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Objective: Pulmonary infection (PI) remains a prevalent and severe complication

in patients recovering from spontaneous deep subcortical intracerebral

hemorrhage (deep SICH). Accurate prediction of PI risk is crucial for early

intervention and optimized clinical management. The aim of this study was to

develop a machine learning (ML) model for predicting PI risk in patients during

the recovery phase of deep SICH and to investigate the contributions of individual

risk factors through explainable artificial intelligence techniques.

Methods: We conducted a retrospective study involving 649 patients diagnosed

with PI during the recovery phase of deep SICH between 2021 and 2023. The

cohort was divided into a training set (70%, n = 454) and a testing set (30%,

n = 195). Eight key clinical features were identified using the Boruta algorithm:

mechanical ventilation, nasogastric feeding, tracheotomy, antibacterial drug

use, hyperbaric oxygen therapy, procalcitonin levels, sedative drug use, and

consciousness scores. Seven ML algorithms were employed to build predictive

models, with performance evaluated based on the area under the receiver

operating characteristic (AUC) curve, sensitivity, specificity, and accuracy. The

best-performing model was selected, and SHAP (Shapley Additive Explanations)

analysis was performed to interpret feature importance.

Results: Among 649 patients with deep SICH, no significant baseline di�erences

were found between the training (n = 454) and testing (n = 195) sets. The

Boruta algorithm identified eight key predictors of pulmonary infection (PI).

The random forest (RF) model achieved the highest AUCs: 0.994 (95% CI:

0.989–0.998) in training and 0.931 (95% CI: 0.899–0.963) in testing. DeLong

tests showed RF significantly outperformed several models (DT, SVM, LightGBM),

while performance di�erences with XGBoost (p = 0.95), KNN (p = 0.80), and LR

(p = 0.22) were not significant. SHAP analysis revealed mechanical ventilation,

nasogastric feeding, and tracheotomy as key risk factors, with hyperbaric oxygen

therapy and higher consciousness scores showing protective e�ects.

Conclusions: This study provides a high-performing and interpretable ML-based

risk stratification tool for pulmonary infection in patients during the recovery

phase of deep SICH. The integration of SHAP enhances clinical applicability
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by demystifying complex model outputs, thereby supporting individualized

preventive strategies. These findings underscore the promise of explainable AI

in advancing neurocritical care and call for prospective multicenter validation

and real-time dynamic model adaptation in future research.

KEYWORDS

pulmonary infection, deep subcortical intracerebral hemorrhage, machine learning

algorithms, prediction model, SHAP analysis

Background

Spontaneous intracerebral hemorrhage (SICH) persists as one

of the deadliest and most debilitating subtypes of cerebrovascular

disease worldwide (1, 2). Despite considerable advancements in

surgical techniques and critical care management, up to 50% of

patients succumb within 30 days following the onset of SICH (3).

For those who survive, the stabilization of their condition marks

the commencement of a crucial recovery phase. Although there

is no universally standardized definition of the recovery phase in

SICH, mounting evidence and clinical experience suggest that the

subacute to early chronic stage—ranging from 2 weeks to 6 months

post-onset—represents a critical period for functional recovery

and rehabilitation. The ESO guidelines recommend initiating

rehabilitation within 24 to 48 h after SICH onset, though generally

not before 24 h, and usually after clinical stabilization, which occurs

by the 2 month (4). Saulle et al. (5) highlighted that clinical research

specifically targeting the recovery phase remains scarce and lacks a

uniform time definition. Liu et al. (6) demonstrated that initiating

rehabilitation ∼1 week after onset significantly reduces 6-month

mortality and hospitalization duration. Notably, Cao et al. (7)

defined the recovery phase in SICH patients as the period between

2 and 6 months post-onset. Kearns et al. (8) further reported that

the interval from ∼72 h to 14 days post-onset represents a crucial

stage of hematoma resolution, inflammation attenuation, and early

neurofunctional recovery, thereby supporting the rationale for

selecting 2 weeks as a pragmatic threshold for defining the onset

of the recovery phase. This definition aligns well with our clinical

observations, wherein neurological deficits tend to stabilize and

the demand for structured rehabilitation intensifies during this

time frame. Drawing upon this converging body of evidence, we

pragmatically define the recovery phase in the present study as the

period extending from 2 weeks to 6 months following SICH onset.

Anatomically, SICH can be classified into lobar hemorrhage

and deep subcortical hemorrhage. Previous research has

demonstrated that lobar cerebral hemorrhage is typically

associated with a more severe early prognosis and is mainly

caused by non-hypertensive mechanisms, such as cerebral amyloid

angiopathy, which poses more complex clinical challenges. In

contrast, deep subcortical hemorrhage is often attributed to

hypertensive causes and is associated with lower early mortality;

however, patients remain susceptible to multiple complications

during the recovery phase, including pulmonary infection (PI)

(9). A meta-analysis of 130,000 post-stroke infection cases found

that ∼10% of SICH patients in the recovery phase develop PI

(10), which increases mortality by ∼30% (11, 12). Most existing

studies on risk factors (13) for PI and clinical prediction models

(14, 15) have predominantly focused on the acute phase of

SICH, with limited attention given to the recovery phase. The

physiological state of patients during recovery differs markedly

from that of the acute phase and represents a critical window for

functional restoration. Patients with deep subcortical hemorrhage

are often bedridden for extended periods and may experience

immunosuppression, making them particularly vulnerable to

infections (16). These factors underscore an urgent clinical need

for a dedicated risk stratification tool to predict PI specifically in

deep SICH patients during the recovery phase.

Machine learning, a technology capable of identifying and

learning patterns from large datasets, has shown significant

potential in predicting diseases and treatment outcomes within

the medical field (17, 18). Compared to traditional statistical

models, machine learning methods excel in capturing complex

non-linear relationships (19). This study focuses on patients with

deep subcortical hemorrhage during the recovery phase and aims

to develop a predictive model for PI using several ML algorithms,

including logistic regression, random forest, decision tree, k-

nearest neighbors, light gradient boosting machine, support vector

machine, and extreme gradient boosting. The performance of each

model will be evaluated, and the optimal model will be interpreted

using SHapley Additive exPlanations (SHAP) (20). Importantly,

the goal of this study is not to predict mortality or long-term

functional outcomes, but rather to enable early identification of

patients at high risk of PI. This facilitates proactive intervention

and personalized care strategies during a critical window of

neurological recovery. Given the distinct clinical characteristics

and complication mechanisms of deep subcortical hemorrhage

compared to lobar hemorrhage during recovery, this study offers

important value in constructing a targeted predictionmodel for this

specific patient population.

Materials and methods

Study design and patient selection

The study population consisted of 1,021 patients diagnosed

with deep SICH and admitted to the Second People’s Hospital

of Hefei, Anhui Province, China, between January 2021 and

December 2023. The inclusion criteria were: (1) diagnosis of deep

SICH with confirmation of entering the recovery phase (21);

(2) age ≥ 18 years; (3) complete clinical and follow-up data

available. The exclusion criteria were: (1) presence of other severe

neurological disorders or comorbidities, including but not limited

to neurodegenerative diseases (e.g., Parkinson’s disease, Alzheimer’s
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disease), intracranial space-occupying lesions (e.g., brain tumors),

epilepsy with recurrent seizures, or severe systemic conditions such

as end-stage renal disease, advanced chronic obstructive pulmonary

disease (COPD), or malignancies with systemic metastasis; (2)

incomplete data or loss to follow-up (The initial dataset included

1,021 patients extracted from the hospital information system

(HIS). During preprocessing, patients with incomplete clinical

records were excluded based on predefined criteria. All included

variables were assessed for missing data using SPSS frequency

analysis, and no missing values were detected in the final dataset).

Ultimately, 649 patients were included in the analysis, and the flow

chart of the selection process is presented in Figure 1.

The 649 patients included in the study were sequentially

numbered based on their admission dates and defined as the

overall cohort dataset. Using the “sample()” function in R,

the overall cohort dataset was randomly divided into training

and testing set in a 7:3 ratio, comprising 454 patients in the

training set and 195 patients in testing set. T This retrospective

study was conducted using previously collected electronic medical

records at Hefei Second People’s Hospital. The study protocol was

reviewed and approved by the Ethics Committee of Hefei Second

People’s Hospital (Ethics Number: 2022-Scientific Research-091).

The requirement for informed consent was formally waived by the

Ethics Committee, as the study involved nomore thanminimal risk

to the participants, used fully de-identified data, and did not affect

patient rights or welfare.

Data extraction

In this study, the selection of variables was systematically

informed by clinical relevance, evidence-based literature, expert

consensus, and the cumulative experience of our multidisciplinary

research team. The selection process prioritized variables with

plausible associations to the study’s primary outcome—namely, the

onset and progression of pulmonary infection (PI) in the post-ICH

FIGURE 1

Flowchart of the process of patient enrollment. Patients with other

severe neurological disorders (e.g., Parkinson’s disease, Alzheimer’s

disease, refractory epilepsy) or systemic comorbidities (e.g.,

end-stage renal disease, advanced COPD, metastatic cancer) were

also excluded to ensure population homogeneity. No patients were

excluded due to in-hospital or follow-up death. All 649 patients

completed the study period without mortality.

recovery context. The inclusion criteria for candidate variables were

delineated as follows:

Clinical relevance
Variables with established significance in clinical practice were

given priority. For instance, types of intracerebral hemorrhage (e.g.,

basal ganglia hemorrhage, brainstem hemorrhage, intraventricular

hemorrhage, cerebellar hemorrhage, and thalamic hemorrhage)

were included because of their established impact on patient

prognosis and their potential to cause secondary complications,

including pulmonary infections.

Previous studies
Variables identified as risk factors for PI or outcomes associated

with intracerebral hemorrhage in prior research were incorporated.

These variables included age, gender, smoking history, and

drinking history (15, 22–24).

Biochemical indicators
Biochemical indicators obtained from the most recent

laboratory tests conducted closest in time to the diagnosis of

PI were selected for their diagnostic value in identifying and

monitoring infection progression. The indicators included white

blood cell count (WBC), absolute lymphocyte count (ALC),

neutrophil percentage (NE%), hemoglobin (Hb), platelet count

(PLT), total bilirubin (TBIL), direct bilirubin (DBIL), indirect

bilirubin (IBIL), alanine aminotransferase (ALT), aspartate

aminotransferase (AST), prealbumin (PAB), albumin (ALB), blood

urea nitrogen (BUN), creatinine (Cr), serum potassium (K+),

C-reactive protein (CRP), serum amyloid A (SAA), procalcitonin

(PCT), lactate dehydrogenase (LDH), triglycerides (TG), total

cholesterol (TC), prothrombin time (PT), activated partial

thromboplastin time (APTT), and D-dimer (D-D).

Intervention-related variables
Variables associated with the provided interventions were

included to evaluate their influence on PI outcomes, including

the use of broad-spectrum antibiotics, hyperbaric oxygen therapy

(HBOT), mechanical ventilation, vasoactive drugs, sedatives,

analgesics, and anticoagulants.

Surgical and procedural factors
Factors associated with an increased risk of PI, such as invasive

procedures and tracheotomy, were included.

Functional status assessment
The Barthel Index (BI), which measures the activities of daily

living, along with variables such as consciousness status score

(Glasgow Coma Scale, GCS) and dysphagia score (Standardized

Swallowing Assessment, SSA), were selected to evaluate their

relationship with the overall functional status of patients and the

likelihood of developing PI.
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Hospitalization data
Length of hospital stay and number of hospitalizations were

included to understand the impact of prolonged or repeated

hospitalizations on the risk of PI.

Feature selection and machine learning

This study utilizes the Boruta algorithm to identify key features

associated with the risk of PI in patients with deep SICH.

The Boruta algorithm (25) is a feature selection method built

on the random forest (RF) algorithm. During its application,

each original feature is paired with a corresponding shadow

feature, which is generated by randomly shuffling the values of

the original feature. Both the original and shadow features are

utilized as inputs to train the RF model, and importance scores

are calculated for each feature. The Boruta algorithm compares

the importance scores of the original features with those of the

shadow features to identify features that demonstrate significantly

higher importance than their shadow counterparts. Only features

with substantially higher importance scores than their shadow

counterparts are deemed significant and retained in the final

feature set. After feature selection, multiple machine learning

algorithms were employed to construct a risk prediction model

for aspiration, including Logistic Regression (LR), Random Forest

(RF), Decision Tree (DT), k-Nearest Neighbors (k-NN), Light

Gradient Boosting Machine (LightGBM), Support Vector Machine

(SVM), and Extreme Gradient Boosting (XGBoost). Each of these

algorithms has unique advantages: LR is mainly used for predicting

categorical outcomes based on specific features; RF enhances

prediction accuracy by aggregating multiple decision trees through

majority voting; DT creates an interpretable tree structure by

splitting attributes; k-NN is an instance-based learning approach

suitable for scenarios without explicit model training; LightGBM

is optimized for efficiently processing large-scale datasets; SVM

classifies by maximizing the margin between classes, making

it suitable for high-dimensional data; and XGBoost improves

predictive performance by iteratively building decision trees and

minimizing the loss function.

Model construction and evaluation

In this study, the LR model was developed using the “glm”

function, the RF model was constructed using the “randomForest”

package, and the Decision Tree model was implemented using

the “rpart” package. For k-NN, the “knn” function from the

“class” package was implemented using; the LightGBM model

was developed with the “lightgbm” package, the SVM model was

built using the “svm” function from the “e1071” package, and

the XGBoost model was constructed with the “xgboost” package.

Each model was trained exclusively within the training dataset

using 10-fold cross-validation repeated 5 times. This approach

ensured robust internal validation and minimized overfitting. No

hyperparameter tuning was performed; models used default or

empirically defined settings. Final evaluation was conducted on

the independent test set. Pairwise AUC comparisons between

models were performed using the Delong test, implemented via the

“pROC” package in R.

The evaluation metrics for the models include accuracy

(ACC), sensitivity (SEN), specificity (SPE), positive predictive

value (PPV), negative predictive value (NPV), and area under

the receiver operating characteristic curve (AUC). Additionally,

the Shapley Additive Explanations (SHAP) method was applied

to further elucidate the contribution of each feature variable to

the models (26). SHAP plots visualize the positive and negative

contributions of each feature to the model’s predictions, enabling

the identification of features with significant influence on the

prediction of PI risk.

Statistical analysis

Statistical analyses were performed using SPSS 26.0 and R

4.3.3 software. The continuous variables were statistically analyzed

by t-test (normal distribution data) or M-U test (non-normal

distribution data). The normal distribution data were represented

by mean ± standard deviation, and the non-normal distribution

data were represented by quartiles. The categorical data were

analyzed by a Chi-square test or Fisher precision test, and were

displayed as percentage. When P < 0.05 (bilateral), the difference

was considered to be significant.

Materials and methods

Study design and patient selection

The study population consisted of 1,021 patients diagnosed

with deep SICH and admitted to the Second People’s Hospital

of Hefei, Anhui Province, China, between January 2021 and

December 2023. The inclusion criteria were: (1) diagnosis of

deep SICH with confirmation of entering the recovery phase

(21); (2) age ≥18 years; (3) complete clinical and follow-up data

available. The exclusion criteria were: (1) presence of other severe

neurological disorders or comorbidities, including but not limited

to neurodegenerative diseases (e.g., Parkinson’s disease, Alzheimer’s

disease), intracranial space-occupying lesions (e.g., brain tumors),

epilepsy with recurrent seizures, or severe systemic conditions such

as end-stage renal disease, advanced chronic obstructive pulmonary

disease (COPD), or malignancies with systemic metastasis; (2)

incomplete data or loss to follow-up (The initial dataset included

1,021 patients extracted from the hospital information system

(HIS). During preprocessing, patients with incomplete clinical

records were excluded based on predefined criteria. All included

variables were assessed for missing data using SPSS frequency

analysis, and no missing values were detected in the final dataset).

Ultimately, 649 patients were included in the analysis, and the flow

chart of the selection process is presented in Figure 1.

The 649 patients included in the study were sequentially

numbered based on their admission dates and defined as the

overall cohort dataset. Using the “sample()” function in R,

the overall cohort dataset was randomly divided into training

and testing set in a 7:3 ratio, comprising 454 patients in the

training set and 195 patients in testing set. T This retrospective

study was conducted using previously collected electronic medical

records at Hefei Second People’s Hospital. The study protocol was

reviewed and approved by the Ethics Committee of Hefei Second
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People’s Hospital (Ethics Number: 2022-Scientific Research-091).

The requirement for informed consent was formally waived by the

Ethics Committee, as the study involved nomore thanminimal risk

to the participants, used fully de-identified data, and did not affect

patient rights or welfare.

Data extraction

In this study, the selection of variables was systematically

informed by clinical relevance, evidence-based literature, expert

consensus, and the cumulative experience of our multidisciplinary

research team. The selection process prioritized variables with

plausible associations to the study’s primary outcome—namely, the

onset and progression of pulmonary infection (PI) in the post-ICH

recovery context. The inclusion criteria for candidate variables were

delineated as follows:

Clinical relevance
Variables with established significance in clinical practice were

given priority. For instance, types of intracerebral hemorrhage (e.g.,

basal ganglia hemorrhage, brainstem hemorrhage, intraventricular

hemorrhage, cerebellar hemorrhage, and thalamic hemorrhage)

were included because of their established impact on patient

prognosis and their potential to cause secondary complications,

including pulmonary infections.

Previous studies
Variables identified as risk factors for PI or outcomes associated

with intracerebral hemorrhage in prior research were incorporated.

These variables included age, gender, smoking history, and

drinking history (15, 22–24).

Biochemical indicators
Biochemical indicators obtained from the most recent

laboratory tests conducted closest in time to the diagnosis of

PI were selected for their diagnostic value in identifying and

monitoring infection progression. The indicators included white

blood cell count (WBC), absolute lymphocyte count (ALC),

neutrophil percentage (NE%), hemoglobin (Hb), platelet count

(PLT), total bilirubin (TBIL), direct bilirubin (DBIL), indirect

bilirubin (IBIL), alanine aminotransferase (ALT), aspartate

aminotransferase (AST), prealbumin (PAB), albumin (ALB), blood

urea nitrogen (BUN), creatinine (Cr), serum potassium (K+),

C-reactive protein (CRP), serum amyloid A (SAA), procalcitonin

(PCT), lactate dehydrogenase (LDH), triglycerides (TG), total

cholesterol (TC), prothrombin time (PT), activated partial

thromboplastin time (APTT), and D-dimer (D-D).

Intervention-related variables
Variables associated with the provided interventions were

included to evaluate their influence on PI outcomes, including

the use of broad-spectrum antibiotics, hyperbaric oxygen therapy

(HBOT), mechanical ventilation, vasoactive drugs, sedatives,

analgesics, and anticoagulants.

Surgical and procedural factors
Factors associated with an increased risk of PI, such as invasive

procedures and tracheotomy, were included.

Functional status assessment
The Barthel Index (BI), which measures the activities of daily

living, along with variables such as consciousness status score

(Glasgow Coma Scale, GCS) and dysphagia score (Standardized

Swallowing Assessment, SSA), were selected to evaluate their

relationship with the overall functional status of patients and the

likelihood of developing PI.

Hospitalization data
Length of hospital stay and number of hospitalizations were

included to understand the impact of prolonged or repeated

hospitalizations on the risk of PI.

Feature selection and machine learning

This study utilizes the Boruta algorithm to identify key

features associated with the risk of PI in patients with deep SICH.

The Boruta algorithm (25) is a feature selection method built

on the random forest (RF) algorithm. During its application,

each original feature is paired with a corresponding shadow

feature, which is generated by randomly shuffling the values of

the original feature. Both the original and shadow features are

utilized as inputs to train the RF model, and importance scores

are calculated for each feature. The Boruta algorithm compares

the importance scores of the original features with those of the

shadow features to identify features that demonstrate significantly

higher importance than their shadow counterparts. Only features

with substantially higher importance scores than their shadow

counterparts are deemed significant and retained in the final

feature set. After feature selection, multiple machine learning

algorithms were employed to construct a risk prediction model

for aspiration, including Logistic Regression (LR), Random

Forest (RF), Decision Tree (DT), k-Nearest Neighbors (k-NN),

Light Gradient Boosting Machine (LightGBM), Support Vector

Machine (SVM), and Extreme Gradient Boosting (XGBoost).

Each of these algorithms has unique advantages: LR is mainly

used for predicting categorical outcomes based on specific

features; RF enhances prediction accuracy by aggregating

multiple decision trees through majority voting; DT creates

an interpretable tree structure by splitting attributes; k-NN

is an instance-based learning approach suitable for scenarios

without explicit model training; LightGBM is optimized for

efficiently processing large-scale datasets; SVM classifies by

maximizing the margin between classes, making it suitable

for high-dimensional data; and XGBoost improves predictive

performance by iteratively building decision trees and minimizing

the loss function.
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Model construction and evaluation

In this study, the LR model was developed using the “glm”

function, the RF model was constructed using the “randomForest”

package, and the Decision Tree model was implemented using

the “rpart” package. For k-NN, the “knn” function from the

“class” package was implemented using; the LightGBM model

was developed with the “lightgbm” package, the SVM model was

built using the “svm” function from the “e1071” package, and

the XGBoost model was constructed with the “xgboost” package.

Each model was trained exclusively within the training dataset

using 10-fold cross-validation repeated 5 times. This approach

ensured robust internal validation and minimized overfitting. No

hyperparameter tuning was performed; models used default or

empirically defined settings. Final evaluation was conducted on

the independent test set. Pairwise AUC comparisons between

models were performed using the Delong test, implemented via the

“pROC” package in R.

The evaluation metrics for the models include accuracy

(ACC), sensitivity (SEN), specificity (SPE), positive predictive

value (PPV), negative predictive value (NPV), and area under

the receiver operating characteristic curve (AUC). Additionally,

the Shapley Additive Explanations (SHAP) method was applied

to further elucidate the contribution of each feature variable to

the models (26). SHAP plots visualize the positive and negative

contributions of each feature to the model’s predictions, enabling

the identification of features with significant influence on the

prediction of PI risk.

Statistical analysis

Statistical analyses were performed using SPSS 26.0 and R

4.3.3 software. The continuous variables were statistically analyzed

by t test (normal distribution data) or M-U test (non-normal

distribution data). The normal distribution data were represented

by mean ± standard deviation, and the non-normal distribution

data were represented by quartiles. The categorical data were

analyzed by a Chi-square test or Fisher precision test, and were

displayed as percentage. When P < 0.05 (bilateral), the difference

was considered to be significant. This study was conducted and

reported in accordance with the TRIPOD (Transparent Reporting

of a multivariable prediction model for Individual Prognosis Or

Diagnosis) guidelines.

Results

Baseline patient characteristics

This study included 649 patients in the recovery phase of deep

SICH, comprising 454 patients in the training set (301 with PI and

153 without PI) and 195 patients in the testing set (116 with PI and

79 without PI). The baseline characteristics of the patients included

demographic data, clinical interventions, biochemical markers, and

functional status evaluations. No statistically significant differences

(P> 0.05) were observed in the baseline characteristics between the

training and testing set, indicating that the two sets were balanced

in terms of baseline characteristics. The detailed baseline data are

presented in Table 1.

Feature selection results

To visually demonstrate the process and significance of feature

selection, the Boruta algorithm identified eight key variables

associated with the risk of PI in deep SICH patients. The

identified variables include mechanical ventilation, antibacterial

use, hyperbaric oxygen therapy, tracheotomy, sedative drugs,

nasogastric feeding, the Glasgow Coma Scale (GCS), and

procalcitonin (PCT), as presented in Figure 2.

Model performance evaluation

This study assessed the performance of seven machine learning

algorithms using metrics including ACC, SEN, SPE, PPV, and NPV,

as summarized in Table 2. The AUC for each algorithm is presented

in Figure 3. The RF model exhibited the best overall performance.

In the training cohort, the ACC, SEN, SPE, PPV, and NPV were

0.9714, 0.9801, 0.9542, 0.9768, and 0.9605, respectively, achieving

an AUC of 0.994 (95% CI: 0.989–0.998). In the testing cohort,

the ACC, SEN, SPE, PPV, and NPV were 0.9554, 0.9619, 0.9362,

0.9453, and 0.9348, respectively, with an AUC of 0.931 (95% CI:

0.899–0.963. Pairwise DeLong tests were conducted to evaluate

the statistical significance of AUC differences among the machine

learning models in both the training and test sets (Table 3). In

the training set, the Random Forest (RF) model demonstrated

significantly higher AUCs than DT, LR, SVM, and LightGBM (all

p < 0.01). No significant difference was found between RF and

XGBoost (p= 0.13) or RF and KNN (p= 0.80).

In the test set, RF achieved the highest AUC (0.931). Statistically

significant differences were observed between RF and SVM (p =

0.02), KNN (p = 0.00), and DT (p = 0.05). Differences between RF

and LR (p = 0.22), XGBoost (p = 0.95), and LightGBM (p = 0.19)

were not statistically significant, suggesting similar performance

among these models in external validation.

Visualization by SHAP

As shown in Figure 4A, the ranking of feature variables

influencing PI risk, based on the mean decrease in the Gini

coefficient, is as follows: mechanical ventilation, nasogastric

feeding, tracheotomy, antibacterial use, hyperbaric oxygen therapy,

procalcitonin levels, sedative drug use, and consciousness score.

Figure 4B illustrates the influence of these feature variables

on the risk of PI. Mechanical ventilation, nasogastric feeding,

tracheotomy, antibacterial use, sedative drug use, and elevated

procalcitonin levels were found to significantly increase the risk

of PI. Moreover, patients with higher consciousness scores or

those receiving hyperbaric oxygen therapy exhibited a reduced risk

of PI.
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TABLE 1 Patient demographics and baseline characteristics.

Variables Total (n = 649) Train (n = 454) Test (n = 195) p

Age, years 59 (52, 70) 60 (53, 70) 58 (51, 68.5) 0.057

Gender, n (%) 0.712

female 275 (42) 195 (43) 80 (41)

male 374 (58) 259 (57) 115 (59)

Smoking, n (%) 0.672

no 409 (63) 289 (64) 120 (62)

yes 240 (37) 165 (36) 75 (38)

Drinking, n (%) 0.699

no 405 (62) 286 (63) 119 (61)

yes 244 (38) 168 (37) 76 (39)

Type of intracerebral hemorrhage, n (%) 0.461

Basal Ganglia Hemorrhage 259 (40) 180 (40) 79 (41)

Brainstem hemorrhage 87 (13) 58 (13) 29 (15)

Ventricular hemorrhage 61 (9) 46 (10) 15 (8)

Cerebellar hemorrhage 194 (30) 132 (29) 62 (32)

Thalamic hemorrhage 48 (7) 38 (8) 10 (5)

Antibacterial, n (%) 0.321

no 259 (40) 175 (39) 84 (43)

yes 390 (60) 279 (61) 111 (57)

Hyperbaric oxygen, n (%) 0.313

no 387 (60) 277 (61) 110 (56)

yes 262 (40) 177 (39) 85 (44)

Mechanical ventilation, n (%) 0.785

no 276 (43) 191 (42) 85 (44)

yes 373 (57) 263 (58) 110 (56)

Vasoactive drugs, n (%) 0.913

no 429 (66) 299 (66) 130 (67)

yes 220 (34) 155 (34) 65 (33)

Sedative drugs, n (%) 0.214

no 327 (50) 221 (49) 106 (54)

yes 322 (50) 233 (51) 89 (46)

Analgesic drugs, n (%) 0.153

no 459 (71) 313 (69) 146 (75)

yes 190 (29) 141 (31) 49 (25)

Anticoagulant drugs, n (%) 0.34

no 343 (53) 246 (54) 97 (50)

yes 306 (47) 208 (46) 98 (50)

WBC,×109/L 8.88 (6.26, 14.7) 9.38 (6.34, 14.91) 8.29 (6.12, 13.1) 0.147

ALC,×109/L 1.85 (1.33, 4.19) 1.81 (1.32, 4.17) 1.89 (1.33, 4.22) 0.819

NE, % 68.3 (60, 74.8) 68.45 (60, 74.97) 68.1 (60.2, 74.7) 0.536

HB, g/L 111 (97, 122) 111 (97, 123) 110 (93.5, 121) 0.23

(Continued)
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TABLE 1 (Continued)

Variables Total (n = 649) Train (n = 454) Test (n = 195) p

PLT,×109/L 256 (198, 325) 263.5 (202, 328) 242 (191, 311) 0.075

TBIL, µmol/L 9.8 (7.5, 12.7) 9.8 (7.43, 12.67) 10 (7.6, 12.7) 0.96

DBIL, µmol/L 2.9 (2.2, 3.9) 2.8 (2.2, 3.9) 3 (2.1, 3.9) 0.873

IBIL, µmol/L 6.7 (5, 9) 6.7 (5, 9.07) 6.6 (4.9, 8.85) 0.65

ALT, U/L 21 (12, 34) 21 (12.25, 35) 21 (12, 31.5) 0.542

AST, U/L 24 (17, 33) 24 (17, 32.75) 22 (15.5, 32.5) 0.143

PAB, mg/L 193.8 (153.6, 247) 191.2 (153.02, 241.38) 202.8 (157.3, 251.35) 0.211

ALB, g/L 34.2 (31.8, 36.6) 34.1 (31.7, 36.5) 34.3 (32.1, 37.05) 0.329

BUN, mmol/L 4.57 (3.53, 6.09) 4.57 (3.43, 6.09) 4.6 (3.72, 6.1) 0.862

Cr, µmol/L 45 (34.2, 58) 44.45 (33.82, 57.4) 46.2 (35.4, 60.9) 0.428

K+, mmol/L 4.04 (3.75, 4.29) 4.05 (3.72, 4.29) 4.04 (3.8, 4.3) 0.474

CRP, mg/L 15.28 (6.11, 30.63) 15.42 (6.39, 30.57) 14.5 (5.08, 29.9) 0.367

SAA, mg/L 81 (17.4, 94.8) 81 (19.52, 98.3) 77.2 (14.45, 91.9) 0.092

PCT, ng/mL 0.43 (0.43, 0.7) 0.43 (0.43, 0.72) 0.43 (0.43, 0.65) 0.682

LDH, U/L 203 (165, 251) 211.5 (170, 258) 188 (158, 238) 0.016

TG, mmol/L 1.33 (1.04, 1.69) 1.3 (1.04, 1.68) 1.42 (1.03, 1.73) 0.254

TC, mmol/L 3.83 (3.25, 4.29) 3.83 (3.28, 4.29) 3.84 (3.14, 4.31) 0.491

PT, S 13.4 (12.9, 14) 13.2 (12.7, 14.1) 13.5 (12.3, 14.5) 0.921

APTT, S 35.8 (33.4, 39.1) 35.8 (33.02, 39.25) 36 (33.8, 39) 0.498

D-D, µg/L 1.13 (0.69, 1.99) 1.21 (0.71, 1.98) 1.02 (0.6, 2) 0.062

Invasive procedures, n (%) 0.587

no 458 (71) 317 (70) 141 (72)

yes 191 (29) 137 (30) 54 (28)

Tracheotomy, n (%) 0.791

no 273 (42) 193 (43) 80 (41)

yes 376 (58) 261 (57) 115 (59)

Nasogastric feeding, n (%) 0.418

no 303 (47) 213 (47) 90 (46)

yes 345 (53) 241 (53) 104 (53)

BI, points 51 (33, 69) 52 (34, 69) 50 (32, 68) 0.718

GCS, points 8 (7, 9) 8.5 (7, 9) 8 (7, 9) 0.095

SSA, points 10 (7, 13) 10 (6.25, 13) 10 (7, 14) 0.395

Length of hospital stay, days 28 (21, 35) 28 (21, 36) 28 (21, 35) 0.303

Number of hospitalizations, times 3 (2, 4) 3 (2, 4) 3 (2, 4) 0.588

Discussion

In this study, the Boruta algorithm was employed for robust

feature selection, and a risk prediction model for pulmonary

infection (PI) during the recovery phase of deep subcortical

intracerebral hemorrhage (deep SICH) was developed using seven

machine learning algorithms. Among these, the random forest

(RF) model demonstrated the highest predictive performance,

with AUCs of 0.994 (95% CI: 0.989–0.998)in the training set and

0.931 (95% CI: 0.899–0.963) in the test set, along with superior

accuracy, sensitivity, specificity, positive predictive value (PPV),

and negative predictive value (NPV). To further evaluate the

statistical significance of performance differences between models,

pairwise DeLong tests were conducted based on AUC values. In

the training cohort, the RF model exhibited significantly better

discrimination compared to DT, LR, SVM, and LightGBM (all

p < 0.05), while showing no significant difference vs. KNN and

XGBoost. In the test cohort, although the differences were not
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FIGURE 2

Feature selection analyzed by Boruta algorithm. The horizontal axis is the name of each variable, and the vertical axis is the Z-value of each variable.

The box plot shows the Z-value of each variable in the model calculation. The green boxes represent the 8 important variables, the yellow represents

tentative attributes, and the red represents unimportant variables.

TABLE 2 Performance evaluation of 7 machine learning algorithms on training and testing cohort.

Model Group ACC SEN SPE PPV NPV AUC (95% CI)

LR Train cohort 0.8260 0.7741 0.9281 0.9549 0.6762 0.887 (0.857–0.917)

Test cohort 0.8256 0.8190 0.8354 0.8796 0.7586 0.894 (0.847–0.941)

DT Train cohort 0.8524 0.9091 0.7560 0.8638 0.8301 0.918 (0.893–0.943)

Test cohort 0.8308 0.8739 0.7738 0.8362 0.8228 0.898 (0.855–0.942)

RF Train cohort 0.9714 0.9801 0.9542 0.9768 0.9605 0.994 (0.989–0.998)

Test cohort 0.9554 0.9619 0.9362 0.9453 0.9348 0.931 (0.899–0.963)

XGboost Train cohort 0.8855 0.8704 0.915 0.9527 0.7821 0.932 (0.910–0.954)

Test cohort 0.8308 0.8621 0.7848 0.8547 0.7949 0.912 (0.873–0.951)

SVM Train cohort 0.1652 0.2027 0.092 0.3050 0.055 0.888 (0.857–0.918)

Test cohort 0.1795 0.1638 0.2025 0.2317 0.1416 0.895 (0.848–0.941)

KNN Train cohort 0.9656 0.9090 0.9367 0.9358 0.9108 0.994 (0.990–0.999)

Test cohort 0.7641 0.8534 0.6329 0.7734 0.7463 0.840 (0.784–0.896)

LightGBM Train cohort 0.8261 0.7641 0.9346 0.9583 0.6682 0.882 (0.851–0.912)

Test cohort 0.8051 0.7845 0.8354 0.8750 0.7253 0.892 (0.858–0.936)

Bold indicates the best-performing metric among all models.

statistically significant across most comparisons, RFmaintained the

highest overall classification performance. The superior robustness

of RF can be attributed to its ensemble architecture, which

mitigates variance by integrating multiple decorrelated decision

trees. This structure enhances its ability to capture complex

non-linear interactions and reduces overfitting, particularly in
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FIGURE 3

ROC Curve analysis of machine learning algorithms for predicting pulmonary infection in patients during the recovery phase of intracerebral

hemorrhage.

multidimensional, noise-prone clinical datasets. These advantages

affirm RF as the most reliable and generalizable model in our

setting, offering strong potential for clinical translation. SHAP

(Shapley Additive Explanations) analysis further elucidated the

relative contribution of each variable in PI prediction, ranking

their influence from greatest to least as follows: mechanical

ventilation, nasogastric feeding, tracheotomy, antibacterial drug

use, hyperbaric oxygen therapy, elevated procalcitonin levels,

sedative drug use, and consciousness status.

Analysis of key variables and mechanisms

The final eight variables retained in our model were selected

through an integrative approach combining statistical rigor and

clinical reasoning. Initially, the Boruta algorithm identified a set

of statistically significant predictors based on their relevance to

the outcome. Among these, eight variables were ultimately selected

based on two primary criteria: (1) their high importance scores

in the random forest model, and (2) well-established clinical

evidence linking them to pulmonary infection. This dual-criterion

strategy ensured that all retained predictors not only contributed to

model performance but also had sound medical justification. The

following section presents detailed pathophysiological mechanisms

and literature support for each key variable.

This finding is consistent with previous studies (27, 28), which

have identified mechanical ventilation as a major contributor to

hospital-acquired pneumonia (HAP) and ventilator-associated

pneumonia (VAP) due to its complex and multifaceted underlying

mechanisms. Research suggests that mechanical ventilation

(29), particularly via endotracheal intubation, compromises the

airway’s mechanical barriers, thereby facilitating the invasion

of external pathogens into the lower respiratory tract. Patients

undergoing prolonged mechanical ventilation often develop

airway secretion accumulation, which, due to altered pressure

dynamics and pathological conditions, becomes increasingly

difficult to clear. This condition creates an ideal environment

for bacterial colonization and proliferation, particularly for

Gram-negative pathogens such as Pseudomonas aeruginosa

(30) and multidrug-resistant strains like Methicillin-resistant

Staphylococcus aureus (MRSA) (31). Furthermore, mechanical

ventilation may disrupt alveolar gas exchange and alter local

pressure dynamics, resulting in hypoperfusion or alveolar

overdistension. These pathological alterations can cause alveolar

epithelial cell injury and induce inflammatory responses, thereby

heightening the risk of infection. Studies have also demonstrated

that pressure changes induced by mechanical ventilation can

modify the pulmonary microenvironment, further increasing the

likelihood of infection (32). The findings of this study suggest that

in clinical practice, enhanced interventions should be implemented

for mechanically ventilated patients to reduce the incidence of PI

in deep SICH. Strict adherence to VAP prevention measures is

recommended, including routine airway clearance, optimization of

ventilation parameters, and early extubation.

A meta-analysis revealed that nasogastric tube feeding could

increase the risk of PI in SICH patients by 9.87 times (24). This

study, through a random forest model, identified nasogastric tube

feeding as the second most significant factor influencing the risk of

PI, a correlation further validated in specific samples through SHAP

value analysis. The prolonged presence of a nasogastric tube in

the nasopharyngeal region may alter the local microenvironment,

providing favorable conditions for bacterial colonization. Existing

research has demonstrated that bacterial colonization in the

nasopharynx is a significant source of respiratory infections, and

the long-term retention of a nasogastric tube significantly increases

colonization rates (33). Additionally, when gastric acid secretion

is suppressed in patients receiving nasogastric tube feeding (e.g.,

through the use of proton pump inhibitors (PPIs) or H2 receptor

antagonists), the bactericidal effect of gastric acid is weakened,

potentially leading to excessive growth of gastrointestinal bacteria.

Some pathogens may even enter the lungs via the “gut-lung axis,”

triggering infections. Studies have also found a significant increase

in the number of Gram-negative bacteria commonly found in

gastric cultures of patients receiving nasogastric tube feeding,
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and these bacteria are closely related to respiratory infection

pathogens (34). Furthermore, contamination of nasogastric tube

feeding solutions is closely associated with infection risk, as

contaminated feeding solutions may directly introduce pathogens

into the gastrointestinal or respiratory tracts, leading to secondary

infections (35). Moreover, the long-term mechanical irritation of

the nasal and pharyngeal mucosa by the nasogastric tube may

cause local inflammation, weaken the mucosal barrier, and impair

local immune function, thereby promoting pathogen invasion into

the respiratory tract (36). In summary, while nasogastric tube

feeding is a necessary method of nutritional support, it carries high

risks. Targeted nursing measures, such as elevating the head of

the bed, enhancing aspiration risk assessment, and appropriately

adjusting feeding speed, are essential to effectively reduce the risk

of infections associated with nasogastric tube feeding.

The RF model ranked tracheotomy as the third most

critical determinant of PI risk. SHAP analysis further validated

that tracheotomy substantially increases the risk of pulmonary

infection, a finding consistent with previous studies (37).

Tracheotomy compromises the airway’s natural barrier function,

facilitating pathogen invasion into the lower respiratory tract

(38). Moreover, the accumulation of airway secretions following

tracheotomy fosters an environment conducive to bacterial

proliferation and biofilm formation, further increasing the risk

of infection (39). Therefore, rigorous nursing management is

crucial for tracheotomy patients, including regular tracheostomy

tube replacement, effective humidification therapy, and continuous

monitoring of microbial colonization to mitigate infection risk.

Procalcitonin (PCT) is a crucial biomarker for bacterial infections

and disease severity and has been extensively applied in clinical

practice (40). Lu et al. confirmed that PCT is a key biomarker

of bacterial infection, with elevated levels frequently indicating

exacerbated inflammatory responses, especially in patients with

pulmonary infections (41). Wang et al. demonstrated that dynamic

monitoring of PCT levels facilitates early identification of high-

risk infection patients and provides guidance for the rational use of

antibiotics (42). Similarly, this study identified PCT levels as a key

determinant of PI risk during the recovery phase in patients with

deep SICH. SHAP value analysis demonstrated a strong correlation

between elevated PCT levels and an increased risk of PI. These

findings underscore the necessity of monitoring and regulating

PCT levels in the clinical management of deep SICH to mitigate

PI risk and optimize clinical decision-making.

The RF model also identified antibacterial and sedative drugs

as significant determinants of PI risk. SHAP analysis revealed

that broad-spectrum or frequent antibiotic use substantially

increases infection risk, consistent with findings from previous

studies (23, 43, 44). Excessive antibiotic use can promote the

emergence of resistant strains, such as multidrug-resistant

Gram-negative bacteria (MDR-GNB), thereby complicating

pulmonary infections (45). Inappropriate treatment or prolonged

exposure to an antibiotic-rich environment may disrupt the

patient’s normal microbiota, further increasing infection risk

(46). Therefore, rational antibiotic use is crucial, emphasizing

targeted therapy guided by microbial culture and susceptibility

testing, implementation of antimicrobial stewardship programs,

and adoption of short-course regimens to minimize the risk

of antibiotic-associated infections. Beyond antibiotics, SHAP
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FIGURE 4

Analysis of variable importance and SHAP values in the random forest model. (A) The horizontal axis represents the average decrease in the Gini

coe�cient. In the RF model, the top 8 variables most associated with pulmonary infection are ranked by importance. A larger decrease in the Gini

coe�cient indicates a higher importance of the variable in the model. (B) This is a SHAP plot illustrating the impact of each feature variable on the

risk of pulmonary infection.

analysis further revealed that sedative drugs substantially

elevate the risk of PI. Studies have demonstrated that ICU

patients undergoing prolonged benzodiazepine therapy exhibit

a significantly higher risk of developing respiratory infections

(47). The underlying mechanisms include suppression of the

cough reflex and impairment of ciliary movement by sedative

drugs, resulting in airway secretion retention (48). This condition

fosters an environment conducive to pathogen proliferation,

thereby heightening infection risk. Sedative drugs can compromise

swallowing reflexes and facilitate aspiration, further predisposing

patients to PI (49). The synergistic effects of impaired airway

clearance and increased aspiration risk establish sedative use

as a pivotal contributor to PI development. To mitigate the

infection risk associated with sedative drugs, precise sedation

management is essential. Key strategies involve dynamic titration

of sedative dosages based on patient conditions, optimized airway

management to ensure effective secretion clearance, and preventive

measures to reduce aspiration risk. Non-pharmacological

interventions, such as positional therapy and minimizing sedative

use when clinically feasible, offer additional strategies to reduce

these risks.

Consciousness score assessments are widely acknowledged as

an independent and crucial risk factor for PI in stroke patients

(14). In this study, although consciousness score assessments

were identified as a significant factor influencing PI risk, their

relative impact during the recovery phase of deep SICH was

lower than that of other factors. SHAP value analysis further

confirmed that lower consciousness score assessments, indicative

of poorer consciousness evaluation results, significantly increased

PI risk. Previous studies (50) have shown that patients with

reduced consciousness often experience impaired respiratory

defense mechanisms, including diminished cough reflexes

and the retention of airway secretions, which collectively

heighten susceptibility to pathogen-induced infections. This

study highlights the necessity of proactive airway management

for patients with low consciousness score assessments. Regular

sputum clearance, maintaining airway patency, and preventing

secretion accumulation are vital measures to mitigate infection

risk. Implementing neurorehabilitation strategies and other

interventions aimed at improving consciousness score outcomes

can facilitate central nervous system recovery while also

significantly reducing PI incidence.

HBOT, an emerging therapeutic approach, demonstrated a

significant protective effect against PI in patients recovering

from SICH, as revealed by SHAP analysis. Although previous

literature has rarely reported this association, emerging evidence

from experimental and clinical studies provides a biologically

plausible rationale. The potential protective mechanisms of

HBOT in infection control may be summarized as follows:

first, HBOT markedly increases tissue oxygen tension, which

inhibits the growth of anaerobic bacteria and enhances the

efficacy of certain antibiotics (51). Second, HBOT directly

inhibits anaerobic bacteria while enhancing the bactericidal

activity of immune cells, such as neutrophils and macrophages,

thereby strengthening host defense against infections (52).

Additionally, HBOT suppresses excessive inflammatory mediator

release, reduces tissue edema and inflammation, and mitigates

lung tissue damage caused by infections (53). Finally, HBOT

promotes endothelial cell proliferation, enhances angiogenesis, and

accelerates wound healing, thereby supporting recovery at the

infection site (54). These mechanisms are consistent with recent

findings from experimental and clinical studies exploring the

immunomodulatory and antimicrobial effects of HBOT in critical

care settings (55, 56). The findings highlight HBOT’s critical role in

alleviating local tissue hypoxia and reducing PI incidence through

multiple synergistic mechanisms. Compared with traditional risk

factors, HBOT exhibited particularly strong protective effects

in this model. These insights provide a robust theoretical
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foundation for the clinical application of HBOT, particularly in the

management of high-risk deep SICH patients, and underscore its

potential value for future research and clinical exploration.

Clinical implications and application value

This study integrates a random forest model with SHAP

interpretability analysis to develop an accurate tool for assessing

PI risk in patients recovering from deep SICH. The model

effectively identifies high-risk patients, providing a robust

scientific foundation for clinical interventions. For instance,

optimizing airway management and dynamically monitoring

infection markers are recommended for patients receiving

mechanical ventilation or enteral feeding. Similarly, integrating

model predictions for patients with elevated PCT levels can

help optimize antimicrobial therapy strategies. Integrating SHAP

analysis enhances the model’s interpretability, enabling clinicians

to intuitively comprehend the specific impact of risk factors

and providing critical guidance for personalized treatment.

The findings of this study contribute to more efficient early

identification of PI, improved patient outcomes, and optimized

allocation of healthcare resources.

Innovations and limitations of the study

This study presents several innovations. To our knowledge,

it is the first to focus specifically on the risk of PIin patients

during the recovery phase of deep SICH. The use of a RF

model combined with SHAP analysis enabled high-precision

risk prediction while preserving interpretability. Notably, the

model identified HBOT as a potential protective factor, offering

a novel insight into infection management for this population.

Importantly, given the retrospective nature of the study, data

completeness was strictly controlled. From an initial dataset

of 1,021 patients, 649 cases with complete clinical information

were retained after standardized exclusion criteria. Missing data

were assessed using SPSS frequency analysis, confirming that the

final dataset was complete. This rigorous approach minimized

the risk of information bias and enhanced the validity of the

model. Nevertheless, several limitations should be acknowledged.

First, the single-center design and limited sample size may

restrict the external applicability of the model, necessitating

validation through multi-center studies with larger cohorts to

enhance robustness. Second, the model relies solely on static

baseline data, lacking integration of time-series data, such as

dynamic changes in PCT levels, which may reduce sensitivity

to disease fluctuations. Third, although the model highlights the

significance of HBOT, its specific mechanisms and intervention

effects require further clinical trials for validation. Fourth, the

study did not include prospective evaluation of model-guided

interventions, and thus the practical impact and causal pathways

of the identified predictors remain to be verified in randomized

controlled settings. Additionally, the exclusion of intraventricular

extension of cerebral hematoma—a well-established predictor of

poor early outcomes—represents another potential limitation. As

highlighted by Arboix et al. (57), hemorrhage extending into

the ventricles markedly increases early mortality and worsens

neurological recovery. Although this variable was omitted due

to dataset limitations and the study’s focus on pulmonary

complications rather than mortality, its clinical importance is

evident. Future research should incorporate this parameter to

enhance prognostic precision and enrich the pathophysiological

understanding of infection risk in deep SICH. Finally, this

study did not perform hyperparameter tuning during model

development. All machine learning algorithms were implemented

using default or empirically defined parameters. Although the use

of 10-fold cross-validation with five repetitions helped mitigate

overfitting, the absence of systematic parameter optimization may

have constrained model generalizability. Future studies should

incorporate grid search or Bayesian optimization to refine model

performance and robustness.

Future directions

In addition to addressing the limitations identified above,

future research should also aim to construct multicenter

prospective cohorts to externally validate the predictive model and

assess its generalizability across diverse populations. Integration

of dynamic clinical variables—such as serial procalcitonin

levels, real-time infection markers, and temporal consciousness

fluctuations—may improve the model’s sensitivity and adaptability.

Furthermore, interventional studies are warranted to evaluate

the effectiveness of individualized preventive strategies guided

by model-based risk stratification. Exploring the underlying

pathophysiological mechanisms linking key risk factors (e.g.,

sedation, hyperbaric oxygen therapy) to pulmonary infection may

also enhance the translational value of predictive modeling in

post-ICH care.

Conclusions

This study presents a novel and clinically interpretable

machine learning approach for predicting pulmonary infection

risk in patients during the recovery phase of deep subcortical

intracerebral hemorrhage (deep SICH). By integrating a high-

performing random forest model with SHAP analysis, we

established a robust predictive framework capable of identifying

high-risk individuals with exceptional precision. Beyond predictive

accuracy, the model’s interpretability facilitates personalized

clinical decision-making, supporting targeted interventions

such as airway optimization, timely infection surveillance,

and rational antibiotic use. These findings not only offer a

practical tool for improving patient outcomes and reducing

healthcare burden, but also underscore the value of explainable

artificial intelligence in bridging the gap between complex data

modeling and real-world clinical application. Future extensions

of this work may further enhance its translational potential

and contribute to more precise, individualized care pathways in

neurocritical rehabilitation.
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