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Sympathetic nerve block as an
add-on therapy for intervention
and prevention of cerebral
vasospasm after subarachnoid
hemorrhage

Zhaoquan Wang and Jianqiang Li*

Department of Critical Care Medicine, Weifang People’s Hospital, Weifang, Shandong, China

Cerebral vasospasm is a major complication after subarachnoid hemorrhage

(SAH) and is an important factor leading to disability and mortality in patients.

Cerebral vasospasm involves cerebral artery stenosis and leads to delayed

cerebral ischemia, further exacerbating brain damage. The pathophysiology

of cerebral vasospasm is multifactorial, involving a complex interaction

between fragmented red blood cell metabolism, endothelial dysfunction, and

hyperresponsive contraction of smooth muscle cells. Recent studies have

highlighted the important role of the sympathetic nervous system (SNS) in

mediating and exacerbating cerebral vasospasm. Sympathetic activation a�ects

vascular tone and contributes to the development of vasospasm after SAH.

Stellate ganglion block (SGB) has been reported to have a protective e�ect in

patients at risk for vasospasm after SAH due to reduced sympathetic activity.

This review aims to explore the current understanding of the relationship

between sympathetic activity and cerebral vasospasm, investigate the molecular

mechanisms involved, clinical implications, and potential therapeutic strategies

targeting sympathetic modulation.

KEYWORDS

cerebral vasospasm, subarachnoid hemorrhage, sympathetic nervous system, stellate

ganglion block, ROS

1 Introduction

Subarachnoid hemorrhage (SAH) is a life-threatening neurological condition, most

commonly caused by the rupture of an intracranial aneurysm, leading to the extravasation

of blood into the subarachnoid space. Accumulating evidence indicates that early brain

injury (EBI) and delayed cerebral ischemia (DCI) are two major pathophysiological

processes, playing pivotal roles in the progression of SAH (1). Following aneurysmal

rupture, the rapid influx of blood into the subarachnoid space results in a sharp increase

in intracranial pressure, which consequently reduces cerebral perfusion pressure (2). This

reduction leads to cerebral ischemia and hypoxia, thereby initiating EBI. EBI typically

occurs within the first 72 h after SAH onset and is characterized by neuronal cell

death, blood–brain barrier disruption, cerebral edema, acute cerebral vasospasm, and

microvascular dysfunction (3). Elevated levels of endothelin-1 and oxygenated hemoglobin

released into the subarachnoid space further activate apoptotic and inflammatory

pathways, exacerbating vasospasm, microthrombosis, and disturbances in cerebral blood

flow (4). These changes ultimately contribute to cerebral infarction and neurological
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impairment. EBI not only causes direct injury to neural tissue

but also predisposes patients to secondary complications such as

DCI (1). As the condition progresses, impairments in cerebral

autoregulation, microcirculatory dysfunction, and sustained

blood–brain barrier damage contribute to the development of

DCI. Clinical studies have demonstrated that ∼70% of SAH

patients experience cerebral vasospasm by the third day, with a

peak incidence between days 7 and 8 (5). Moreover, about 30% of

patients with aneurysmal SAH develop DCI between days 4 and

10. Cerebral vasospasm is considered a major contributor to DCI,

leading to cerebral infarction and persistent neurological deficits,

and is regarded as a critical determinant of poor clinical outcomes

in SAH patients (6).

Cerebral vasospasm is a major cause of delayed ischemic

injury, typically occurring 3–14 days following SAH, and continues

to be a significant contributor to both morbidity and mortality

in SAH patients (6, 7). Cerebral vasospasm is characterized

by a prolonged narrowing of the cerebral arteries, resulting

in a reduction of cerebral blood flow, which can lead to

ischemic damage and subsequent neurological deficits (8). Despite

extensive research into the roles of erythrocyte degradation

products (9–11), endothelial dysfunction (12, 13), and smooth

muscle hypercontraction (14, 15) as key mediators of vasospasm,

the precise mechanisms underlying cerebral vasospasm remain

incompletely understood. To date, treatments for vasospasm

include nimodipine (16), the combination of induced hypertension,

hypervolemia, and hemodilution (triple-H therapy) (17), and

interventional neuroradiological procedures such as transluminal

angioplasty (18) or intra-arterial vasodilators (19), which are

associated with severe side effects such as hypotension.Magnesium,

statins, endothelin antagonists, and fibrinolytic therapy (20, 21) are

under investigation, but large-scale trials are needed to demonstrate

their effectiveness. Therefore, there is currently no effective method

for the prevention and treatment of cerebral vasospasm.

The sympathetic nervous system (SNS), a key component of

the autonomic nervous system, plays a crucial role in regulating

vascular tone (22). Its activation in response to stress or injury

contributes to the onset and exacerbation of vasospasm. Increasing

evidence suggests that the sympathetic nervous system plays a

critical role in the pathophysiology of cerebral vasospasm (23, 24).

The interaction between the SNS and cerebral vasospasm is a

complex and multifactorial process. Following SAH, the stress

response and inflammatory cascade activate the SNS, leading

to the release of norepinephrine from both sympathetic nerve

terminals and the adrenal medulla (25). Several studies have shown

that sympathetic nerve is activated after subarachnoid bleeding

(25–27). Therefore, selective blockade of sympathetic nerves has

become a new and promising method for the treatment and

prevention of cerebral vasospasm. Stellate ganglion block (SGB)

has been proposed as a simple, minimally invasive technique that

can effectively improve cerebral perfusion and prevent cerebral

vasospasm by relieving symptomatic cerebral vasospasm (26–29).

By inhibiting sympathetic nerve activity, SGB potentially relieves

vasoconstriction and improves blood flow in cerebral vasospasm

(30, 31).

This review aims to examine the role of the SNS in the

development of cerebral vasospasm following SAH.Wewill explore

how sympathetic activation contributes to the pathophysiology of

cerebral vasospasm, the underlying mechanisms mediating these

effects, and the potential therapeutic implications of modulating

sympathetic activity as a strategy for preventing or treating cerebral

vasospasm in SAH patients. By investigating the interactions

between the SNS and the cerebral vasculature, this review seeks

to provide insights into novel approaches that could improve

outcomes for SAH patients, who are at increased risk of the severe

consequences associated with cerebral vasospasm. Meanwhile, we

discuss SGB as an add-on therapy for intervention and prevention

of cerebral vasospasm after SAH.

2 Pathophysiology of cerebral
vasospasm

Cerebral vasospasm is a significant contributor to death and

disability in patients with SAH (32). Despite ongoing advancements

in medical technology, no effective treatment strategy for cerebral

vasospasm has been established to date. Many studies have

demonstrated that delayed ischemia resulting from cerebral

vasospasm is a major cause of morbidity and mortality following

SAH (33–36). Statistical analyses of patient data indicate that the

overall incidence of angiographic vasospasm after SAH is 43.3%,

with the incidence rising to 67.3% when angiography is performed

at the time of maximum spasm (37). Moreover, 32.5% of patients

exhibit symptomatic vasospasm or delayed ischemic deficits (38).

While the precise pathophysiology of cerebral vasospasm remains

under investigation, several key factors are believed to contribute

to its development, including oxidative stress, inflammation,

endothelial dysfunction, smooth muscle hypercontraction, and

sympathetic nervous system activation (Figure 1).

2.1 Oxidative stress and cerebral vasospasm

Oxidative stress arises from an imbalance between the

generation of reactive oxygen species (ROS) and antioxidant

defense mechanisms. ROS affects cerebrovascular smooth muscle

tone, permeability, and brain autoregulation (39) through various

biochemical pathways, with this effect potentially being more

pronounced in the presence of cerebrovascular disease. After

SAH, excessive ROS production originates from multiple sources,

including disruption of mitochondrial respiration, upregulation

of enzyme pathways, degradation of extracellular hemoglobin,

and inhibition of intrinsic antioxidant systems (40). Studies

have demonstrated that ROS induce vasoconstriction by strongly

inhibiting endothelial nitric oxide (NO)-mediated vasodilation

(41, 42). Results from numerous in vitro and in vivo animal

studies indicate that O2− has a biphasic effect on cerebrovascular

vessels, depending on its concentration (43). At low concentration,

O2− induces vasodilation, while at high concentration, it causes

vasoconstriction. Additionally, O2− can react with arachidonic acid

and other unsaturated fatty acids, leading to the formation of

isoprostanes, which are potent vasoconstrictors that may reduce

cerebral blood flow (39). Moreover, the production rates of

ROS and antioxidants are influenced by oxygenation levels, each

following distinct kinetics. Under pathological conditions, such as

acute brain injury or SAH, ROS levels increase significantly and

persist over prolonged periods (44). There are multiple sources of

excess free radical production after SAH, including disruption of
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FIGURE 1

The pathophysiology of cerebral vasospasm after SAH.

mitochondrial respiration and extracellular hemoglobin. Moreover,

free radical-producing enzymes such as inducible nitric oxide

synthase (iNOS), xanthine oxidase, NADPH oxidase (NOX), and

enzymes involved in arachidonic acid metabolism are upregulated.

In addition, intrinsic antioxidant systems such as superoxide

dismutase (SOD) and glutathione peroxidase (GSH-Px) are

inhibited (44).

Studies have shown that oxidative stress is one of the factors

that cause vasospasm after hemorrhage (45–47). Maeda et al.

(48) found that exposure of bovine middle cerebral artery strips

to oxidative stress inhibited bradykinin-induced endothelium-

dependent relaxation. Oxidative stress stimulates smooth muscle

cell proliferation and hypertrophy (49) and induces endothelial

cell apoptosis. In addition, increased levels of superoxide anions

in cerebrospinal fluid after SAH are associated with cerebral

vasospasm (50). Research is continuing to further elucidate how

oxidative stress alters cerebral vasoconstrictor responses.

2.2 Inflammation and cerebral vasospasm

Much evidence suggests that inflammatory response plays

a key role in the development and maintenance of cerebral

vasospasm after SAH (51–53). Data from Bowman et al.

(54) showed that inflammatory cytokines, particularly IL-6, are

associated with the development of vasospasm in a rat femoral

artery model. Lu et al. (55) found that mRNA and protein

levels of monocyte chemoattractant protein-1 (MCP-1), a potent

macrophage chemoattractant, increased in parallel with the

development of cerebral vasospasm in a rat double hemorrhage

model, suggesting that the use of specific MCP-1 antagonists

may be useful in preventing SAH-induced vasospasm. Simvastatin

administration after SAH can reduce vasospasm, and perivascular

granulocyte migration was found to be reduced after 72 h of

SAH, suggesting that simvastatin may relieve vasospasm through

its anti-inflammatory effect (56). Another study from Zhou

et al. (57) demonstrated that the mRNA levels of TNF-a, IL-

1b, intercellular adhesion molecule-1, and vascular cell adhesion

molecule-1 increased after 5 days of SAH. The NF-κB inhibitor

pyrrolidine dithiocarbamate can reverse the above SAH-induced

effects and reduce vasospasm after SAH, indicating that the NF-

κB-mediated proinflammatory response in SAH may lead to the

occurrence of cerebral vasospasm (57). The caspase inhibitor

benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone was shown to

reduce cerebral vasospasm on day 2 after SAH in a rabbit single

hemorrhage model, which was associated with reduced IL-1b

release in the cerebrospinal fluid and decreased levels of caspase-1

and IL-1b in macrophages infiltrating the subarachnoid space (58).

2.3 Endothelial dysfunction and cerebral
vasospasm

The endothelium plays a critical role in regulating vascular

tone, blood flow, and tissue perfusion. Endothelial cells produce

and release a variety of bioactive molecules, including NO,
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endothelin-1 (ET-1), prostacyclin, and ROS, which together

regulate the contraction and relaxation of smooth muscle cells in

the vascular wall (59). Endothelial damage impairs the production

of vasodilators such as NO and promotes vasoconstriction

through the release of ET-1 and ROS (60). The pathophysiology

of EC in the delayed phase of aneurysmal SAH involves a

complex interaction of cerebral vasospasm, microthrombosis, and

inflammation, all of which contribute to the morbidity and

mortality of this disease. Iuliano et al. (61) demonstrated that

endothelial dysfunction plays a key role in the development

and persistence of cerebral vasospasm after SAH, as evidenced

by altered vascular responses to acetylcholine and calcimycin.

The process begins with EC dysfunction, which leads to smooth

muscle contraction, inflammation, and altered vascular responses.

Blood in the subarachnoid space, especially free hemoglobin,

is a major contributor to this cascade. Hemoglobin damages

neurons and ECs, leading to NO loss and ET-1 increase (62). In

addition, ET-1 not only causes vasoconstriction, but also promotes

inflammation and smooth muscle cell proliferation, which thickens

the vessel wall, leading to vasospasm and EC damage (63). Activated

immune cells clear blood products but also release inflammatory

mediators that further damage the endothelium, leading to

vasoconstriction, blood-brain barrier disruption, and cerebral

infarction (64).

2.4 Smooth muscle hypercontraction and
cerebral vasospasm

Vascular smooth muscle hypercontraction is the main cause

of cerebral vasospasm after SAH. Numerous studies have shown

that RhoA and its effector Rho-kinase (ROCK) play an important

role in the regulation of Ca2+-independent smooth muscle

contraction (65–67). The RhoA-ROCK pathway mainly regulates

the phosphorylation level of myosin light chain of myosin

II by inhibiting myosin phosphatase and contributes to Ca2+

sensitization in agonist-induced smooth muscle contraction.

During SAH, a large number of red blood cells flow into the

subarachnoid space. The hemolysis of these red blood cells

releases hemoglobin, ET-1, cytokines, and thromboxane A2, all

of which may activate G protein-coupled receptors and RhoA-

ROCK signaling pathways. Activation of the ROCK signaling

pathway leads to decreased MLCP activity and increased MLC

phosphorylation, which in turn leads to relative enhancement of

MLCK activity and contraction of vascular smooth muscle (68).

When G protein-coupled receptors are activated, phospholipase C

is activated. This enzyme catalyzes the hydrolysis of a molecule

called phosphatidylinositol 4,5-bisphosphate in the cell membrane,

producing inositol 1,4,5-triphosphate (IP3) and diacylglycerol

(DAG). IP3 promotes the release of calcium from intracellular

calcium stores, leading to an increase in intracellular Ca2+

levels. The surge in Ca2+ activates MLCK, which promotes the

phosphorylation of myosin and induces the interaction between

actin and myosin, ultimately leading to vasoconstriction [24]. In

addition, DAG, a metabolic byproduct of PLC, also activates PKC.

Activated PKC reduces MLCP activity, thereby enhancing MLCK

activity and promoting vasoconstriction (69).

3 Role of sympathetic nervous system
in cerebral vasospasm

Sympathetic perivascular nerve fibers originate from the

superior cervical ganglion and innervate cerebral blood vessels,

and their activation leads to vasoconstriction. Sympathetic nerve

activation is considered to be an important trigger of cerebral

vasospasm (70, 71). Recently, several studies have shown that

sympathetic nerve-mediated vasoconstriction is one of the key

mechanisms of vasospasm (24, 72, 73). In addition, sympathetic

nerve activation is also associated with endothelial dysfunction and

inflammatory response.

3.1 Sympathetic nerve activation and
vasoconstriction

One of the most consistent findings observed in the literature

is the increase in SNS activity, specifically the increase in

norepinephrine levels, after SAH (24, 25, 74, 75). Both experimental

animal models and human studies have shown that the release

of norepinephrine into the blood and cerebrospinal fluid (CSF) is

associated with the development and severity of cerebral vasospasm

(76–78). Elevated norepinephrine concentrations have been

detected in the CSF of SAH patients, and elevated norepinephrine

induces vasoconstriction after binding to α-adrenergic receptors

on vascular smooth muscle cells (79). This effect is particularly

pronounced in cerebral vessels, which have a higher sensitivity to

adrenaline signals (80).

The key aspect of SNS involvement in cerebral vasospasm is

the phenomenon of sympathetic hyperactivity, which is commonly

observed after SAH (24, 75, 81). Sympathetic hyperactivity refers

to the sustained, exaggerated activation of the SNS that leads

to prolonged catecholamine release and vasoconstriction. This

hyperactivity arises due to several factors, including the acute stress

of SAH, central nervous system injury, and dysregulated feedback

mechanisms such as impaired baroreceptor function (24). Studies

have shown that patients with SAH can exhibit higher-than-normal

sympathetic activity, and this heightened state of SNS arousal

contributes to the development of vasospasm (75).

3.2 Sympathetic nerve activation and
endothelial dysfunction

In addition to direct effects on vascular smooth muscle,

the SNS also indirectly contributes to vasospasm through the

disruption of endothelial function. The endothelium is crucial

for maintaining vascular tone by releasing vasodilators including

NO and prostacyclin, which counterbalance the vasoconstrictive

effects of sympathetic stimulation (82). After SAH, endothelial

dysfunction occurs due to the inflammatory response, ROS, and

other factors. As a result, the ability of the endothelium to dilate

cerebral vessels is impaired, and the vasoconstrictive effects of

sympathetic activation become more pronounced (12).

A study by Neuschmelting et al. investigated the role

of ET-1 and NO in cerebral vasospasm after SAH. It finds
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elevated ET-1 levels in cerebrospinal fluid and reduced NO

metabolites in basilar arterial plasma, both linked to cerebral

vasospasm occurrence in a rabbit model of SAH (83). This

endothelial dysfunction, coupled with sympathetic activation,

leads to a heightened and sustained vasoconstrictor effect,

contributing to cerebral vasospasm. Furthermore, sympathetic-

mediated neuroinflammation acerbates endothelial injury, further

impairing the vasodilatory capacity of cerebral vessels. In addition,

sympathetic activation also leads to increased production of ET-

1, a potent vasoconstrictor, through the stimulation of endothelin

receptors (84). The enhanced release of ET-1 further amplifies

the vasoconstrictor response in the cerebral arteries, leading to

prolonged and potentially damaging vasospasm (85). Clazosentan,

an endothelin receptor antagonist, has been widely investigated

for the prevention of cerebral vasospasm in patients with

aSAH (86, 87). Recently, a study from Japanese research group

showed clazosentan’s effectiveness in reducing vasospasm-related

morbidity and all-cause mortality after aneurysmal SAH in

Japanese patients (88).

3.3 Sympathetic nerve activation and
inflammatory response

The acute increase in intracranial pressure and subsequent

cerebral ischemia following SAH triggers widespread activation of

the SNS (36, 89). This activation has profound effects on both the

central nervous system (CNS) and peripheral organs, exacerbating

inflammation and secondary brain injury. Understanding the

interplay between SNA and inflammation in the setting of SAH

could provide new insights into therapeutic strategies.

The inflammatory response is another critical component of

cerebral vasospasm. After SAH, inflammatory mediators such

as cytokines, prostaglandins, and ROS contribute to endothelial

dysfunction and vascular smooth muscle contraction (51, 90).

Sympathetic activation can amplify this inflammatory response

through the release of neuropeptides, including substance P

and neurokinin A (91), which enhance vascular permeability

and promote further endothelial injury. This vicious cycle of

inflammation and sympathetic activation may contribute to

the persistence of cerebral vasospasm. Additionally, sympathetic

activation primes microglia, the resident immune cells of the

CNS, to adopt a pro-inflammatory phenotype (92). Systemic

inflammation driven by SNA extends beyond the CNS, with

evidence of heightened inflammatory markers in peripheral blood

and organ dysfunction, such as acute lung injury and renal

impairment, often complicating SAH management (93). This leads

to increased production of ROS and further neuroinflammation.

Future research is needed to focus on elucidating the precise

mechanisms linking SNA to inflammation.

4 Sympathetic nerve system inhibition
and cerebral vasospasm

SNS is a part of the autonomic nervous system and controls

many involuntary body functions, including vascular tone and

heart rate. Studies have shown that excessive sympathetic activity

promotes vasoconstriction and reduces cerebral blood flow (94, 95),

which can lead to vasospasm in SAH patients. Considering the role

of the SNS in cerebral vasospasm, researchers have investigated

strategies to modulate SNS activity as potential therapeutic

approaches. Sympathetic nerve blockade has been shown to reduce

the severity of vasospasm following SAH (96, 97). In the following

sections we will discuss the role of sympathetic nerve block in

preventing cerebral vasospasm and its application prospects.

4.1 Sympathetic nerve block is a
therapeutic strategy

Based on the role of sympathetic activation in cerebral

vasospasm, several therapeutic strategies targeting the SNS have

been explored. Several studies have shown that sympathetic nerve

block helps reduce the severity of vasospasm (97, 98). The stellate

ganglion is a collection of sympathetic nerve cells located at the

junction of the C7 and T1 vertebrae in the neck (99). It is part of

the sympathetic trunk and is responsible for providing sympathetic

innervation to the upper extremities, head, neck, and thoracic

organs (100). The stellate ganglion controls the tone of blood

vessels, including those in the cerebral and peripheral circulations,

by releasing norepinephrine upon sympathetic activation (101).

The stellate ganglion block (SGB) can inhibit this sympathetic

activity and induce vasodilation. SGB is a percutaneous procedure

involving the injection of a local anesthetic into the stellate ganglion

and has been used to treat many conditions, such as chronic pain,

anxiety, ventilation, and diabetes (102–104). It has also recently

been proposed as a potential treatment for patients at risk for

vasospasm after SAH (97). By blocking the stellate ganglion, SGB

reduces sympathetic nerve flow to the cerebral arteries, decreases

sympathetic nerve activity, and thus leads to vasodilation and

improves cerebral blood flow, low mortality and complication

rates, suggesting its importance as a therapeutic intervention

for vasospasm after SAH (97). Although the number of studies

evaluating SGB as a preventive measure is limited, the encouraging

results highlight the importance of future research.

4.2 SGB modulates the cerebral
vasoconstriction and vasodilation

In the context of vasospasm, sympathetic overactivity

exacerbates the condition by causing persistent vascular smooth

muscle contraction. By targeting the stellate ganglion, SGB aims

to decrease sympathetic tone and prevent further vasoconstriction

(105). In cerebral vasospasm, particularly following SAH, SGB can

potentially reduce the severity of vasospasm, alleviate ischemia,

and improve neurological outcomes. A study showed that the use

of endothelin-β receptor agonists or hexamethonium at the stellate

ganglion can increase the secretion of nitric oxide synthase at its

nerve endings. A series of studies have shown that parasympathetic

nerve excitation can weaken the inhibitory effect of nitric oxide

synthase; NO production will decrease under conditions of high

sympathetic nerve activity; the plasma content of calcitonin

gene-related peptide is significantly increased after SGB; there

are also reports that norepinephrine can inhibit the release of
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calcitonin gene-related peptide and α-adrenergic receptor blockers

can stimulate the release of calcitonin gene-related peptide. Animal

experiments on rats undergoing extracorporeal circulation showed

that SGB can significantly reduce the concentration of ET-1

in serum and hippocampal tissue, while the concentration of

calcitonin gene-related peptide (CGRP) is significantly increased.

A meta-analysis showed that CGRP significantly increases the

diameter of animal brain blood vessels (106).

4.3 SGB reduces inflammatory response

In 2021, a study from Zhang et al. (107) randomly divided

102 patients into NSGB and SGB groups, and monitored serum

inflammatory cytokines (IL-1β and IL-6) and brain injury markers

(neuron-specific enolase and S100 calcium-binding protein β).

The results showed that the levels of brain injury markers in

the SGB group were significantly lower than those in the NSGB

group, and the manifestations of neurological deficits were also

significantly less, such as hemiplegia and cognitive impairment

(107). Another study on patients with traumatic brain injury

found that SGB could significantly reduce the level of NF-κB

p65 in the patient’s serum (108), which suggests that SGB has an

inhibitory effect on the TLR4/NF-κB pathway. At the same time,

SGB also reduced the concentration of IL-6 in the serum, further

alleviating the inflammatory response (108). After SGB treatment,

sympathetic nerve activity can be reduced, the release of vasoactive

substances can be increased while the release of vasoconstrictive

substances can be reduced, cerebral vasoconstriction can be

reduced, inflammatory response can be reduced, and cerebral blood

flow velocity can be significantly reduced (Figure 2). According

to existing studies, some positive results have been achieved, with

low mortality and complication rates, highlighting its importance

as a therapeutic intervention for vasospasm after SAH. Although

the number of studies evaluating SGB as a preventive measure

is limited, the encouraging results emphasize the importance of

future research.

5 Clinical applications and e�cacy of
SGB

5.1 Clinical e�cacy and safety of SGB in
cerebral vasospasm after SAH

Several studies have investigated the potential of SGB in

reducing the incidence and severity of cerebral vasospasm

following SAH. Some studies have reported significant

improvements in cerebral blood flow, reduced vasospasm severity,

and enhanced patient outcomes (27, 98, 109). A systematic review

and meta-analysis of 8 studies on SGB in subarachnoid SAH

patients revealed favorable outcomes in 52% of patients, with

low complication (2%) and mortality rates (13%). SGB reduced

cerebral blood flow velocity, showing promise as a treatment

for vasospasm, though more research is needed (97). However,

another study from Samagh et al. evaluated the efficacy and

safety of SGB in relieving cerebral vasospasm in aneurysmal SAH

patients. After SGB, significant reductions in middle cerebral artery

peak systolic velocity, mean flow velocity, and Lindegaard ratio

were observed. Neurological improvement occurred in 25% of

patients, but effects on microvasculature were limited (28). Future

research, particularly larger and more rigorous trials, is required to

definitively establish its clinical efficacy.

SGB is generally regarded as a safe procedure when performed

by skilled clinicians. Local anesthetics are commonly used to

block nerve transmission and relieve pain (110). The dose of

local anesthetic administered during SGB depends on the clinical

condition being treated, the patient’s response, and the specific

anesthetic used. Here, we summarize the use of local anesthetics

in the treatment of SGB after SAH based on published reports

(Table 1). The choice and dose of anesthetic depends on the

patient’s physical condition, the desired duration of action, and

the technique used. However, as with any invasive intervention,

potential risks exist, including Horner’s syndrome (due to

sympathetic blockade in the cervical sympathetic chain), local

infection, hematoma, and unintentional nerve damage (111, 112).

These complications are rare and typically manageable. Ensuring

appropriate patient selection, employing expert techniques, and

maintaining diligent monitoring are essential to minimize risks.

5.2 Recurrence rate of after SGB treatment

Although SGB can provide immediate relief of vasospasm,

recurrence of vasospasm after blockade remains a concern,

especially when the underlying pathophysiology of vasospasm has

not been fully resolved. The recurrence of vasospasm may be

related to delayed or incomplete blockade or when the blockade

fails to significantly reduce the improvement of sympathetic tone

in the affected vascular territory. A study by Saket Sanghai

MBBS et al. compared single-injection vs. continuous-infusion

SGB for treating ventricular arrhythmia (VA) storm. Their results

showed that continuous-infusion SGB resulted in a significantly

greater reduction in VA burden compared to single-injection SGB,

with similar safety profiles and fewer repeat procedures required

(113). These findings suggest that repeated blocks may help to

more effectively control the condition by persistently reducing

sympathetic activity. The success of SGB depends on the skill

of the practitioner and the accuracy of the block. Improper

execution of the block may result in incomplete or transient effects,

which may increase the likelihood of recurrence. In addition,

SGB combined with other therapies, such as vasodilators or

antihypertensive medications, may reduce the recurrence rate of

vasospasm (114). Further research and large-scale trials are needed

to better understand the long-term efficacy of SGB and improve

treatment options to minimize recurrence and improve outcomes

for SAH patients.

5.3 SGB as an adjunct therapy to
endovascular treatments in cerebral
vasospasm

Endovascular treatments, such as intra-arterial infusion

of vasodilators (e.g., nimodipine, papaverine), are commonly
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FIGURE 2

Illustration of stellate ganglion block (SGB) for targeting cerebral vasospasm after subarachnoid hemorrhage (SAH).

employed to manage severe vasospasm following SAH (115,

116). However, the recurrence of vasospasm and its associated

complications can still pose significant challenges. Intra-arterial

infusion of vasodilators and balloon angioplasty are widely used as

the primary treatment for severe cerebral vasospasm (19, 117, 118).

However, these interventions have several limitations. Surgery may

carry risks such as arterial dissection, bleeding, or vascular injury

(119). In addition, the effectiveness of endovascular treatments

may be limited in cases of diffuse vasospasm or small vessels

that are difficult to access. SGB is a neuroablative technique

that targets the sympathetic nervous system, has been explored

as an adjunctive therapy to endovascular interventions. Andrea

Bortolato et al. reported a case report of using continuous SGB

during early DCI. They describe a patient with early DCI after

SAH, where standard nimodipine endovascular treatment failed to

restore normal cerebral perfusion (120). Recently, a randomized

controlled trial by Jian Zhang et al. investigated the effect of

SGB on patients with SAH (107). Their results showed that

SGB significantly reduced EBI markers and cerebral vasospasm,

leading to better neurological outcomes and prognosis compared

to standard care (107).

5.4 SGB for cerebral vasospasm: overview
of indications

SGB is a sympathetic blockade therapy commonly used

to treat pain syndromes, but has also been used to treat

cerebral vasospasm, particularly aneurysmal SAH (28, 30, 107).

Although the utility of SGB is unclear compared with balloon

angioplasty or intra-arterial vasodilators, SGB has attracted

attention due to its non-invasive nature, low risk, and potential

to improve cerebral blood flow (114). SGB is considered the best

option before invasive interventions such as balloon angioplasty,

especially when digital subtraction angiography is not available

or delayed. The case report suggests that SGB may benefit

patients with poor perfusion in the posterior circulation (98).

Additionally, when invasive medical treatments fail or are

temporarily unsuitable, SGB can be considered as a rescue method

for DCI (120, 121).

6 Conclusions

Cerebral vasospasm following SAH is a major contributor to

morbidity and mortality. To date, no definitive prevention or

effective treatment strategies have been established. The interaction

between sympathetic nerve activity and cerebral vasospasm is

complex, with sympathetic activation leading to both vascular

smooth muscle contraction and endothelial dysfunction. A better

understanding of the mechanisms by which sympathetic nerve

activation influences cerebral vasospasm could provide new

opportunities for therapeutic intervention. SGB is a sympathetic

nerve block procedure that has shown potential therapeutic

benefits in the management of cerebral vasospasm. SGB has been

demonstrated to reduce cerebral vascular tone, promote dilation

of cerebral blood vessels, and attenuate inflammatory responses,

thereby improving cerebral circulation and alleviating vasospasm.

These effects may ultimately contribute to better clinical outcomes
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TABLE 1 The volume of local anesthetics for stellate ganglion block (SGB)

treatment following SAH.

Condition Anesthetic
agent

Volume of
local
anesthetic

Reference

Early brain

injury (EBI) after

SAH

Ropivacaine

(0.375%)

8ml (107)

Delayed cerebral

ischemia (DCI)

after SAH

Ropivacaine

(0.5%)

20ml (120)

Aneurysmal

SAH

Bupivacaine

(0.5%)

10ml (30)

Aneurysmal

SAH

Bupivacaine

(0.5%)

10ml (28)

Aneurysmal

SAH

Ropivacaine

(0.5%)

8mL (98)

Ischemic

encephalopathy

or cerebral

vascular disease

Levobupivacaine

(0.375%)

8ml (109)

Refractory

cerebral

vasospasm after

aSAH

Ropivacaine

(0.5%)

5ml (114)

in patients with SAH-related vasospasm. Despite its promise,

research on the use of SGB for the prevention and treatment

of cerebral vasospasm following SAH remains limited. Further

basic and clinical studies are required to explore its efficacy,

optimal application, and long-term outcomes. Only with such

research can the full therapeutic potential of SGB in this context

be realized.
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