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Cervicovagopathy: ligamentous 
cervical instability and 
dysstructure as a potential 
etiology for vagus nerve 
dysfunction in the cause of 
human symptoms and diseases
Ross A. Hauser , Danielle Matias  and Benjamin Ryan Rawlings *

Caring Medical Florida, Fort Myers, FL, United States

Vagus nerve dysfunction is implicated in the pathophysiology of many different 
symptoms and diseases that plague humanity. In many cases, the etiology of 
this condition remains elusive. One potentially implicating factor is cervical spine 
pathology, as the 2 vagus nerves are located in the carotid sheath just anterior to 
the cervical vertebrae. We propose that cervicovagopathy occurs primarily by the 
slow stretching of the posterior cervical ligaments because of a forward head-
facedown lifestyle from excessive cell phone and computer usage. While the 
excessive stretch and compression on the vagus nerve initially just inhibits electrical 
impulses (conduction block), the condition progresses to ligamentous cervical 
instability. It ultimately results in a breakdown of the cervical curve (dysstructure), 
leading to vagus neuron cell death (degeneration), which can be documented 
by carotid sheath ultrasound. Cervical structural, internal jugular vein, and vagus 
nerve cross-sectional area measurements are presented from a retrospective 
chart review of 234 consecutive patients with no obvious cause for 1 of 9 specific 
symptoms—anxiety, dizziness, fatigue, irritability, lightheadedness, insomnia, 
sleeping difficulty, neck pain, and neck cracking/popping. Those cases of vagus 
nerve degeneration from a structural cause require corrective cervical structural 
therapies such as proper ergonomics, physiotherapy, cervical curve and postural 
exercises, low-force adjustments, and prolotherapy. A case example is given to 
demonstrate how cervical structural treatments can open up internal jugular veins 
and improve a patient’s chronic symptoms. Resolution of symptoms that occur 
alongside improvements in vagus nerve cross-sectional areas (regeneration), 
correlating with restoration of the cervical lordotic curve and stability, will prove 
this hypothesis.
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Introduction

Operating far below the level of our conscious minds, the vagus nerve (VN) is vital for 
keeping our bodies healthy. The VN is our sixth sense, our “gut feeling” (1). It keeps us alive 
by its innervation of the internal organs of the body and their interactions with the brain, 
spinal cord, cranial nerves, upper cervical spinal nerves, and sympathetic nervous system. The 
VN innervates all the portals of entry or filters for pathology from toxins, microorganism 
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invaders, and allergens that can enter the human body, namely the 
respiratory and gastrointestinal epithelial mucosal surfaces. Since the 
VN meanders and extends branches to multiple tissues and organs, its 
role in health is immense, regulating homeostasis by connecting 3 
interwoven systems—the nervous, endocrine, and immune systems.

In Latin, vagus means a “fugitive” or “wanderer.” It is the longest 
and most widely extended of the nerves of the body, carrying both 
sensory and motor information to and from the brain, traversing 
through the neck to innervate the organs (see Figure 1). The VN works 
as a 2-way messenger, passing electrochemical signals between the 
organs and brain regarding heart rate, blood pressure, circulation, 

breathing, internal organ distension, secretions, and inflammation. In 
the neck, the VN has direct connections to the inferior, middle, and 
superior cervical sympathetic ganglia, as well as the upper cervical 
nerves and many of the cranial nerves and descends all the way down 
to the celiac plexus in the abdomen and beyond (2).

The role of vagus nerve function in health and disease cannot 
be overemphasized. The hallmarks of dysautonomia (parasympathetic 
dysfunction causing sympathetic dominance, or what is termed 
“sympathovagal imbalance”) are paramount to understanding the 
pathophysiology of most medical conditions (3, 4). The cause of vagal 
or parasympathetic dysfunction has many chemical and emotional 

FIGURE 1

The vagus nerve.
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etiologies, including diabetes, heavy metals, medications, and 
emotional or financial stress, but a cause that is overlooked is 
structural injury (5). As the list of symptoms and diseases continues 
to grow, including chronic pain, depression, tinnitus, migraine 
headache, seizures, heart failure, Alzheimer’s dementia, and systemic 
inflammation, it is prudent that clinicians and the patients they treat 
understand the VN anatomy, injury, and the potential pathophysiology 
it causes (6–8) (see Figure 2).

Pertinent vagus nerve cervical 
anatomy

The right and left vagus nerves are most vulnerable to stretch, 
traction, and compression in the cervical region, as they lie in a specific 
area called the carotid space. The carotid space is a paired space defined 
by the carotid sheath, a connective tissue boundary in the neck that is 
made up of superficial, middle, and deep layers of the cervical fascia 
(9). The suprahyoid (above hyoid bone) area of the carotid space 
contains the internal carotid artery, internal jugular vein (IJV), cranial 
nerves IX-XII, the ansa cervicalis (a loop of the first 3 cervical nerves), 
the sympathetic plexus, and deep cervical lymph nodes (10).

The peripheral hub of the whole autonomic nervous system is the 
upper cervical spine, as the inferior (nodose) ganglion of the VN lies 
right in front of C1, and the superior cervical sympathetic ganglion 
(SCSG) lies just anterior to C2 and C3 (11, 12). In the upper cervical 
region, the vagus neurons connect with the trigeminal, facial, 
glossopharyngeal, spinal accessory, and hypoglossal nerves (cranial 
nerves V, VII, IX, XI, and XII, respectively), along with the connections 
to the cervical sympathetic trunks and C1–C3 spinal nerve roots (13, 
14). One especially important aspect is the inhibitory effect of the VN 
on the SCSG (see Figure 3). The SCSG innervates the eye and lacrimal 

gland, causes vasoconstriction of the iris and sclera, pupillary dilation, 
and widening of the palpebral fissure, and reduces tear production. It 
has been implicated in many conditions and symptoms that include 
elevated intraocular pressure, glaucoma, photophobia, and macular 
degeneration (15–17).

The nodose ganglion provides vital sensory information such as 
mechanoreception (stretch) and nociception (pain) from the ear, 
tympanic membrane, and parts of the dura mater that interact with 
the spinal trigeminal nucleus of the brainstem, its importance cannot 
be overemphasized. It surveys the physiological state of the internal 
body by relaying sensory information from the larynx, heart, lungs, 
and gastrointestinal tract to the brainstem and brain (18). The nodose 
is approximately 5 times the size of the jugular ganglion, is the key 
sensor of the parasympathetic nervous system of the body and is the 
ganglion that sits right in front of C1 (19) (see Figure  4). These 
neurons in the nodose ganglion are critical in relaying information 
such as elevations in blood pressure, changes in blood oxygenation 
and respiratory rate, passage of contents through the esophagus and 
intestines, and distention of the heart, stomach, and lungs to the 
dorsal nuclei of the VN in the medulla and central nervous system 
for optimization of visceral function health. Each nodose ganglion 
neuron in the digestive tract interacts with thousands of enteric 
neurons for coordination of optimum digestion, absorption, appetite, 
and systemic changes in energy utilization. These neuronal pathways 
influence the release of hundreds of metabolic hormones and 
neurotransmitters, blood glucose levels, enzyme secretion, 
gallbladder contraction, gut motility, gastric acidification, gastric 
emptying, hydration status, and nutrient levels, as well as assessing 
microbiome-derived metabolites and other potential pathogens, 
toxins, or food allergens (18, 20, 21).

Fully 80% of parasympathetic sensory afferents are from the VN 
(cranial nerve X), a mixed nerve composed of 20% efferent fibers 

FIGURE 2

A list of diseases/conditions/symptoms that potentially involve the vagus nerves.
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sending signals from the brain to the body and 80% afferent (sensory) 
fibers carrying information from the body to the brain (22, 23). A key 
point is that because the VN is the body’s sensor, it is primarily through 
the VN that the brain knows what is happening in and to the body.

Vagus neurons need to be kept healthy and alive, as there are not 
as many of them compared to other tissues. The VN is extremely small, 
given its massive importance. In 1961, Drs. Hoffman and Schnitzlein 
published that the number of nerve fibers in the mid-cervical vagus 

FIGURE 3

Interconnectedness of vagus nerves. (A) Anterior craniocervical junction (a. Jugular ganglion CN X, b. Nodose ganglion CN X, c. Superior ganglion CN 
IX, d. Inferior ganglion CN IX). (B) At level of brainstem and spinal cord (a. Dorsal motor nucleus of the vagus, b. Nucleus solitarius, c. Trigeminal nuclei, 
d. Nucleus ambiguus).

FIGURE 4

The cervical vagus nerves. (A) Anterior view. (B) Lateral view. The vagus nerves run dangerously close to the anterior cervical vertebrae, which is 
especially true at the atlanto-axial joint, where it is very vulnerable to traction stretch.
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nerve of man varied from 45,110 to 153,123 fibers (right average was 
105,375, left average was 87,300) (24). The VN has 1/1,000th of the 
number of nerve fibers as the enteric nervous system. There are 
approximately 1 million neurons in each eye, 100 + million in the 
spinal cord, and 100–500 million neurons in the enteric nervous 
system, 0.1% the number of neurons in the brain (100 billion) (25, 26).

Forward head-facedown lifestyle 
demise of the cervical spine structure

An estimated 129 million people in the United States—over 35% 
of the population—have at least one major chronic disease (27). The 
prevalence of chronic disease in the United  States has steadily 
increased over the past 2 decades, with 42% of people having 2 or 
more chronic diseases, and 12% having at least 5 diseases (28). While 
there are many contributing factors, including obesity and stress, what 
are often overlooked are dysfunctional changes in the cervical curve 
that occur with a forward head-facedown lifestyle due to excessive 
screen time on electronic devices.

The forecast for the number of mobile cell phone users 
worldwide is expected to be approximately 7.5 billion in 2025 (29). 
Daily time spent in front of electronic devices continues to rise, 
up 60% since 2020, as Americans currently spend almost 7 h per 
day online, and 92% of jobs in the U. S. require digital skills (30). 
This prolonged forward head-facedown lifestyle alters spinal 
posture, especially in the cervical spine, because of slow stretching 
of the posterior ligament complex of the neck, a process known as 
“creep” (31) (see Figure 5).

Inappropriate poor neck posture while looking at a computer screen 
or texting leads to the manifestation of a host of musculoskeletal, mental 
health, emotional, and body symptoms commonly known as “text neck 
syndrome” (32). Forward head posture is the most common cervical 
postural dysfunction and is associated with myriad symptoms and 
diseases, including cervicogenic dizziness, vertigo, migraines, and even 
a decrease in brain function (33–35). The average 5–7 h that people, 
including children and adolescents, spend looking down at their cell 
phones potentially causes multifarious changes in the cervical spine, 
including an elongation or stretching of the posterior ligament complex. 
This stretch causes ligamentous cervical instability and a breakdown and 
loss of the cervical curve (cervical dysstructure), as well as overall 
changes in the sagittal plane, where the upper cervical spine is forward 
in relation to the lower cervical spine: the very definition of forward head 
posture (36, 37). While this is likely the primary mechanism causing 
structural vagus nerve dysfunction, it could also occur because of 
mandibular malposition and elongated styloid bones (see Figure 6).

The cervical region is the spine’s most mobile segment. Its primary 
stability stems from its ligament structures, especially in the upper 
cervical region, which is devoid of discs. The forward head posture 
puts the lower neck (C2–C7) into constant flexion, which necessitates 
the upper cervical area (C0–C2) to be  in extension in order to 
maintain a stable horizontal gaze (35, 38). The larger the neck flexion 
angle, the greater the forces on the posterior soft tissue structures in 
the neck, making cervical instability more plausible (39–42). 
Ultimately, the upper cervical spine at the atlas subluxes forward, the 
net effect of these changes resulting in compression of the carotid 
sheath and its contents at the level of the atlas, including the IJV and 
VN (43).

FIGURE 5

Forward head posture from hours of computer work and texting, resulting in cervical ligament laxity, ultimately compressing the internal jugular veins 
and vagus nerve. “Creep,” which is a term signifying the slow stretching of ligaments, most commonly occurs by a forward head posture from 
computer work or looking at a smartphone. As cervical vertebrae sublux anteriorly, a stretch compression can occur on the internal jugular veins and 
autonomic nerves in the anterior part of the neck, including the vagus nerves and cervical sympathetic ganglion.
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Vagus nerve degeneration and 
conduction block

Vagus nerve degeneration signifies that the electrical impulses in 
the nerve are hampered, which implies either conduction block or loss 
of vagal neurons, termed vagopathy or degeneration. Excessive forces 
on a nerve, whether by stretch or compression, can initially block 
nerve impulses, but if not removed, will ultimately cause neuron cell 
death. As little as 6% stretch of a nerve has been shown to block 
conduction (44). It is well known that cervical flexion significantly 
lengthens/stretches the cervical spinal cord and nerve roots (up to 
18%) and the same must be assumed for the VN (45–47).

When a nerve is subjected to compression or stretch forces 
long-term, whether from changes in bony or muscular anatomy 
or within the nerve sheath (cerebrospinal fluid) or the nerve itself 
(arterial/venous compromise, swelling), neuron cell death can 
occur, with the larger-diameter fibers typically affected first (48, 
49). It has been shown that both slow and fast axonal transport are 
impaired in the cervical VN by low pressures of around 
20–30 mmHg, which are comparable with those found in human 

compression neuropathies, such as carpal tunnel syndrome (50). 
Compression of the VN at 20, 30, and 200 mmHg can induce a 
graded inhibition of both retrograde and anterograde transport of 
radiolabeled proteins (51). In one study, even slight trauma to the 
nerve, represented by a pressure at 50 mmHg applied for 2 h, 
induced accumulation of axonally transported proteins at the level 
of compression (52). This accumulation caused nerve transmission 
to be blocked for up to 1 day. When the VN compression was 
applied for 2 h at a pressure of 400 mmHg, the conduction block 
lasted up to 3 days. Conduction block and/or vagus nerve 
degeneration would both have the net effect of causing vagus 
nerve dysfunction (see Figure 7). Stretch or other deformation 
injuries to the axons can cause loss of microtubules and 
neurofilaments, loss of axon transport, and the accumulation of 
toxic substances that can destroy either transport or the axon itself 
(53). The carotid sheath contents, including the VN, are highly 
vulnerable to tissue strain by deformations or deviations from the 
normal, stable cervical lordotic curve due to their location and 
length, as the vagus nerves run just anterior to the anterior 
vertebral bodies.

FIGURE 6

Various types of structural dynamic internal jugular vein and vagus nerve compression and stretch.
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In-office vagus nerve testing

Using high-resolution ultrasound, the VN is easily examined, with 
the most common location of the nerve in the mid-neck lying 
posterior to the IJV and lateral to the carotid artery (54). The VN 
cross-sectional area can then be measured (see Figure 8). Normal 
cross-sectional areas are between 2 and 3 mm (2, 55–58). Studies have 
shown that the right VN is significantly larger than the left (59). Vagus 
nerve degeneration is documented by a decrease in the cross-sectional 
area on ultrasound in the mid-cervical region. The VN cross-sectional 
area has been shown to decrease with age, as well as with various 
diseases (up to 30%), including Parkinson’s disease, diabetes, 
alcoholic-induced dysautonomia, and amyotrophic lateral sclerosis, 
and can be  correlated with symptomatology (60–63). Stretch and 
tension on the VN can be  seen on ultrasound by changes in 
configuration at various cervical levels and with different head/neck 
positions (see Figure 9).

Vagus nerve degeneration in cohort of 
consecutive patients

Measurements were taken for 232 consecutive patients aged 
20–50 (avg. 37.2 yrs., 50.2% male [n = 121]) going to an outpatient 
neck center from January 1, 2022 to June 30, 2022 with no obvious 
cause, including previous traumas, for at least 1 of 9 symptoms: 
anxiety, dizziness, fatigue, irritability, lightheadedness, insomnia, 
sleep difficulty, neck pain, and neck cracking/popping (see Table 1). 
This retrospective study was approved by the WCG Institutional 
Review Board (Study #1364545). The testing process was previously 

described (64). The cervical instability and dysstructure found are 
presumed to “simply” be from a forward head-facedown lifestyle with 
computer and cell phone usage. The small VN cross-sectional area 
seen from carotid sheath compression at the atlas is due to a 
combination of forward head posture and ligamentous upper 
cervical instability.

Heart rate variability testing

Another beneficial measurement to obtain is heart rate variability 
(HRV), one of the best predictors of current health status, morbidity, 
mortality, and a risk factor for future illness, especially regarding 
cancer, heart disease, and sudden cardiac death (65). Vagus nerve 
activity can be observed in a noninvasive manner via the measurement 
of variability of interbeat cardiac intervals, called HRV. There are rings, 
finger probes, and watches available that can continuously monitor 
heart rate variability. While HRV measures the heart rate responses 
around the mean heart rate (generally from an electrocardiogram), in 
clinical practice, moment-to-moment fluctuations in pulse rate called 
“pulse rate variability” are utilized by various photoplethysmography 
sensors on wearable watch devices or finger probes (66). In the office 
or at home, the patient’s heart rate variability can be assessed during 
different head and neck motions, or even with different computer 
heights. HRV is strongly correlated with actual vagal nerve activity 
and how a person handles stress (67, 68). HRV abnormalities are seen 
in disorders from headache and schizophrenia to cancer, and its 
association with threat processing, emotional regulation, and 
executive functioning makes VN function vital to basically every 
bodily system and disease (69–72).

FIGURE 7

Ligamentous upper cervical instability potential etiology of vagus nerve dysfunction. Vagus nerve dysfunction can result from degeneration or 
conduction blocks from stretch and compression on the nerve at the level of the atlas (C1).
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HRV is an easy and inexpensive way to assess autonomic nervous 
system dysfunction. It measures the variability between “RR intervals,” 
or the time that elapses between 2 consecutive R-waves on an 
electrocardiogram. Spectral analysis of the RR interval provides a 
means of quantitating the variability of regular oscillations of the pulse 
interval over a range of frequencies. The spectral power (variability) 
is distributed within 3 major frequency bands: very low frequency 
(approx. 0.04 Hz in humans), low frequency (approx. 0.1 Hz), and 
high frequency (>0.15 Hz). Overall, sympathetic activity better 
correlates with the low frequency range (0.04–0.15 Hz), while 
parasympathetic activity is associated with the higher frequency range 
(0.15–0.4 Hz) of modulation frequencies of the heart rate. The ratio of 
low frequency to high frequency (LF/HF) is termed “sympathovagal 
balance.” Sympathetic dominance is signified by a higher LF/HF ratio, 
lower HRV, and higher resting heart rate, while a high vagal tone—or 
parasympathetic dominance—is typically seen by a lower LF/HF ratio, 
higher HRV, and lower resting heart rate (see Figure 10). HRV is very 
sensitive to a person’s breathing rate; generally, the slower the 

breathing rate, the higher one’s HRV (73, 74). HRV improvements can 
then be verified by therapies that help optimize cervical curve lordosis 
and stability, including specific chiropractic adjustments, 
physiotherapy, workstation ergonomics, and prolotherapy (75–80).

Signs and symptoms of 
cervicovagopathic dysautonomia

Cervicovagopathic dysautonomia denotes dysautonomia due to 
vagus nerve pathology from a structural neck issue, but dysautonomia 
can have many causes. Autonomic dysfunction, or dysautonomia, is 
an improper functioning of the nerves of the autonomic nervous 
system. While this paper and study emphasize dysautonomia from 
parasympathetic hypoactivity from VN degeneration, sympathetic 
hypoactivity and/or parasympathetic hyperactivity may also be seen 
in dysautonomia or autonomic dysfunction (81). Dysautonomia can 
be  primary, secondary, or idiopathic; secondary causes include 

FIGURE 8

Ultrasound of the carotid sheath showing the vagus nerve. (A) Normal. (B) Normal image magnified and measured. (C) Degenerated vagus nerve. 
(D) Degenerated image magnified and measured.
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hormone issues (diabetes), infections, autoimmunity, chronic diseases 
or pain, vascular origins, cardiac disease, or neurological conditions 
such as Alzheimer’s or Parkinson’s disease, as well as systemic 
structural conditions such as hypermobility disorders, including 
Ehlers-Danlos syndrome (82–84).

Dysregulation of the autonomic nervous system has the potential 
to affect the functioning of every organ of the body, including essential 
integrative systems such as arterial blood pressure, heart, digestion, 
and immune function, and body temperature. Imbalance of 
sympathetic to parasympathetic tone can lead to symptoms. 
Neurovascular dysautonomia, or hemodynamic instability of vascular 
origin, which is frequently seen in patients with joint hypermobility, 
causes autonomic dysfunction with sympathetic hyperactivity (85, 
86). This neurovascular dysautonomia can occur from both an arterial 
component or one involving the cerebral or cervical venous system 
(84, 87, 88).

While the VN is the main component of the parasympathetic 
nervous system and makes up about 80–90% of the nerve fibers in the 
system, the many sympathetic system ganglia run alongside the 
anterior vertebral bodies from the upper neck to the coccyx. The face 
and head are specifically provided with sympathetic efferent 
innervation by the superior cervical sympathetic ganglion, which sits 
approximately at the level of the second and third cervical vertebrae 
(C2 and C3). While structural neck postures and disorders can impair 
the VN function, dysfunctional neck issues also potentially negatively 
affect the sympathetic ganglia and fibers in the cervical spine, 
especially the superior cervical sympathetic ganglia: another potential 
etiology for dysautonomia and chronic symptoms (2, 89, 90).

Dysautonomia is characterized by dysregulation of the autonomic 
nervous system, with a common pattern being sympathetic dominance 
or hypofunctioning of the parasympathetic nervous system or low 
vagal tone. While dysautonomia can contribute to distressing 
symptomatology in animal studies, VN degeneration can be so serious 

that widespread arterial vasospasm happens in the body, including the 
brain, lungs, heart, lymph nodes, and cervical nerves (91, 92). The 
amount of VN degeneration also correlates with animal survival. 
Everything that happens involuntarily in the body, including 
cardiovascular, gastrointestinal, genitourinary, ocular, respiratory, 
thermoregulatory, vasomotor, and homeostatic functions, and a host 
of other involuntary reflexes, can be  affected by VN dysfunction 
and degeneration.

The hallmark feature of many cases of dysautonomia may 
be dysfunction of the VN. This dysfunction can occur even without 
mechanical pressure on the VN but by the presence of stressors, 
including chronic pain, which suppress vagus nerve activity (83, 93, 
94). The most common symptoms of VN dysfunction 
(cervicovagopathy and dysautonomia) include chronic pain, fatigue, 
dizziness, lightheadedness, a spinning or pulling sensation (in a 
particular direction), weight loss, poor focusing, exercise intolerance, 
emotional lability, inflammation, heartburn, bloating, diarrhea, 
tinnitus, headache, anxiety, depression, brain fog, swallowing 
difficulty, vision changes, and inability to handle stress well. 
Progressive compression of the carotid sheath by ligamentous cervical 
instability may be  at the forefront of VN degeneration and the 
symptoms it causes (see Figure  11). This connection would also 
explain the association between increased cerebral venous pressure, 
intracranial pressure, and dysautonomia (87, 95).

One clue that a cervical cause of dysautonomia exists is 
cracking, popping, or grinding in the neck with motion. Muscle 
tightness and the feeling that the head is too heavy for the neck 
to support can also indicate instability. Symptoms can also 
increase when turning the head or when facial movements such 
as laughing, chewing, or speaking cause what we  term 
“episymptoms,” which are symptoms that are manifested by 
activities that do not normally cause those symptoms. 
Episymptoms can include flushing, sweating, temperature 

FIGURE 9

Ultrasound of vagus nerve in mid-cervical region with various neck positions. (A) Neck in neutral position. (B) Neck flexed. (C) Neck extended. (D) Neck 
rotated left. (E) Neck rotated right. As can be seen, the vagus nerve within the carotid sheath undergoes various structural tensions depending on neck 
positions.
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TABLE 1 Cervical structural analysis and vagus nerve cross-sectional area (CSA) of 232 consecutive patients with various symptoms going to an outpatient neck center.

Vitals

Symptoms N Vagus Nerve CSAa 
(nl > 4.2 mm2)

IJV CSA C1, Supine 
(nl > 180 mm2)

Depth of 
Curveb (nl 
7–17 mm)

C6AIc 
(nl < 10 mm)

Flexion 
Instabilityd* 

(nl < 1.0 mm)

Extension 
Instabilityd* 

(nl < 1.0 mm)

C1–C2
Instabilitye 
(nl < 4 mm)

Mean

Anxiety 190 2.68 72.07 2.60 41.39 4.51 4.61 7.47

Dizziness 179 2.70 69.30 2.69 41.31 4.46 4.34 7.46

Fatigue 205 2.71 71.41 2.58 40.88 4.41 4.44 7.41

Lightheadedness 178 2.68 71.71 2.77 40.89 4.44 4.38 7.44

Irritability 174 2.69 69.62 2.57 41.69 4.32 4.53 7.33

Insomnia 149 2.77 75.42 2.34 40.51 4.56 4.24 7.19

Neck grinding/cracking 194 2.70 70.07 2.53 40.69 4.55 4.27 7.48

Neck pain 215 2.72 69.91 2.56 40.96 4.41 4.32 7.37

Sleeping problems 179 2.74 75.11 2.52 40.71 4.53 4.38 7.23

IJV, internal jugular vein; CSA, cross-sectional area; nl, normal limit.
aVagus nerve CSA was taken at C4–C5 level, as there was so much compression at the atlas (C1) that it could not be viewed with ultrasound.
bDepth of curve = horizontal distance in the sagittal plane from posterior inferior C4 vertebra to line drawn from posterior inferior C6 vertebra to top of dens (optimal is 7–17 mm).
cC6AI = horizontal distance in the sagittal plane of the posterior inferior C6 vertebra to anterior atlas (optimal is <10 mm).
dNormally, there is little (<1 mm) anterolisthesis or retrolisthesis with flexion and extension, but what constitutes “excessive” pathological movement is dependent on several variables, including symptomatology.
* Ref. Alvarez et al. (107), Copyright © 2022, The Author(s). Published by Wolters Kluwer Health, Inc. http://creativecommons.org/licenses/by-nc-nd/4.0/.
eC1–C2 facet joint = while some overhang of the C1–C2 facet joint on open mouth view is considered acceptable, people can be symptomatic even when the overhang is <2 mm on each side.
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FIGURE 10

Connection between ligamentous cervical instability, the vagus nerve, and heart rate variability parameters.
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FIGURE 12

Cervical treatment recommendations based on dynamic upright radiographic studies. Patients often have a combination of ligamentous cervical 
instability, cervical dysstructure (breakdown of cervical curve), and misalignments, the 3 pillars of cervical structural health. * Some extreme cases of 
instability require surgery or other methods. ** Optimizing cervical curve is multifaceted and can include ergonomics, exercise, physical therapy, low-
force adjustments, and many other physical medicine techniques.

dysregulation, headaches, vision changes, electric shocks, 
palpitations, tachycardia, or other autonomic symptoms. Signs 
include changes in blood pressure, impaired thermoregulation, 

fatigue, changes in mental state (such as an increase in stress or 
lightheadedness), uvula deviation to one side, an inability of the 
palate to raise normally, decreased gag reflex, and dilated pupils 

FIGURE 11

The potential symptoms from ligamentous cervical instability and the pathophysiology it causes, including vagus nerve degeneration and dysfunction.
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(96–98). Simple signs of VN dysfunction are a reduced or absent 
gag reflex, a deviated uvula, or a palate that does not elevate (or 
reduce) to say, “Ahh” (99). The sensory branch of the gag reflex 
is the glossopharyngeal nerve, and the motor branch is the vagus 
nerve. The VN innervates the main muscle that raises the soft 
palate, the levator veli palatini muscle, so if there is VN 
degeneration on one side, the palate is often higher on that side 
and the uvula deviates to the opposite side, but if the VN 
degeneration is bilateral, the palate exhibits decreased elevation 
to say, “Ahh,” and palate heights are even bilaterally.

Improving vagus nerve function by 
dynamic structural medicine principles

Dynamic structural medicine explains how human structure 
changes with different postures and motions to give the body health 
or disease. It involves looking at the 3 pillars of structural health: 
alignment, posture (spinal curves), and joint stability. Upright 
cervical motion x-ray (videofluoroscopy) and cone beam CT 
scanning can be used to determine these parameters for the cervical 
spine (see Figure  12). Depending on what is found, specific 

FIGURE 13

Upright digital motion (fluoroscopic) X-ray (DMX) and cone beam CT (CBCT) scan with structural measurements. (A) DMX positioning for open mouth 
lateral flexion. (B) CBCT setup. (C) Forward head (C6AI*) illustration. (D) C6AI measurement. (E) Depth of curve** illustration. (F) Depth of curve using 
DMX. (G) C1–C2 instability. (H) Flexion, lower cervical instability. (I) Extension, lower cervical instability. * C6AI = horizontal distance in the sagittal plane 
of the posterior inferior C6 vertebra to anterior atlas (optimal is <10 mm). ** Depth of curve = horizontal distance in the sagittal plane from posterior 
inferior C4 vertebra to line drawn from posterior inferior C6 vertebra to top of dens (optimal is 7–17 mm).
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FIGURE 14

Improvement in a patient’s cervical curve structure and stability correlates with the opening of her jugular veins (IJVs) and improvement in cross-
sectional areas (CSAs) of the vagus nerves. Over the course of treatment, many of her brain, body, and neck symptoms improved significantly.

potentially corrective therapies can be  prescribed. The cervical 
misalignment, dysstructure, and/or ligamentous instability can 
be  treated by low-force adjustments (especially of the atlas), 
therapeutic exercises and ergonomics, and prolotherapy, respectively 
(see Figure  13). The hallmark of treatment is improvement of 
ergonomics related to computer and cell phone usage. Improvements 
in the cervical curve and stability can then be serially monitored.

Like a hinge holding a cabinet door, when one screw of the hinge 
loosens, every time the cabinet door is opened, not only is that first 
screw loosening further, but the other screws sustain increased force 
and are thus more prone to loosening. The best solution in this scenario 
is a screwdriver to tighten the screws. In the human body, ligaments 
act like the screws that stabilize a hinge (joint). Just like the progressive 
loose screw example, ligamentous cervical instability is a progressive 
disorder, as damage to one cervical ligament puts additional force on 
the adjacent ligaments. To stop ligamentous cervical instability from 
progressing, the best treatment is prolotherapy, which is like a 
screwdriver to tighten loose ligaments. Prolotherapy specifically targets 
the posterior ligament complex of the neck to induce a tightening and 
strengthening of the ligaments (100–102). Treatments are generally 
given every 4–6 weeks. For people with severe upper cervical instability, 
a period of cervical bracing may be  necessary. The number of 
treatments depends on many factors, but in general, 4–10 sessions are 
necessary for cases of ligamentous cervical instability-caused 
cervicovagopathy. An improvement in the person’s structural 
parameters and neck vital testing, including VN cross-sectional 
diameters and HRV parameters, generally coincides with their clinical 
improvement. Cervical vertebral alignment, overall cervical curve, and 
ligamentous stability are all interrelated. In summary, structural 
treatments are needed for structural deficiencies, which may include 
targeting ligamentous cervical instability with prolotherapy and 

cervical curve correction for patients whose symptoms and/or diseases 
are related to VN degeneration.

Case example

A 27-year-old female presented to Caring Medical in June 2024 with 
a constellation of symptoms that occurred with increasing frequency 
over the course of the last 6 years, including disabling brain fog, anxiety, 
blurry vision, heart palpitations, headache, fatigue, digestive problems, 
panic attacks, sensitivity to sound, irritability, tinnitus, dizziness, and 
sleeping problems. Initial and follow-up cervical structural and neck 
vitals analyses are presented in tabular form (see Figure 14). Based on 
the findings of forward head posture, cervical curve correction protocol 
was initiated that included education on improved ergonomics of her 
workstation, laying on a Denneroll®, and various neck exercises and 
Prolotherapy for her multilevel ligamentous cervical instability. Over the 
course of 6 months, her cervical lordotic curve and stability improved. 
As of January 2025, she reported significant improvement in all 
presenting symptoms, specifically 80–95% improvement in vertigo, 
brain fog, anxiety, digestive problems, heart palpitations, and panic 
attacks, and 50–75% improvement in fatigue, tinnitus, sound sensitivity, 
and irritability. This case example showed a positive correlation between 
the treatment of cervical spine dysfunction, improvement in her vagus 
nerve cross-sectional area, and a decrease of many of her symptoms.

Discussion

Vagal nerve dysfunction has been implicated in the etiology of many 
symptoms and diseases, including dysautonomia. The pathology of VN 
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dysfunction that has its etiology in the neck is termed cervicovagopathy. 
VN degeneration can be documented by measuring VN cross-sectional 
area by carotid sheath ultrasound, and autonomic nervous system 
dysfunction by HRV testing. Low HRV and a high LF/HF ratio 
parameter are seen as confirming an imbalance in the sympathetic/
parasympathetic equilibrium. The forward head-facedown lifestyle 
(especially due to excessive computer and cell phone usage) stretches the 
posterior ligament complex of the cervical spine, which can ultimately 
lead to a breakdown of the cervical lordotic curve (dysstructure), which 
puts excessive stretch and compression on the VN, leading to dysfunction 
or degeneration. Disorders and diseases with a VN component may 
necessitate corrective cervical structural therapies. Dynamic structural 
medicine principles note that atlas misalignments, cervical dysstructure, 
and ligamentous cervical instability—especially at the atlanto-axis (C1–
C2)—need to be resolved to decrease the destructive forces on the VN.

Clinical relevance and future 
directions

Our findings provide new insights into the potential structural 
causes of vagus nerve dysfunction and degeneration, and thus chronic 
autonomic dysfunction. Traditional approaches for conditions of 
autonomic dysfunction, including postural orthostatic tachycardia 
syndrome and dysautonomia, emphasize pharmacological and 
non-pharmacologic treatments that reduce symptoms, but the actual 
underlying etiology often remains elusive (103, 104). As vagus nerve 
cross-sectional areas are easily measured by B-mode ultrasound, future 
research should investigate their correlation with standard testing for 
autonomic dysfunction, including heart rate variability testing, tilt table 
tests, quantitative sudomotor axon reflex testing, and Valsalva 
maneuvers. The improvement in chronic symptoms and VN cross-
sectional areas in patients with autonomic dysfunction that occurred 
after cervical curve correction programs could validate the connection 
between the cervical lordotic curve, vagus nerves, and a balanced, 
healthy autonomic system. This confirmation would open up a new 
avenue of objective testing in those patients with autonomic and cervical 
structural dysfunction and treatment regimen with potential long-term 
solutions, which could be  expedited by the clinical integration of 
artificial intelligence to enhance the efficiency and speed at which 
healthcare problems associated with dysfunctions of the vagus nerve 
and cervical spine are appropriately diagnosed and addressed (105, 106).
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