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Objective: Our research aims to develop an automated method for segmenting brain 
CT images in healthy 2-year-old children using the ResU-Net deep learning model. 
Building on this model, we aim to quantify the volumes of specific brain regions and 
establish a normative reference database for clinical and research applications.

Methods: In this retrospective study, we  included 1,487 head CT scans of 
2-year-old children showing normal radiological findings, which were divided 
into training (n = 1,041) and testing (n = 446) sets. We preprocessed the Brain 
CT images by resampling, intensity normalization, and skull stripping. Then, 
we trained the ResU-Net model on the training set and validated it on the testing 
set. In addition, we compared the performance of the ResU-Net model with 
different kernel sizes (3 × 3 × 3 and 1 × 3 × 3 convolution kernels) against the 
baseline model, which was the standard 3D U-Net. The performance of the 
model was evaluated using the Dice similarity score. Once the segmentation 
model was established, we derived the regional volume parameters. We then 
conducted statistical analyses to evaluate differences in brain volumes by sex 
and hemisphere, and performed a Spearman correlation analysis to assess the 
relationship between brain volume and age.

Results: The ResU-Net model we  proposed achieved a Dice coefficient of 
0.94 for the training set and 0.96 for the testing set, demonstrating robust 
segmentation performance. When comparing different models, ResU-Net 
(3,3,3) model achieved the highest Dice coefficient of 0.96  in the testing set, 
followed by ResU-Net (1,3,3) model with 0.92, and the baseline 3D U-Net with 
0.88. Statistical analysis showed that the brain volume of males was significantly 
larger than that of females in all brain regions (p < 0.05), and age was positively 
correlated with the volume of each brain region. In addition, specific structural 
asymmetries were observed between the right and left hemispheres.

Conclusion: This study highlights the effectiveness of deep learning for automatic 
brain segmentation in pediatric CT imaging, providing a reliable reference for 
normative brain volumes in 2-year-old children. The findings may serve as a 
benchmark for clinical assessment and research, complementing existing MRI-
based reference data and addressing the need for accessible, population-based 
standards in pediatric neuroimaging.
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1 Introduction

Abnormalities in brain volumetrics have been associated with 
congenital and acquired diseases in children, such as hydrocephalus 
(1), brain trauma (2), and neuropsychiatric disorders (3). Most in vivo 
studies have used magnetic resonance imaging (MRI) of healthy 
volunteers to measure global and regional volume loss (4–7). However, 
this approach encounters difficulties when applied to pediatric 
populations, resulting in a lack of an accepted normative database, 
which limits quantitative reporting (4, 5, 8).

CT is a fast, cost-effective, and widely accessible imaging modality, 
providing a viable alternative for pediatric patients unable to undergo 
MR examination, enabling the generation of a large reference database 
for statistical analysis (9, 10). Research indicates that CT-based visual 
classifications and quantitative metrics are comparable to MRI results 
for certain pathological features and show significant correlations with 
cognitive test outcomes (11–13). However, MRI is widely used for 
high-resolution brain volume measurements due to its strong soft 
tissue contrast. However, MRI remains the preferred modality for high-
resolution brain volume measurements due to its superior soft tissue 
contrast. Previous CT volume assessments have primarily used semi-
quantitative methods, which are time-intensive and require trained 
specialists. Recent advances in automated brain CT segmentation, 
particularly through deep learning, have demonstrated faster and more 
accurate segmentation, with results strongly correlating with those 
from MRI segmentation (14–16).

In this study, we focused on children aged 2 years, applying an 
automated segmentation algorithm to a large set of retrospectively 
identified head multidetector computed tomography (MDCT) scans 
with normal radiological findings to develop a clinical reference 
database for regional brain volumes. This database can serve as a 
quantitative benchmark for evaluating cases within similar clinical 
peer groups.

2 Materials and methods

2.1 Study cohort and imaging protocol

This study was a retrospective analysis of head CTs identified from 
the clinical PACS, with institutional review board approval and a 
consent waiver obtained prior to data collection.

We consecutively collected scans from a CT scanner between 
October 2017 and May 2022. Cases consisted of patients with nonspecific 
symptoms (e.g., head injury, headache, fever, vomiting) and no known 
systemic disease. All control cases were reviewed by two board-certified 
neuroradiologists and confirmed as normal, without acute or chronic 
abnormalities. Cases with image artifacts or a history of brain conditions-
such as intracranial hemorrhage, skull fracture, or neurodevelopmental 
impairments-were excluded. Additionally, patients with prior or 
follow-up CT/MRI revealing intracranial abnormalities (e.g., cysts, 
hyperintense FLAIR lesions) were excluded from the analysis.

2.2 CT segmentation with ResU-Net model

In this study, we applied the ResU-Net (17) model to segment 
brain anatomical regions on CT images. First, this study involved 

1,487 patients with multidetector computed tomography (MDCT) 
scans. We trained and tested the ResU-Net model on this dataset. 
Then, we used the trained ResU-Net model to obtain segmentation 
results on the CT data set. Further details on data acquisition, 
preprocessing, and model training and testing methodologies are 
provided below.

2.2.1 Data acquisition
To train the ResU-Net model, 1,487 patients were enrolled. All 

enrolled patients underwent multidetector computed tomography 
(MDCT) scans. MDCT images were used for the brain segmentation 
task and volume analysis task. All scans were performed using a 
256-row detector CT scanner (Revolution CT, GE Healthcare) in axial 
scan mode. The detector coverage was adjusted based on the patient’s 
head size, with options of 12, 14, or 16 cm. The tube voltage was set at 
120 kVp, and the gantry rotation time was 0.8 s. The tube current was 
tailored to the children’s age, ranging from 150 mA for children aged 
0–2 years, 170 mA for children aged 3–6 years, 190 mA for children 
aged 7–12 years, and 210 mA for children aged 13 years and older. 
Additionally, radiologic technologists could adjust the tube current by 
±10 mA based on their experience.

The scan matrix size was 512 × 512, with both slice thickness and 
slice spacing set to 0.625 mm. The volume CT dose index (CTDIVOL) 
was approximately 16–20 mGy. The original scan data were then 
reconstructed into standard window images with a slice thickness of 
0.625 mm and a slice spacing of 0.625 mm. Bone window images were 
also reconstructed using a window width of 4,000 and a window level 
of 700, while standard window images had a window width of 100 and 
a window level of 30. These images were subsequently uploaded to the 
PACS system.

The scans were performed in a single rotation with the patient in 
a fixed, supine position. The scanning range extended from the base 
of the skull to the top of the skull. For children unable to cooperate 
during the procedure, sedation was administered using oral chloral 
hydrate (10%, 0.4 mL/kg) before the scan.

The dataset was divided into training (n = 1,041) and test 
(n = 446) sets in a 7:3 ratio. The training set was utilized to train the 
ResU-Net model, while the test set was reserved for independent 
evaluation to assess the model’s performance. This approach ensures 
that the model is trained on a sufficiently large sample while also 
enabling an unbiased assessment of its ability to generalize to new, 
unseen data.

2.2.2 Data preprocessing
Before training and testing the model, we  applied a series of 

preprocessing steps to all the images, including resampling, intensity 
normalization, and skull stripping. First, we resampled all 3D images 
using linear interpolation to achieve a voxel spacing of 1 × 1 × 1 mm3. 
Next, we  performed intensity normalization through adaptive 
histogram equalization to enhance the contrast of the images. Finally, 
we used the Python library SimpleITK to perform skull stripping by 
applying threshold segmentation to remove the skull. This process 
eliminated the skull’s occlusion of the brain tissue, allowing for clearer 
visualization of the brain tissue’s morphology and density.

In this study, expert labeling was first established through manual 
labeling by a neuroradiologist with 6 years of experience, under the 
supervision of a pediatric neurodiagnostic specialist with over 15 years 
of expertise. Segmentation followed neuroanatomical atlases and 
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previous studies (16, 18–21), with manual labeling performed on axial 
slices and adjusted in coronal and sagittal views. These expert labels 
were then used as the segmentation templates. To generate a large 
labeled dataset for model training, pseudo-labels were created through 
a template-based registration process using ANTs (Advanced 
Normalization Tools). The pseudo-labels were then roughly visually 
inspected by the experts to correct any evident segmentation errors. 
After correction, these pseudo-labels were treated as the ground truth 
labels for training the deep learning model.

The segmentation focused on 10 brain regions, including the 
right/left frontal lobes, parietal lobes, occipital lobes, temporal lobes, 
cerebellum, and brainstem. These regions were selected based on their 
clear anatomical boundaries and the feasibility of accurate 
segmentation in pediatric CT images. Due to the ongoing myelination 
process in children’s brains, distinguishing gray and white matter is 
challenging. As a result, we  prioritized larger brain lobes and 
structures that are more easily identifiable in CT scans. Manual 
labeling was performed on axial slices, with adjustments made in 
coronal and sagittal views to ensure accuracy. ITK-SNAP software 
(Version 3.6.0) was used for these manual annotations.

2.2.3 Model training and testing
The network architecture of the ResU-Net model used in this 

study is shown in Figure 1. The ResU-Net model processes 3D CT 
images through a combination of residual connections, U-Net skip 
connections, subsampling, and up-sampling operations. It uses 27 
convolutional layers to achieve precise and detailed segmentation, 
enhancing convergence speed and computational efficiency.

We employed the ResU-Net model to segment brain structures. 
To enhance the robustness of the model, we  selected data 
augmentation methods, including random flips and rotations, for the 
training data, while no augmentation was applied to the testing data 

to ensure a fair evaluation of the model’s performance. Next, we built 
the deep learning model in PyTorch and trained it with five-fold cross-
validation. Model parameters were updated using a multi-class cross-
entropy loss function and the Adam optimizer, with a learning rate of 
1 × 10−5. Training was conducted over 200 epochs with a batch size of 
4. Finally, the model’s performance was evaluated using the Dice 
similarity score (22).

2.2.4 Comparison of ResU-Net configurations
In this study, we compared the performance of ResU-Net network 

with different kernel sizes by evaluating three configurations: 
ResU-Net model with a 3 × 3 × 3 convolution kernel, ResU-Net model 
with a 1 × 3 × 3 convolution kernel, and the baseline model, which 
was the standard 3D U-Net model. To assess segmentation accuracy, 
we calculated the average Dice coefficient over 10 training sessions to 
compare the performance of the different models. These results were 
analyzed to evaluate the impact of varying kernel sizes on model 
performance, with the baseline 3D U-Net serving as a reference for 
comparing the improvements or trade-offs introduced by modifying 
the kernel size in ResU-Net network.

2.3 Statistical analysis

All statistical analyses were performed on SPSS 26.0 software. 
Descriptive statistics are reported as mean ± standard deviation. 
We conducted one-sample t-tests and analysis of variance (ANOVA) to 
examine the age and sex distributions of the samples in both the training 
and testing sets, ensuring that no bias was introduced in the group 
assignments. Next, we  assessed the effects of sex and age on brain 
structure volumes using multiple linear regression analyses. Specifically, 
sex was included as a categorical variable (coded as 1 for males and 2 for 

FIGURE 1

ResU-Net used in this study. The ResU-Net network processed 3D CT images through a combination of residual connections, U-Net skip connections, 
sub-sampling, and up-sampling operations.
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females) in the regression models to isolate its impact on brain volume, 
while also adjusting for age. Additionally, a paired t-test was used to 
compare the left and right hemispheres, with the corresponding p-value 
calculated to evaluate the statistical significance of the difference. A p 
value of < 0.05 was considered statistically significant.

3 Results

3.1 Performance of ResU-Net model during 
training and testing

Overall, the ResU-Net model demonstrated strong performance 
in segmenting intracranial brain tissue, achieving an average Dice 
coefficient of 0.94 on the training set and 0.96 on the test set. Figure 2 
presents representative segmentation results for 10 brain anatomical 
regions from a sample in the testing set. Figures 2a–c display axial, 
sagittal, and coronal sections with ground truth segmentation labels, 
while Figures 2d–f show the corresponding sections with ResU-Net 
model generated labels. Overall, our model results aligned closely with 
the ground truth, although some minor missed and extra labels 
appear at the edges in Figures 2d,e.

3.2 Comparison of model performance

In the training set, the Dice coefficients for the Baseline model, 
ResU-Net (1,3,3) model, and ResU-Net (3,3,3) models were 0.94, 0.93, 
and 0.92, respectively. These values indicate similar performance in 
segmentation accuracy, with the Baseline model slightly 
outperforming the ResU-Net configurations. The small differences in 
training Dice coefficients suggest that all models effectively learned to 
segment brain regions.

However, in the test set, the ResU-Net (1,3,3) models and 
ResU-Net (3,3,3) models showed substantial improvements, achieving 

Dice coefficients of 0.92 and 0.96, respectively, while the Baseline 
model dropped to 0.88. This indicates that the ResU-Net models, 
particularly the ResU-Net (3,3,3) model, generalize better to unseen 
data. This is likely due to their ability to capture more robust features 
and adapt to variations in test images more effectively than the 
Baseline model.

The decline in the Baseline model’s performance from training 
(0.94) to testing (0.88) suggests overfitting to the training data. This 
reinforces the advantages of using ResU-Net network with residual 
connections, as these models maintained consistent performance 
across both training and testing, thereby reducing the risk of 
overfitting and improving the model’s generalization ability.

3.3 Sample demographics

The cohort included 826 males and 661 females, totaling 1,487 
participants. The ages of the participants ranged from 1.5 to 2.5 years, 
with a mean age of 1.98 ± 0.28 years. There were no statistically 
significant differences in age or gender distribution between the 
training and test sets (p > 0.05). Further details are provided in 
Table 1.

3.4 Influence of sex and age on brain 
volume

The average brain region volumes in healthy 2-year-old children 
were as follows: right frontal lobe (200.64 ± 19.15 cm3), left frontal 
lobe (204.51 ± 19.61 cm3), right parietal lobe (81.52 ± 7.91 cm3), left 
parietal lobe (79.42 ± 7.65 cm3), right occipital lobe 
(53.76 ± 5.21 cm3), left occipital lobe (52.82 ± 5.33 cm3), right 
temporal lobe (91.92 ± 9.07 cm3), left temporal lobe 
(94.08 ± 9.27 cm3). Additionally, the cerebellum volume was 
127.97 ± 11.85 cm3, and the brainstem volume was 15.47 ± 1.50 cm3. 

FIGURE 2

Segmentation results for a sample subject from the testing set. Panels (a–c) show axial, sagittal, and coronal CT sections with ground truth labels, while 
panels (d–f) display the corresponding sections with labels generated by the ResU-Net model. Ten brain regions—right and left frontal lobes, right and 
left parietal lobes, right and left occipital lobes, right and left temporal lobes, cerebellum, and brainstem—are color-coded and labeled on the right.

https://doi.org/10.3389/fneur.2025.1573060
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Xi et al. 10.3389/fneur.2025.1573060

Frontiers in Neurology 05 frontiersin.org

A more detailed description is provided in Table 2, which includes 
the distribution of brain volumes by sex.

We analyzed the effect of age and sex on brain volume using 
multiple regression analysis. The results in Table 3 demonstrate the 
effect of gender on volume. Statistical analysis showed that the brain 
volume of males was generally larger than that of females at the same 
age, and the results were statistically significant (p < 0.001).

The results in Table 4 present the effect of age on brain volume. 
Statistical results showed that age had a significant effect on each brain 

volume (p < 0.001). Brain volume increases with age in all brain 
regions. However, brain volumes in different regions grew at different 
rates because they had different regression coefficients. Figure  3 
visualizes the relationship between age and brain volumes, showing 
how the volumes of these regions increase with age.

3.5 Comparison of brain volumes by 
hemisphere

We performed paired comparisons between the left and right sides 
of symmetrical structures in the brain, including frontal, parietal, 
occipital, and temporal lobes. The statistical results in Table 5 show that 
there are statistical differences in the left and right brain volumes of each 
lobe (p < 0.001), which indicates the asymmetry of the left and right sides.

4 Discussion

Childhood is a critical period for brain development, particularly 
in the first few years of life when the brain undergoes rapid growth and 
completes many developmental stages (6, 23). Brain development is 

TABLE 1 Demographics characteristics between training and testing set.

Group Age (years) Sex (n)

Male Female

Training set (n = 1,074) 1.97 ± 0.28 603 471

Testing set (n = 413) 1.98 ± 0.28 223 190

p value 0.554 0.491

This table shows the demographic characteristics of the training and testing sets, including 
age and sex distribution. The age of the two groups was 1.97 ± 0.28 and 1.98 ± 0.28, 
respectively, and there was no significant difference in age distribution (p = 0.554). In 
addition, there was no statistically significant difference in gender distribution between the 
training and test groups (p = 0.491).

TABLE 2 Distribution of brain structure volumes (cm3).

Brain regions Overall Male Female

Right frontal lobe 200.64 ± 19.15 208.01 ± 18.51 191.43 ± 15.63

Left frontal lobe 204.51 ± 19.61 211.90 ± 18.99 195.28 ± 16.15

Right parietal lobe 81.52 ± 7.91 84.61 ± 7.51 77.66 ± 6.60

Left parietal lobe 79.42 ± 7.65 82.35 ± 7.31 75.76 ± 6.41

Right occipital lobe 53.76 ± 5.21 55.53 ± 5.02 51.55 ± 4.55

Left occipital lobe 52.82 ± 5.33 54.45 ± 5.25 50.78 ± 4.69

Right temporal lobe 91.92 ± 9.07 95.55 ± 8.66 87.40 ± 7.38

Left temporal lobe 94.08 ± 9.27 97.85 ± 8.81 89.38 ± 7.53

Cerebellum 127.97 ± 11.85 132.56 ± 11.36 122.23 ± 9.78

Brainstem 15.47 ± 1.50 16.04 ± 1.46 14.75 ± 1.21

This table shows the brain volume distribution in detail for the overall, male group, and female group. It shows the volumes (in cm3) of different brain regions including the frontal, parietal, 
occipital, and temporal lobes as well as the cerebellum and brainstem.

TABLE 3 Effect of sex on brain volume.

Brain region Sex coefficient (B) Standard error (std. error) t-value p-value

Right frontal lobe −15.282 0.851 −17.95 p < 0.001

Left frontal lobe −15.356 0.882 −17.418 p < 0.001

Right parietal lobe −6.482 0.356 −18.215 p < 0.001

Left parietal lobe −6.108 0.344 −17.742 p < 0.001

Right occipital lobe −3.743 0.246 −15.193 p < 0.001

Left occipital lobe −3.464 0.258 −13.423 p < 0.001

Right temporal lobe −7.622 0.406 −18.763 p < 0.001

Left temporal lobe −7.962 0.416 −19.15 p < 0.001

Cerebellum −9.766 0.544 −17.955 p < 0.001

Brainstem −1.201 0.068 −17.745 p < 0.001

This table presents the effect of gender on brain volume in the multiple regression analysis. The results showed that the gender coefficients were all negative, indicating that the brain volume of 
the male group was generally larger than that of the female group in all brain regions (p < 0.001).
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FIGURE 3

Scatter plots showing the volume of various brain regions (right frontal lobe, left frontal lobe, right parietal lobe, left parietal lobe, right occipital lobe, 
left occipital lobe, right temporal lobe, left temporal lobe, cerebellum, and brainstem) in relation to age. The data suggests that brain region volumes 
generally increase with age. Males and females are represented with green and orange dots, respectively.

TABLE 5 Comparison of left and right brain structure volumes.

Brain regions Sex Right Left t value Effect size p-value

Frontal lobe
M 208.01 ± 8.51 211.90 ± 8.99 −30.54 1.06 <0.001

F 191.43 ± 5.63 195.28 ± 6.15 −29.60 1.15 <0.001

Parietal lobe
M 84.61 ± 7.51 82.35 ± 7.31 26.72 0.93 <0.001

F 77.66 ± 6.60 75.76 ± 6.41 22.39 0.87 <0.001

Occipital lobe
M 55.53 ± 5.02 54.45 ± 5.25 11.60 0.40 <0.001

F 51.55 ± 4.55 50.78 ± 4.69 8.13 0.32 <0.001

Temporal lobe
M 95.55 ± 8.66 97.85 ± 8.81 −24.53 0.85 <0.001

F 87.40 ± 7.38 89.38 ± 7.53 −19.34 0.75 <0.001

This table compares the brain structure volumes between the left and right hemispheres for both males and females. It includes the frontal, parietal, occipital, and temporal lobes. Statistically 
significant differences are observed in all regions, with the right hemisphere showing larger volumes in the frontal and parietal lobes, and the left hemisphere having larger volumes in the 
occipital and temporal lobes. Effect sizes are moderate to high, reflecting the magnitude of the differences.

TABLE 4 Effect of age on brain volume.

Brain region Age coefficient (B) Standard error (std. error) t-value p-value

Right frontal lobe 21.179 1.488 14.236 p < 0.001

Left frontal lobe 20.714 1.541 13.446 p < 0.001

Right parietal lobe 7.691 0.622 12.37 p < 0.001

Left parietal lobe 7.833 0.602 13.021 p < 0.001

Right occipital lobe 3.884 0.43 9.021 p < 0.001

Left occipital lobe 3.39 0.451 7.518 p < 0.001

Right temporal lobe 8.642 0.71 12.174 p < 0.001

Left temporal lobe 8.359 0.726 11.507 p < 0.001

Cerebellum 9.264 0.95 9.747 p < 0.001

Brainstem 1.45 0.118 12.262 p < 0.001

This table shows the effect of gender on brain volume in the multiple regression analysis. The results showed that the coefficients of gender were all positive, indicating that there was a positive 
correlation between age and brain volume, that is, brain volume increased with age (p < 0.001). And the results show that the change rate of brain volume in different regions is not consistent 
because of the different coefficient values.
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influenced by various internal and environmental factors (24), and 
diseases during this period can significantly impact development (3, 
7, 24–26). Brain volume is a key measure of brain development, 
obtained through non-invasive neuroimaging techniques such as 
high-resolution MRI, and is an important indicator of health and 
disease status in children. Quantitative assessments of brain volume 
are increasingly used in studies of neurological disorders (25, 27, 28). 
However, the lack of population-based reference standards for 
healthy brain volume complicates the clinical assessment of 
individual diseases (29, 30). Due to the limited availability of high-
resolution MRI data in children and the small sample sizes in related 
studies, establishing a normative reference standard for brain volume 
remains challenging (4, 5, 31, 32). In addition, MRI may not 
be feasible in certain clinical scenarios, such as emergency situations 
or with patients who have medical devices that cause significant 
artifacts (e.g., endotracheal tubes or other hardware). These 
limitations can restrict the ability to obtain reliable brain volume 
measurements in diverse pediatric populations.

CT imaging, with its faster acquisition time and wider clinical 
application, offers an opportunity to accumulate large datasets, 
making it feasible for studies involving larger and more diverse 
populations. In this study, CT data were used to measure brain 
volumes, with the expectation that these findings will complement 
and extend results from MRI studies. By leveraging the strengths of 
CT imaging, we aim to address some of the limitations associated 
with MRI and provide a more comprehensive understanding of brain 
development and disease in children.

This study utilized the ResU-Net deep learning model for brain 
tissue segmentation. In recent years, deep learning has become 
increasingly prevalent in medical image processing, particularly in 
segmentation tasks, due to its speed and robustness (33–39). Previous 
research has shown that deep learning algorithms perform well in 
brain tissue segmentation, with results comparable to those from 
MRI (14, 16). The Dice coefficient of 0.96 obtained in this study 
demonstrates that the ResU-Net  algorithm achieved good 
segmentation efficiency. Furthermore, the use of residual connections 
in ResU-Net model enhances feature propagation and helps mitigate 
the risk of overfitting, which is particularly crucial when working 
with complex and noisy medical imaging data. This advantage is 
supported by other studies, which have demonstrated that 
incorporating residual connections into network architectures leads 
to improvements in segmentation accuracy (40).

Our findings indicate that brain volume in males is generally 
larger than in females, which is consistent with previous studies (5, 
7, 41, 42). Research suggests that male brain volume is larger than 
that of females across all ages (41, 43). This difference may 
be  influenced by several factors, including gonadal hormones, 
neurosteroids, and epigenetic and environmental factors (44–47). 
These influences contribute to significant sex-based differences in 
brain development, which may also affect the manifestation of 
neuropsychiatric disorders, neurodegenerative diseases, and trauma-
related conditions (44).

Brain volume development varies across regions and ages during 
childhood, which is essential for understanding cognitive and 
neurological development. The brain grows rapidly during childhood, 
with different regions maturing at different rates (6, 48, 49). Gray 
matter volume peaks around age 6 before gradually decreasing, 
whereas white matter continues to develop until approximately age 

28. The growth trajectories of different regions are heterogeneous, 
with regions associated with sensory and motor control reaching 
developmental peaks earlier, while prefrontal regions related to 
higher cognitive functions develop more slowly. Although this study 
focused on 2-year-olds, we observed a positive correlation between 
brain region volume and age, confirming the rapid brain development 
occurring at this age.

Moreover, the study also revealed structural asymmetry in the 
brain: the left frontal and temporal lobes were larger than their right 
counterparts, while the right parietal and occipital lobes were larger 
than the left. Although the brain exhibits a high degree of left–right 
symmetry at a macroscopic anatomical and functional level, subtle 
structural differences exist between hemispheres (50). This 
asymmetry is closely linked to higher cognitive functions such as 
language processing, spatial cognition, facial recognition, and 
emotional response (51). For example, the left hemisphere is more 
involved in language production and comprehension, while the right 
hemisphere plays a key role in processing non-verbal information. 
Brain asymmetry is influenced by factors such as genetics, 
environment, and hormones (50). The study of brain lateralization is 
crucial for understanding brain mechanisms and identifying specific 
diseases. Previous studies have shown that changes in brain 
asymmetry are associated with neurodegenerative diseases and 
neuropsychiatric disorders (52, 53). These findings may provide 
useful biomarkers or clinical predictors of disease, offering insights 
into the neurobiology of these conditions.

Several factors should be considered when interpreting these 
results. One challenge is the reliance on a single manual segmentation 
template for brain CT data, particularly due to the lack of 
standardized templates for children. This reliance may affect the 
accuracy and generalizability of the findings. Therefore, future 
research should focus on developing multiple segmentation templates 
to enhance both accuracy and model robustness. Another limitation 
is that the data in this study were obtained from a single center and a 
single device, with no validation from multi-center or multi-device 
datasets. This could impact the model’s adaptability to different 
scanning devices, scanning parameters, and image qualities. For 
instance, in real clinical settings, imaging data may be affected by 
noise, artifacts, or inadequate resolution. The robustness of the model 
in this study to such low-quality data has not been thoroughly tested, 
which could impact its reliability in practical applications. To address 
this issue, future studies will aim to expand data sources through 
multi-center collaborations and establish standardized data-sharing 
platforms to foster data exchange and promote collaborative research 
across various studies. Moreover, while this study focused on a 
“normal” population, the sample primarily consisted of trauma 
patients. Although efforts were made to exclude abnormal cases, 
minor trauma that was not identified by CT scans may have been 
overlooked, potentially affecting brain volume measurements. To 
improve detection of minor trauma, future research will develop 
deep learning-based detection techniques. Furthermore, collecting 
more detailed clinical information in subsequent studies will help to 
exclude such cases, ensuring that the findings are both accurate and 
comparable across different cohorts.

In conclusion, this study highlights the potential of deep learning 
for automatic brain tissue segmentation. Using existing clinical head 
CT data, our approach lays the groundwork for future clinical 
applications in diagnosis, treatment, and research.
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