onset and pharmacotherapy 1.4 ± 1.5 0.8 ± 1.0 0.033*

Cilostazol or aspirin therapy

  Cilostazol (100 mg/day) 16 (59.3) 46 (56.1)
0.826

  Aspirin (100 mg/day) 11 (40.7) 36 (43.9)

Addition of probucol or none

  Addition of probucol (250 mg/day) 15 (55.6) 43 (52.4)
0.827

  No probucol 12 (44.4) 39 (47.6)

Current smoking status

  Never smoked 18 (66.7) 56 (68.3)

0.978
  Currently smoking 3 (11.1) 10 (12.2)

  Quit smoking in the past 3 years 2 (7.4) 6 (7.3)

  Have quit smoking for >3 years 4 (14.8) 10 (12.2)

Systolic blood pressure (mm Hg) 136.0 ± 20.3 132.5 ± 16.7 0.491

Diastolic blood pressure (mm Hg) 80.2 ± 12.3 77.0 ± 11.0 0.238

Heart rate (beats per min) 81.8 ± 15.4 82.9 ± 13.6 0.741

Total cholesterol (mg/dL) 162.4 ± 30.6 175.1 ± 42.0 0.226

LDL cholesterol (mg/dL) 95.5 ± 29.7 110.7 ± 36.1 0.055

HDL cholesterol (mg/dL) 45.3 ± 12.7 48.0 ± 10.0 0.076

Glucose (mg/dL) 116.0 ± 49.0 116.8 ± 42.8 0.888

Hemoglobin A1c (%) 6.1 ± 1.2 6.1 ± 0.9 0.623

Baseline characteristics are indicated in mean ± standard deviation for continuous variables and number (percentage, %) for categorical variables. Continuous variables were compared using 
the Mann–Whitney U test, and categorical variables were compared using Fisher’s exact tests between decliners (n = 27) and non-decliners (n = 82).
The * symbol indicates statistical significance at p < 0.05.
HDL, high-density lipoprotein K-MMSE, Korean-Mini Mental Status Examination; LDL, low-density lipoprotein; NIHSS, National Institutes of Health Stroke Scale.
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K-MMSE received a negative label (cognitive non-decliners, 
n = 81, 74.3%).

To address class imbalance and prevent synthetic data biasing 
evaluation metrics, Synthetic Minority Over-sampling Technique with 
Tomek Links (SMOTETomek) was applied exclusively to the training 
set (n = 87) using a sampling strategy of 0.9. This method combines 
oversampling of the minority class (SMOTE) with undersampling of 
the majority class (Tomek Links) to improve class distribution while 
reducing noise (29). The test set (n = 22) preserved the original class 
distribution, ensuring a fair and unbiased performance assessment 
under real-world conditions. This separation allowed the model to 
learn from balanced data while maintaining external validity.

We selected the four machine learning algorithms commonly 
used in PSCI prediction, as identified in recent systematic reviews 
(20). The models trained for binary classification of cognitive decline 
included Categorical Boosting (CatBoost) (30), Adaptive Boosting 
(AdaBoost) (31), eXtreme Gradient Boosting (XGBoost) (32), and 
logistic regression (33). Boosting algorithms were chosen for their 

ability to aggregate weak learners and reduce overfitting, particularly 
in imbalanced datasets. Logistic regression was included for its 
simplicity and high interpretability.

A fivefold cross-validation scheme was implemented to evaluate 
model performance and optimize hyperparameters within the training 
set. In each fold, models were trained on four randomly selected 
subsets and validated on the remaining subset, known as the test set. 
GridSearchCV was used for AdaBoost and XGBoost, as their 
hyperparameter spaces are relatively small and consist of discrete 
values. In contrast, RandomizedSearchCV with 10 iterations was 
applied to CatBoost and logistic regression, which have broader or 
continuous hyperparameter spaces, to improve computational 
efficiency. StratifiedKFold was used to maintain class balance across 
folds, and all models were optimized based on the area under the 
curve (AUC). The optimal model was selected according to the 
average performance metrics obtained during cross-validation.

Classification performance for predicting cognitive decline at 
9 months was assessed using multiple evaluation metrics, including 
AUC from the receiver operating characteristic (ROC) curve, 
accuracy, sensitivity, and specificity. Model evaluation was conducted 
separately on training set (n = 87) and independent test (n = 22) set. 
Optimal classification thresholds were determined using the Youden 
index (sensitivity + specificity − 1) to balance true positive and true 
negative rates.

All analyses were performed using Python 3.9. Key libraries 
included scikit-learn (v1.1.3) for training and evaluating models 
(logistic regression, AdaBoost); CatBoost (v1.1.1) and XGBoost 
(v1.4.2) for gradient boosting; and imbalanced-learn (v0.10.1) for 
resampling. A summary of the machine learning workflow and full 
package versions is provided in Supplementary Table 1.

2.5 Feature importance analysis

Feature importance was analyzed using SHapley Additive 
exPlanations (SHAP, v0.44.1) to interpret model predictions, identify 
key predictors of cognitive decline, and enhance overall model 
transparency (34). SHAP values were used to rank input variables 
according to their contribution to model output. Features that 
consistently exhibited low SHAP values across cross-validation folds 
were excluded to reduce overfitting and improve interpretability. 
Exclusion thresholds were determined based on both cross-validated 
model performance and the stability of feature rankings. The final set 
of input features used for each model is illustrated in the SHAP 
summary plots (Figure 2).

2.6 Statistical analysis

Data are expressed as mean ± standard deviation (SD) for 
continuous variables and number of subjects (%, percentage) for 
categorical variables. The demographic and clinical characteristics 
were compared between training (n = 87) and test (n = 22) sets as well 
as between cognitive decliners (n = 27) and non-decliners (n = 82) 
using Mann–Whitney U tests for continuous variables and Fisher’s 
exact tests for categorical variables. These analyses were conducted to 
identify baseline differences and confirm that model training and 
evaluation sets were balanced.

TABLE 2 Baseline characteristics of training and test sets.

Baseline characteristics Training 
set

Test set p

(n = 87) (n = 22)

Age (years) 71.4 ± 8.6 72.3 ± 8.8 0.470

Female 54 (62.1) 13 (59.1) 0.810

Education years 4.9 ± 4.6 4.7 ± 4.2 0.694

Months between stroke onset and 

baseline
4.7 ± 0.7 4.6 ± 0.5 0.895

K-MMSE score at baseline 19.1 ± 4.5 19.2 ± 4.4 0.922

NIHSS score on admission 2.2 ± 2.0 1.6 ± 1.6 0.190

Lesion ratio in the whole brain (%) 3.2 ± 1.8 3.5 ± 1.9 0.464

Ischemic events

  Ischemic stroke 86 (98.9) 21 (95.5)
0.364

  Transient ischemic event 1 (1.2) 1 (4.6)

High-risk index intracerebral hemorrhage

  History of intracerebral hemorrhage 16 (18.4) 3 (13.6)

0.637
  Radiological findings of intracerebral 

hemorrhage
19 (21.8) 7 (31.8)

  Multiple microbleeds 52 (59.8) 12 (54.6)

Months between stroke onset and 

pharmacotherapy
1.0 ± 1.2 0.9 ± 1.1 0.991

Cilostazol or aspirin therapy

  Cilostazol (100 mg/day) 50 (57.5) 12 (54.6)
0.814

  Aspirin (100 mg/day) 37 (42.5) 10 (45.5)

Addition of probucol or none

  Probucol (250 mg/day) 46 (52.9) 12 (54.6)
<0.999

  No probucol 41 (47.1) 10 (45.5)

Baseline characteristics are indicated in mean ± standard deviation for continuous variables 
and number (percentage, %) for categorical variables. Continuous variables were compared 
using the Mann–Whitney U test, and categorical variables were compared using Fisher’s 
exact tests between training (n = 87) and test (n = 22) sets.
K-MMSE, Korean-Mini Mental Status Examination; NIHSS, National Institutes of Health 
Stroke Scale.
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3 Results

3.1 Differential baseline characteristics 
between cognitive decliners and 
non-decliners

Table 1 presents baseline characteristics of cognitive decliners and 
non-decliners. Cognitive decliners had a mean age of 69.2 years, 6.4 years 
of completed education, were 55.6% male, and had a K-MMSE total score 
of 23.0, indicating very mild cognitive impairment. Cognitive 
non-decliners had a mean age of 72.3 years, 4.2 years of completed 
education, were 63.4% female, and had a K-MMSE total score of 17.9, 
indicating moderate cognitive impairment.

Regarding baseline characteristics, cognitive decliners had a 
longer duration between stroke onset and randomization into 
pharmacotherapy of the PICASSO trial (p = 0.033) than non-decliners. 
Although this difference did not reach statistical significance, 
cognitive decliners exhibited trends toward younger age (p = 0.070), 
more years of education (p = 0.080), longer interval between stroke 
onset and baseline MMSE (p = 0.089), and lower levels of low-density 
lipoprotein (LDL) (p = 0.055) and high-density lipoprotein (HDL) 
(p = 0.076) than non-decliners (Table 1).

Notably, the baseline K-MMSE total score was significantly higher 
in cognitive decliners compared to non-decliners (p < 0.001). All 
baseline K-MMSE subscores were also higher in the decliner group, 
including orientation to time (p = 0.004), orientation to place 
(p = 0.008), registration (p = 0.011), attention and calculation 
(p = 0.001), recall (p = 0.018), language (p < 0.001), and visuospatial 
ability (p = 0.006), compared to the non-decliner group.

3.2 Classification of cognitive decliners in 
the training set

Table 3 summarizes the classification performance of the four 
machine learning models on cognitive decliners in the training 
set (n = 87). In the training set, a fivefold cross-validation of 
CatBoost yielded most superior performance than the other three 
machine learning models in terms of accuracy, AUC, and 
sensitivity. The CatBoost algorithm achieved a mean AUC of 

0.966, with an accuracy of 0.897, a sensitivity of 0.909, and a 
specificity of 0.888.

Mean AUC of the other three models ranked in the following 
descending order: XGBoost, 0.950; AdaBoost, 0.924; and logistic 
regression, 0.872. XGBoost algorithm achieved an accuracy of 0.880, 
a sensitivity of 0.836, and a specificity of 0.918, demonstrating the 
highest specificity score among the four models. AdaBoost algorithm 
achieved an accuracy of 0.838, a sensitivity of 0.855, and a specificity 
of 0.823. Logistic regression algorithm achieved an accuracy of 0.804, 
a sensitivity of 0.745, and a specificity of 0.855 (Table 3).

3.3 Classification of cognitive decliners in 
the test set

Classification results of the four machine learning models in the test 
set (n = 22) are summarized in Table 3 and Figure 3. In the test set, 
CatBoost outperformed the other three machine learning models in 
terms of AUC, accuracy, and sensitivity. It achieved a mean AUC of 0.897, 
an accuracy of 0.873, a sensitivity of 0.700, and a specificity of 0.911.

Mean AUC of the remaining three models ranked in the following 
descending order: logistic regression, 0.775; AdaBoost, 0.767; and 
XGBoost, 0.722. The logistic regression algorithm achieved an accuracy 
of 0.755, a sensitivity of 0.650, and a specificity of 0.778. The AdaBoost 
showed an accuracy of 0.845, a sensitivity of 0.550, and a specificity of 
0.911. The XGBoost algorithm achieved an accuracy of 0.873, a sensitivity 
of 0.650, and a specificity of 0.922, demonstrating the highest accuracy 
and specificity scores among the four models (Table 2).

3.4 Feature importance for classification of 
cognitive decliners

Feature importance was determined using the SHAP 
methodology, with the most crucial feature ranked at the top, as 
depicted in Figure 2, which shows the selected input features for each 
model. In the CatBoost model, K-MMSE total scores, language 
K-MMSE subscore, initial NIHSS score, orientation to place K-MMSE 
subscore, memory recall K-MMSE subscore, time between stroke 
onset and MMSE, and lesion volume ratio were the seven most 

FIGURE 2

SHAP summary plot of the four machine learning models in predicting cognitive decline. The SHAP technique was used to interpret the contributing 
factors for the classification performance of (A) CatBoost, (B) logistic regression, (C) AdaBoost, and (D) XGBoost. Red dots in the upper right represent 
higher eigenvalues, which strongly contribute to predicting PSCI at 9 months, whereas blue dots in the upper left represent lower eigenvalues, also 
influencing PSCI prediction. AdaBoost, Adaptive Boosting; CatBoost, Categorical Boosting; DBP, diastolic blood pressure; MMSE, Korean-Mini Mental 
Status Examination; PSCI, poststroke cognitive impairment; SHAP, SHapley Additive exPlanations; XGBoost, Extreme Gradient Boosting.

https://doi.org/10.3389/fneur.2025.1569073
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Namgung et al. 10.3389/fneur.2025.1569073

Frontiers in Neurology 07 frontiersin.org

important features at baseline evaluation in predicting cognitive 
decliners after 9 months.

Across the four machine learning models, K-MMSE total scores, 
language K-MMSE subscore, and orientation to time K-MMSE subscore 
were the top three influential features, with higher baseline values 
contributing to predicting cognitive worsening after 9 months. Higher 
diastolic blood pressure, longer time since stroke onset, and status of 
current smoking contributed to predicting cognitive worsening. Patient 
age, initial NIHSS score, lesion volume ratio, follow-up duration, and time 
between stroke onset and randomization into pharmacotherapy were also 

included as the top seven influential factors contributing to predicting 
cognitive worsening across the four models.

3.5 Sensitivity analysis excluding the 
baseline K-MMSE total score

To assess the influence of baseline cognitive status on model 
predictions, we  conducted a sensitivity analysis by removing the 
K-MMSE total score from the input features. As shown in 

TABLE 3 Performance of the four machine learning models in predicting cognitive decline.

Dataset Model AUC Accuracy Sensitivity Specificity

Training set (n = 87)

CatBoost 0.966 0.897 0.909 0.888

AdaBoost 0.924 0.838 0.855 0.823

XGBoost 0.950 0.880 0.836 0.918

Logistic regression 0.872 0.804 0.745 0.855

Test set (n = 22)

CatBoost 0.897 0.873 0.700 0.911

AdaBoost 0.767 0.845 0.550 0.911

XGBoost 0.722 0.873 0.650 0.922

Logistic Regression 0.775 0.755 0.650 0.778

Performance of the four machine learning models in predicting cognitive decline (≥3 points of changes in the total scores of K-MMSE for 9 months) was evaluated using area under the curve 
(AUC), accuracy, sensitivity, and specificity scores in training (n = 87) and test (n = 22) sets.
AdaBoost, Adaptive Boosting; AUC, area under the receiver operating characteristic curve; CatBoost, Categorical Boosting; XGBoost, Extreme Gradient Boosting.

FIGURE 3

Performance of the four machine learning models in predicting cognitive decline. The ROC curve indicates AUC of the four machine learning models 
in predicting cognitive decline (≥3 points of changes in the total scores of K-MMSE over 9 months) of patients with PSCI in the test set. The relationship 
between true positive rate and false positive rate is indicated for CatBoost (red), AdaBoost (green), XGBoost (blue), and logistic regression (purple). 
AdaBoost, Adaptive Boosting; AUC, area under the curve; CatBoost, Categorical Boosting; K-MMSE, Korean-Mini Mental Status Examination; ROC, 
receiver operating characteristic; XGBoost, Extreme Gradient Boosting.
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Supplementary Table 2, this led to decreased performance in AUC and 
sensitivity across most models. For instance, in the CatBoost model, the 
test AUC dropped from 0.897 to 0.739, accuracy from 0.873 to 0.755, 
and sensitivity from 0.700 to 0.500. Despite these reductions, the models 
retained moderate accuracy (0.736–0.845) and specificity (0.767–
0.944), indicating preserved overall discriminative ability in the test set.

Notably, the AdaBoost model demonstrated improved 
performance in the training set (AUC increased from 0.924 to 0.964; 
sensitivity from 0.855 to 0.930), and its test specificity increased from 
0.911 to 0.944. This suggests that, in the absence of the baseline 
K-MMSE total score, the model adopted a more conservative decision 
threshold—prioritizing the accurate classification of non-decliners 
over the detection of true decliners.

SHAP analysis revealed a corresponding shift in feature 
importance toward clinical and imaging variables, including initial 
NIHSS score, diastolic blood pressure, lesion volume ratio, and the 
time interval from stroke onset to pharmacotherapy or cognitive 
assessment (Supplementary Figure 1). These findings underscore the 
residual predictive value of non-cognitive features, even when global 
baseline cognitive measures are excluded.

3.6 Sensitivity analysis without 
SMOTETomek

To evaluate the impact of resampling, we conducted a sensitivity 
analysis comparing model performance with and without the application 
of SMOTETomek (Supplementary Table 3). When SMOTETomek was 
not applied to the training set (n = 87), sensitivity markedly declined 
across all models except AdaBoost—most notably in XGBoost and 
logistic regression, where test sensitivity dropped from 0.650 to 0.250. 
In contrast, specificity remained high (e.g., logistic regression: 0.989). 
These findings indicate that SMOTETomek substantially improved 
sensitivity, particularly for detecting the minority class, while having 
minimal effect on specificity. This comparison highlights the importance 
of resampling strategies in addressing class imbalance and enhancing 
model performance for detecting cognitive decline in test data.

3.7 Sensitivity analysis excluding education 
years

To evaluate the impact of cognitive reserve proxies on model 
performance, we  conducted a sensitivity analysis by excluding 
education years from the input features. As shown in 
Supplementary Table 4, CatBoost and AdaBoost retained or improved 
performance in the test set despite the exclusion. CatBoost achieved 
higher test accuracy (from 0.873 to 0.891) and specificity (from 0.911 
to 0.922), while AdaBoost maintained stable accuracy (from 0.845 to 
0.882) and showed an increase in AUC (from 0.767 to 0.875). In 
contrast, performance declined in XGBoost and logistic regression, 
particularly in sensitivity, suggesting greater dependence on 
education-related input.

SHAP analysis (Figure 2 and Supplementary Figure 2) further 
supported these findings. Although education years contributed 
modestly to prediction, their exclusion did not substantially affect the 
relative importance of key features such as baseline K-MMSE 
subscores, NIHSS score, diastolic blood pressure, lesion volume ratio, 

and stroke-to-assessment intervals. These findings suggest that the 
high-performing models relied primarily on cognitive and clinical 
variables, reinforcing their robustness in predicting cognitive decline 
independent of educational attainment.

4 Discussion

This study presents four machine learning models that use clinical 
and imaging data to predict patients with PSCI at high risk of cerebral 
hemorrhage, who are likely to experience cognitive decline within 
14 months after stroke onset, which is a 9-month follow-up. 
Specifically, CatBoost demonstrated the highest performance in terms 
of AUC, accuracy, and sensitivity in training and test sets. The most 
influential factors for predicting cognitive decline were higher baseline 
K-MMSE scores (total, language, orientation to place, and recall), a 
longer interval between stroke onset and baseline MMSE and initial 
NIHSS scores, and lesion volume ratio in CatBoost. Cognitive 
decliners who deteriorated after 9 months (mean time since stroke, 
14.0 months) had a longer interval between stroke onset and 
pharmacotherapy, with trends of longer duration between stroke onset 
and MMSE, younger age, more education, and lower LDL and HDL 
levels, than non-decliners who showed deterioration earlier at baseline 
(mean time since stroke, 4.7 months). Moreover, cognitive decliners 
exhibited higher baseline K-MMSE total scores and subscores 
compared to non-decliners.

High AUC and accuracy of our CatBoost model emphasize its 
reliable prediction of cognitive decline in patients with PSCI and high-
risk cerebral hemorrhage. Considering typical machine learning 
models that predict PSCI at a single time point and focus on poststroke 
functional outcomes, our model excelled in predicting PSCI 
worsening after 9 months. Previous machine learning models 
demonstrated comparable predictive performance ranges, with an 
AUC of 0.80–0.91, an accuracy of 0.74–0.80, a sensitivity of 0.70–0.90, 
and a specificity of 0.68–0.82 (20, 35–38). In classifying cognitive 
decliners, boosting models excelled by combining weak learners and 
preventing overfitting through hyperparameter tuning. CatBoost 
effectively handled imbalanced datasets and mixed data types, 
achieving an AUC of 0.897 (30). XGBoost, known for its high 
efficiency and flexibility, achieved the highest specificity of 0.922 but 
the lowest AUC of 0.722 (32), AdaBoost, which combines weak 
classifiers (31) and logistic regression, which is valued for its 
interpretability (33), showed AUC scores of 0.767 and 0.775, 
respectively.

In CatBoost that demonstrated the highest performance, a longer 
interval between stroke onset and baseline MMSE and higher baseline 
K-MMSE scores were key predictors of cognitive worsening as 
determined using the SHAP methodology. Statistically, cognitive 
decliners had higher baseline K-MMSE scores and tended to have a 
longer time since stroke, be younger, and have more years of education 
than cognitive non-decliners. This result suggests that cognitive 
decliners with less baseline impairment have protective factors, such 
as younger age and higher education, delaying cognitive decline to the 
9-month follow-up, unlike cognitive non-decliners who began 
deteriorating at baseline (39, 40). In AdaBoost and XGBoost, older age 
importantly predicted cognitive deterioration, which is supported by 
previous findings that advanced age increases the PSCI odds ratio from 
3.5 to 9.4, alongside greater brain plaque formation and reduced blood 
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vessel elasticity (41–43). An extended educational background, serving 
as a cognitive reserve, was associated with lower PSCI occurrence, 
lower dementia prevalence, and improved long-term survival after 
stroke (39, 40). Sensitivity analysis excluding education years indicated 
that model predictions were predominantly driven by clinically and 
cognitively salient features, such as baseline K-MMSE subscores, 
NIHSS scores, and lesion characteristics, rather than cognitive reserve 
proxies. This suggests that the model captures neurologically 
meaningful patterns and remains applicable across populations with 
varying educational backgrounds, supporting its generalizability in 
clinical contexts (17, 38, 44). Age and education, both strongly 
correlated with baseline MMSE scores, have been identified as key 
predictors in previous machine learning models of PSCI (20, 35). 
Additionally, higher baseline K-MMSE scores—particularly in the 
orientation and language domains—may reflect preserved cognitive 
integrity and serve as protective factors against subsequent decline. 
These domains are supported by temporoparietal and frontal cortical 
networks, which are commonly vulnerable to ischemic injury and play 
a central role in sustaining functional independence and cognitive 
resilience during post-stroke recovery (45).

In CatBoost, initial NIHSS scores and lesion volume ratio were 
important factors predicting cognitive decline at 14 months poststroke. 
These stroke severity indices, although not significantly different 
between cognitive decliners and non-decliners, importantly predicted 
PSCI after 9 months without a clear directionality. Higher initial NIHSS 
scores were associated with an increased risk of cognitive decline in 
patients with PSCI, particularly among those with subcortical stroke 
(10, 44, 46). Although the NIHSS was originally developed to quantify 
acute neurological deficits, elevated scores have also been linked to 
unfavorable long-term cognitive outcomes, especially in the presence 
of extensive white matter damage or impaired cerebral perfusion (47). 
Our finding that the lesion volume ratio (ischemic stroke volume 
relative to total brain volume) is a key predictor of PSCI aligns with 
previous research identifying both stroke volume and brain atrophy as 
major determinants of post-stroke cognition (45). White matter lesions 
have been identified as significant risk factors for PSCI, contributing to 
slowed processing speed and impaired executive function through 
disruption of the fronto-subcortical circuits (35, 37, 48). Larger 
subcortical infarcts can disrupt key networks involving the basal 
ganglia, thalamus, and prefrontal cortex—regions essential for working 
memory and cognitive control—and are strongly linked to PSCI, 
particularly in small vessel disease (37, 47).

In both the AdaBoost and XGBoost models, the time interval 
between stroke onset and pharmacotherapy initiation emerged as a 
significant predictor of cognitive deterioration. In the PICASSO trial, 
this interval was significantly longer among cognitive decliners than 
among non-decliners. The trial showed that pharmacotherapy with 
cilostazol or aspirin, with and without probucol reduced cardiovascular 
events in patients with ischemic stroke and a high risk of hemorrhage 
(12). Delayed treatment may compromise cerebrovascular integrity, 
prolong inflammation, and hinder neurovascular repair, thereby 
increasing the risk of post-stroke cognitive deterioration (49). These 
findings suggest that early pharmacologic intervention may play a 
protective role against cognitive deterioration by mitigating vascular 
events and supporting recovery mechanisms (50). Consistent with 
this, diastolic blood pressure and current smoking status were within 
the top five predictors of cognitive decline in AdaBoost, XGBoost, and 
logistic regression, which is supported by previous findings that PSCI 

is closely associated with vascular risk factors such as hypertension, 
smoking history, diabetes mellitus, and heart disease, all affecting 
inflammation and cerebral perfusion (20, 38, 51). A trend toward 
lower LDL and HDL levels, observed in cognitive decliners, suggests 
disturbed neural maintenance and antioxidant effects underlying 
cognitive worsening in patients with PSCI (38, 52).

These findings suggest that the model captures not only statistical 
associations but also underlying pathophysiological mechanisms 
contributing to post-stroke cognitive decline. The neurobiological 
relevance of prioritized features supports their clinical utility and 
mechanistic validity in predicting cognitive trajectories. A predictive 
model capable of identifying patients at high risk for PSCI within the 
first year post-stroke may facilitate timely and personalized 
interventions. High-risk individuals may benefit from early initiation 
of tailored and intensive cognitive rehabilitation, more frequent 
neurocognitive monitoring (e.g., every 3–6 months), and earlier use of 
cognitive-enhancing pharmacologic treatments such as cholinesterase 
inhibitors or memantine (53, 54). Clinicians may also re-evaluate 
secondary prevention strategies, including stricter control of vascular 
risk factors and adjustment of antiplatelet regimens to minimize the 
risk of hemorrhagic complications (55). Early identification allows for 
proactive caregiver involvement and planning for personalized 
support services, helping families prepare for potential cognitive 
deterioration. Collectively, these targeted interventions may attenuate 
decline, reduce long-term disability, and enhance functional recovery 
in patients with PSCI at high risk of cognitive deterioration.

To further assess model robustness and the influence of baseline 
cognitive status, we  conducted a sensitivity analysis excluding the 
K-MMSE total score. This led to a reduction in AUC and sensitivity in 
most models, highlighting the strong predictive weight of baseline 
cognition. Interestingly, AdaBoost demonstrated improved training 
performance and increased test specificity, indicating a more 
conservative classification pattern prioritizing the accurate identification 
of non-decliners at the cost of missing true decliners. SHAP analysis 
revealed a shift in feature importance toward non-cognitive variables 
such as NIHSS score, diastolic blood pressure, lesion volume ratio, and 
timing of pharmacotherapy or cognitive evaluation. These results 
suggest that even in the absence of global cognitive scores, meaningful 
clinical and imaging predictors of cognitive decline can still be identified. 
However, the trade-off in reduced sensitivity underscores the need to 
balance predictor selection with intended clinical use—particularly in 
early detection versus diagnostic confirmation contexts.

Several limitations should be considered when interpreting these 
findings. The relatively small sample size (n = 109) and retrospective 
design may limit the generalizability of the results and introduce 
potential selection or information biases. The small size of the test set 
(n = 22) limits the stability of performance estimates, particularly 
sensitivity. While internal cross-validation and standardized data 
collection provide some reassurance, external validation with larger, 
prospective, and multicenter cohorts is essential to confirm the 
generalizability, robustness, and clinical applicability of our model.

Additionally, class imbalance—cognitive decliners made up only 
24.7% of the sample—may have contributed to reduced sensitivity. To 
address this, we applied SMOTETomek, which combines oversampling 
of the minority class with the removal of borderline majority class 
samples. This method was applied only to the training set to prevent 
data leakage and preserve the original class distribution in the test set. 
As shown in our sensitivity analysis (Supplementary Table 3), removing 
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SMOTETomek led to a marked drop in sensitivity—particularly in 
XGBoost and logistic regression—while specificity remained high. This 
demonstrates its utility in improving minority class detection with 
minimal loss of specificity. However, synthetic sampling can introduce 
bias or overfitting, particularly in small datasets. To mitigate this, 
we used stratified k-fold cross-validation to maintain class proportions 
and ensure reliable performance estimates, and performed SHAP 
analysis to confirm the stability and clinical plausibility of feature 
importance. Future studies should incorporate external validation with 
larger and more diverse cohorts. In addition to SMOTETomek, 
methods such as bootstrap resampling and integration of multimodal 
clinical and imaging data may further enhance model performance.

Furthermore, the operational definition of cognitive decline as 
a ≥ 3-point decrease in K-MMSE scores over 9 months, while 
consistent with prior studies, may not fully capture the 
multidimensional nature of cognitive deterioration. Incorporating 
clinical assessments and a broader range of neuropsychological tools 
would provide a more comprehensive evaluation framework. Future 
research should also consider extending the follow-up period to better 
understand the long-term trajectory of PSCI beyond 9 months. Our 
sensitivity analysis demonstrated that excluding the baseline K-MMSE 
total score resulted in a reduction in AUC and sensitivity, highlighting 
its critical role in the early detection of cognitive decline. Nonetheless, 
the increased relative importance of non-cognitive features—such as 
lesion volume, blood pressure, stroke severity, stroke duration, and 
timing of pharmacotherapy—suggests that models omitting global 
cognitive scores may still capture clinically relevant predictors. Future 
studies should consider excluding baseline cognitive scores to better 
delineate the contributions of alternative features, while carefully 
addressing the inherent trade-off in predictive sensitivity.

In conclusion, machine learning models, particularly the CatBoost 
algorithm, may reliably predict patients with PSCI with high-risk 
cerebral hemorrhage, who may experience cognitive decline within 
14 months after stroke onset. According to SHAP and statistical 
analyses, cognitive decliners had protective factors of younger age and 
extended education, which delayed deterioration till the 9-month 
follow-up, compared with cognitive non-decliners who showed 
cognitive worsening earlier at baseline. A longer interval between stroke 
onset and pharmacotherapy, along with smoking status and cholesterol 
levels, may contribute to predicting cognitive decline as risk factors.
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