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Evolving understanding of 
Guillain-Barré syndrome 
pathophysiology and the central 
role of the classical complement 
pathway in axonal injury
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Guillain-Barré syndrome (GBS) is a rare, frequently postinfectious neuromuscular 
emergency and the leading cause of acute paralytic neuropathy worldwide. GBS 
incidence varies considerably across geographic regions, owing predominantly to 
different infectious exposures. In GBS, antecedent infection leads to production 
of immunoglobulin G and immunoglobulin M antibodies that cross-react with the 
myelin sheath and axons of peripheral nerves. These antibodies activate the classical 
complement pathway, which plays a key role in peripheral nerve injury regardless 
of autoantibody binding to myelin or axons as a target. The heterogeneous clinical 
presentation and progression of GBS symptoms have long been attributed to binary 
axonal and demyelinating neurophysiologic classifications; however, evolving 
evidence indicates that these pathophysiologic processes overlap. Intravenous 
immunoglobulin and plasma exchange, the current standard-of-care therapies in 
GBS, both reduce autoantibody levels and complement activation, thereby aiming 
to address this convergence of pathophysiology. However, these therapies only 
partially decrease antibody levels and complement activity and require extended 
courses of treatment (5 days for intravenous immunoglobulin and 7–14 days for 
plasma exchange), limiting their effectiveness in addressing acute neuronal damage 
during the active phase of disease. Given its evolutionary role in antibody binding 
and activating the classical complement pathway, the complement component 
C1q has been proposed as a therapeutic target in GBS. The clinical trial program 
of the C1q inhibitor ANX005, including placebo-controlled, double-blind phase 
1b and phase 3 trials in GBS, provides insight into the pathophysiology of GBS 
and the efficacy of C1q inhibition regardless of neurophysiologic classification 
or geographic location.

KEYWORDS

Guillain-Barré syndrome, classical complement, C1q, pathophysiology, acute motor 
axonal neuropathy (AMAN), acute inflammatory demyelinating polyneuropathy (AIDP), 
ANX005, tanruprubart

1 Introduction

Guillain-Barré syndrome (GBS) is a neuromuscular emergency and the most common 
and severe acute paralytic neuropathy worldwide (1, 2). The global incidence of GBS ranges 
from 0.30 to 6.08 cases per 100,000 population depending on geography, age, exposures to 
infections, and other risk factors (3, 4). The incidence is especially high in low- and middle-
income countries, including Bangladesh and the Philippines (5, 6).
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In most cases, GBS occurs following an antecedent infection in a 
previously healthy patient. The disease often begins with muscle 
weakness that rapidly progresses over a few days and, in up to 30% of 
patients, can lead to respiratory failure requiring mechanical 
ventilation and intensive care admission (2, 7, 8). Patients may also 
present with sensory symptoms, such as pain and paresthesia, as well 
autonomic dysfunction that may result in life-threatening 
hemodynamic instability or arrhythmias (1, 2). Mortality rates range 
from 3 to 10% (1, 9–11) and are highest among those who require 
mechanical ventilation (12, 13). Although most deaths in GBS occur 
in the first 6 months after disease onset, mortality risk may 
be increased for several years beyond the acute phase of illness and 
does not appear to be influenced by current treatments (1, 14, 15).

Many patients with GBS who achieve good functional recovery 
following the acute phase of disease may still experience prolonged 
pain and fatigue (2). The prevalence of residual pain and other sensory 
deficits varies from 33% to 82% depending on symptom location, 
muscle group (for those with residual chronic muscle pain), and 
subtype of sensory deficit (e.g., paresthesia, dysesthesias, radicular or 
neuropathic pain, allodynia) (16–20). Sensory deficits are associated 
with disruptions in quality of life, while pain intensity correlates with 
disability, strength impairment, and fatigue (16, 19). As with disease 
incidence, mortality and other outcomes in GBS may vary regionally, 
based on extrinsic factors, including access to health care resources (6, 
9, 21, 22).

GBS is a prototypical postinfectious autoimmune disorder (2, 23), 
and Campylobacter jejuni is the most prevalent antecedent infection 
worldwide (24, 25). The prevailing evidence strongly supports 
molecular mimicry as the pathogenic mechanism of disease (26, 27). 
Antibodies that are generated against C jejuni or other infectious 
agents cross-react with antigens in peripheral nerve axons and myelin 
(27, 28). Serum immunoglobulin (Ig) M and IgG antibodies against 
gangliosides or glycolipid complexes are detected in up to 92% of 
patients with GBS during the acute, active phase of disease, and their 
levels subsequently decline in the following weeks (27, 29–31). 
Regardless of the antecedent infection, the cross-reactive 
autoantibodies engage the classical complement pathway, which drives 
the peripheral nerve injury and neuroinflammation underlying 
disease pathology (23, 27, 28, 32–34).

The heterogeneous clinical presentation and progression of 
symptoms in GBS may lead to diagnostic delay during the active phase 
of the disease, further underscoring the need for a treatment that 
rapidly and completely inhibits key pathophysiologic components of 
disease once the diagnosis is confirmed.

2 Pathophysiology of GBS

2.1 Reappraisal of the distinction between 
axonal and demyelinating mechanisms in 
GBS

The variability in prognosis and long-term recovery in GBS 
has historically been attributed to the specific site of peripheral 
nerve damage, as characterized by nerve conduction studies 
(NCSs). In this classification, the primary targets of immune-
mediated attack are either the axonal components of peripheral 
nerves, leading to acute motor axonal neuropathy (AMAN), or the 

myelin sheath (produced by Schwann cells), resulting in acute 
inflammatory demyelinating polyneuropathy (AIDP). AMAN is 
often associated with more severe disease (27, 35). The relative 
frequencies of each NCS subtype vary across geographic regions, 
potentially due to differing infectious exposures or genetic 
susceptibilities (27, 36).

Despite the dichotomized NCS classifications, the diagnostic 
criteria for GBS are identical for AMAN and AIDP, and neither 
classification dictates treatment strategies or prognosis (37–43). 
While earlier studies suggested that patients with AMAN 
experience a worse prognosis compared with those with AIDP (12, 
27), more recent research indicates that other factors such as 
baseline severity of weakness, as measured by Medical Research 
Council (MRC) scale sum score, and serum and cerebrospinal 
fluid (CSF) neurofilament light chain (NfL) and neurofilament 
heavy chain levels during active disease are more relevant in 
predicting outcome in patients with GBS (12, 44–48). Acutely 
elevated serum NfL levels reflect the level of axonal damage in 
early disease and are elevated in both the axonal and demyelinating 
NCS subtypes, indicating varying degrees of axonal involvement, 
even in those patients with a primarily demyelinating 
presentation (45).

Axonal loss has been demonstrated in AIDP as well as AMAN 
and is the main determinant of long-term disability (35, 48, 49). 
Ultimately, electrodiagnostic studies often reveal a mixed pattern of 
demyelination and axonal damage or yield inconclusive results. In a 
retrospective study of patients with very early-stage GBS who had 
initial NCSs performed within 4 days of symptom onset, classification 
was possible in only 20% of patients. Specifically, 40% showed a mixed 
pattern of demyelination and axonal degeneration on NCSs, and 33% 
showed equivocal results (50). Similarly, in a study of patients with 
AIDP assessed within 10 days of symptom onset, NCSs often showed 
nonspecific abnormalities (51). Furthermore, the classification of 
electrodiagnostic findings in GBS appears to vary based on which 
NCS criteria are used. In an analysis of 1,137 NCSs from the first 1,500 
patients enrolled in the International GBS Outcome Study, only 68% 
were classified identically according to the Hadden and Rajabally 
criteria, which are among the most commonly used NCS criteria in 
GBS research (52). NCS abnormalities are typically not confirmed via 
pathologic material (i.e., nerve biopsy), further complicating these 
seemingly artificial distinctions.

Given these limitations, a reappraisal of the oversimplified 
classification of GBS into axonal and demyelinating forms is warranted 
from diagnostic, pathophysiologic, and prognostic standpoints. The 
evolving understanding of common pathways in GBS pathophysiology 
further challenges the application of rigid electrophysiologic 
classifications when considering current and future treatment options. 
Regardless of NCS findings, GBS represents a neuromuscular 
emergency (1, 2, 39, 43), in which rapid, effective treatment is required 
to prevent acute and ongoing damage to axons and mitigate 
neuroinflammation (2, 8, 42, 53). As research advances in GBS and 
treatment becomes further personalized, pathophysiological 
differences between AMAN and AIDP which are clinically relevant 
may be uncovered or targeted with new treatments. However, the 
convergence of axonal loss in both NCS classifications also suggests 
that a unified, targeted treatment approach that addresses 
complement-mediated nerve damage driven by autoantibodies against 
either myelin or axons can be effective for all patients with GBS.
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2.2 Revelation of key mechanistic 
characteristics in GBS based on current 
standard-of-care therapies

Intravenous immunoglobulin (IVIg) and plasma exchange (PE) 
have been the standard treatments for GBS since their introduction 
in the 1980s (53–55). Both are believed to function by reducing 
circulating autoantibody levels and decreasing complement activity 
(27, 35, 56–59). IVIg is used in most patients with GBS, given its 
relative ease of administration and accessibility (54, 58, 60). However, 
evidence suggests that IVIg and PE are equivalent in efficacy (35, 42, 
53, 55, 60, 61), consistent with their overlapping mechanisms and 
the core pathophysiology of GBS. Both IVIg and PE require a 
prolonged treatment cycle, typically spanning 5 days for IVIg and 7 
to 14 days for PE for a full course of therapy (35, 42, 53, 62–64), and 
neither fully eliminates autoantibodies or halts complement activity 
(65–69).

Despite treatment with IVIg or PE, along with optimal supportive 
care including mechanical ventilation, a substantial proportion of 
patients with GBS experience persistent symptoms (1, 2, 58). 
Resolution of the disease is rare in the first week of treatment (9), and 
up to 50% of patients treated with IVIg or PE show no improvement 
on the GBS Disability Scale (GBS-DS) at 4 weeks (70). Even with time, 
only a minority of patients with GBS achieve a GBS-DS score of 0, 
indicating a return to pre-disease levels of function or being healthy 
(15, 17, 18, 71). Moreover, even among those who regain functional 
abilities, including restored ambulation, many continue to face 
challenges with walking, experience limitations in activities of daily 
living, including work and hobbies, and report suboptimal health-
related quality of life (2, 72–77).

Global expert consensus emphasizes the importance of early 
treatment to achieve maximum therapeutic benefits and avert 
irreversible axonal damage in this rapidly progressive disease (1, 2, 27, 
42, 53, 78, 79). A recent study involving 136 IVIg-treated patients 
found that shorter time to treatment initiation was associated with 
better outcomes regardless of NCS pattern, with the ideal treatment 
window being within the first 2 weeks (79). Early treatment becomes 
even more critical given that IVIg and PE tend to act slowly and 
require several days to complete a full course of therapy.

Although as many as a third of patients with GBS receive 
additional treatment after the initial intervention, owing to persistent 
deterioration or lack of improvement after first-line therapy (60, 80), 
current evidence does not support this practice. There is no proven 
benefit to combining or sequentially administering IVIg and PE (42, 
58, 62, 70, 81), and repeated dosing of either therapy has not 
demonstrated superior outcomes relative to single dosing (82–84). For 
instance, a second dose of IVIg did not provide additional benefit over 
placebo and was associated with a higher frequency of serious adverse 
events in patients with severe GBS who deteriorated 1 week after their 
first course of IVIg (84). Similarly, increasing the number of PE 
sessions from 4 to 6 did not yield better results in patients with severe 
GBS (82).

Ultimately, findings from studies evaluating alternative regimens 
for IVIg and PE suggest that the full therapeutic potential of these 
therapies in GBS has been realized, highlighting a substantial unmet 
medical need for therapies capable of rapidly preventing acute and 
ongoing nerve damage and axonal loss. Moreover, it appears that the 
treatment window in GBS is relatively short, necessitating an 

intervention that acts rapidly to prevent further deterioration that 
limits the ability to recover.

2.3 Central role of classical complement 
activation in GBS pathophysiology

Complement represents a distinct pathway in GBS that mediates 
rapid tissue damage and destruction and inflammation (23, 27, 32, 
33). When the pathway is engaged on the cell surface, it activates 
within seconds to coat the surface with complement activation 
products; these products cause direct membrane damage or 
destruction and recruit inflammatory macrophages that destroy tissue 
(1, 27, 33, 34, 36, 85). Anaphylatoxins released during classical 
complement activation drive neuroinflammation by activating a 
number of inflammatory cell types, including macrophages (33, 34, 
86, 87). This mechanism is consistent with the rapid course of disease 
in GBS that can trigger pain, paralysis, and even death within a period 
of days (8, 11). In a large cohort of 567 patients with GBS from 
multiple clinical trials, 80% of patients reached clinical nadir (i.e., 
maximum disability or muscle weakness) within 2 weeks following the 
onset of weakness, and 97% reached their nadir within 4 weeks (88).

The complement system functions similarly in all individuals, 
independent of their genetic or ethnic background, because it is an 
evolutionarily conserved mechanism designed to recognize and 
eliminate pathogens by using pattern recognition (34, 89). The high 
conservation of complement components C1q, C2, C3, C4, and C5-C9 
and their activities across species underscores the essential and 
nonredundant roles of these universal processes in ensuring rapid 
immune responses (90). In GBS, binding of C1q to antibodies bound 
to peripheral nerves activates the classical complement pathway 
directly on the nerve surface, mediating a cascade of events that 
culminates in neuroinflammation and nerve damage and destruction 
(Figure 1) (23, 27, 32–34, 91–94). Evidence also suggests that classical 
complement activation underlies nerve injury in GBS regardless of 
axonal or demyelinating pathophysiology (27, 28, 33, 36, 85). Given 
the early role of complement activation in the pathophysiology of 
GBS, complement inhibition is a potentially effective target for halting 
significant axonal damage in the acute phase of the disease and for 
optimizing long-term function.

3 Insights from a C1q inhibitor clinical 
development program in GBS

ANX005, a humanized monoclonal antibody, is designed to 
inhibit C1q selectively, rapidly, and fully, thus preventing initiation 
of the classical complement cascade (32). Blocking C1q at the start 
of the classical complement pathway inhibits tissue inflammation 
and damage driven by downstream complement components, 
including C3a and C5a (soluble anaphylatoxins that are highly 
proinflammatory), C4b and C3b (cell surface phagocytosis signals), 
and C5b-9 (which causes direct membrane damage; Figure 1) (32–
34, 86, 87). Furthermore, due to the nature of the complement 
system with C1q as its initiating molecule, the biological 
mechanisms of ANX005 are expected to be consistent regardless of 
a patient’s race, ethnicity, or geographic location. The ANX005 
development program in GBS consists of 2 placebo-controlled, 
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double-blind clinical trials, a phase 1b trial and a phase 3 trial 
(NCT04701164), designed to evaluate the safety and efficacy of a 
single dose of ANX005 as a treatment for GBS. The phase 1b trial 
was conducted in Bangladesh, and the phase 3 trial was conducted 
in Bangladesh and the Philippines.

Among patients in the phase 1b trial with antibodies against 
the GM1 ganglioside in CSF (including patients with either AMAN 
or AIDP), complement deposition on GM1-coated plates was 
rapidly reduced in those treated with a single dose of ANX005 vs. 
placebo, consistent with complete inhibition of C1q (95). An 
analysis of data from this study also provided valuable insight into 
the coexistence of axonal damage and demyelination in GBS 
pathogenesis (96). Patients exhibited elevated levels of biomarkers 
of both axonal damage (NfL) (48) and demyelination (CSF 
sphingomyelin) (97) regardless of the NCS pattern. Peak NfL levels 
inversely correlated with MRC scores, and patients with lower NfL 
levels at baseline were more likely to show improvement on 
GBS-DS score at week 8, a consistent observation regardless of 
axonal or demyelinating physiology. Furthermore, and also 
independent of NCS findings, NfL level was the most important 
predictor of GBS-DS score at week 8 based on random forest 
modeling of multiple prognostic biomarkers and clinical 
characteristics, followed by CSF sphingomyelin level. The results 
of this study support a common pathophysiologic pathway across 
both axonal and demyelinating NCS patterns and suggest the 
effectiveness of complement inhibition in all patients with 
GBS (96).

In the subsequent phase 3 trial, patients who received a single 
30-mg/kg ANX005 infusion showed complete inhibition of 

complement on the first day of administration and experienced rapid 
and sustained improvements in function and health status compared 
with those receiving placebo. Significant response was seen as early as 
week 1  in MRC sum score change from baseline (p < 0.0001) 
compared to placebo, and ANX005 30-mg/kg–treated participants 
were able to discontinue mechanical ventilation 28 days earlier and 
walk independently 31 days sooner than participants receiving 
placebo. This response was maintained, with a greater percentage in 
the ANX005 30-mg/kg group returning to a GBS-DS score of 0 at 
26 weeks (22% vs. 9% in the placebo group; odds ratio, 4.1; 95% CI, 
1.42–12.04; p = 0.0092). Significant response was maintained in 
patients with AMAN and AIDP and in subgroups with baseline MRC 
sum score and NfL levels typical of approximately 80% of patients with 
GBS in the United States and Europe. Hence, the results of this study 
are expected to be generalizable to patients in those regions. ANX005 
was also well tolerated, with infusion-related reactions being the most 
common adverse events (98).

4 Discussion

GBS stands as the most prevalent and severe acute paralytic 
neuropathy globally, presenting significant challenges in diagnosis, 
treatment, and long-term management. The heterogeneous clinical 
manifestations and variable prognosis of this disease are rooted in its 
complex pathophysiology, primarily driven by autoantibody-mediated 
complement activation that results in both axonal damage and 
demyelination. Standard therapies, namely IVIg and PE, have been 
instrumental in the management of GBS; however, they are 

FIGURE 1

Integral role of C1q in neuroinflammation and nerve damage in GBS (23, 27, 32–34, 91–94). AIDP, acute inflammatory demyelinating polyneuropathy; 
AMAN, acute motor axonal neuropathy; APC, antigen-presenting cell; C, complement component; CSF, cerebrospinal fluid; GBS, Guillain-Barré 
syndrome; LPS, lipopolysaccharide.
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constrained by their delayed effect, prolonged treatment courses, and 
failure to consistently prevent residual symptoms such as pain, fatigue, 
and functional disabilities. Moreover, the critical window for effective 
intervention in GBS is notably short, underscoring the urgent need for 
treatments that act rapidly to halt disease progression and mitigate 
irreversible nerve damage.

Recent advancements in the understanding of GBS 
pathophysiology have highlighted the central role of classical 
complement activation in driving neuroinflammation and nerve 
damage and destruction, regardless of NCS pattern. This recognition 
has paved the way for targeted therapeutic approaches, such as the 
development of ANX005, a humanized monoclonal antibody 
designed to inhibit C1q selectively. Clinical trials have demonstrated 
that a single dose of ANX005 not only effectively suppressed 
complement activation but also yielded significant and sustained 
improvements in functional outcomes in patients with GBS, 
independent of NCS subtype. These findings validate the hypothesis 
that complement inhibition can serve as a unifying therapeutic 
strategy, addressing the underlying mechanisms common to all 
patients with GBS.

The success of ANX005  in clinical trials emphasizes the 
necessity of moving beyond traditional binary classifications of GBS 
and adopting a more nuanced understanding of its pathogenesis. By 
targeting universal pathogenic pathways, ANX005 offers a 
promising solution to the unmet medical need for rapid and 
comprehensive treatments that can prevent both acute and ongoing 
nerve damage. However, new treatments may also come with other 
limitations, such as limited initial accessibility and 
clinical experience.

While IVIg and PE have established a foundation for GBS 
management, their limitations highlight the pressing demand for 
novel therapies that can deliver faster and more complete 
therapeutic benefits. The development and validation of 
complement inhibitors like ANX005 represent a significant 
breakthrough, offering hope for improved outcomes and enhanced 
quality of life for patients afflicted by this debilitating neuromuscular 
emergency. As our understanding of GBS continues to evolve, 
embracing targeted treatments that address its core pathophysiologic 
mechanisms will be pivotal in transforming the landscape of GBS 
care and patient recovery.
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