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Background: Neuroblastoma (NB) is a common malignancy in children, 
and accurate risk stratification and prognostic assessment are essential for 
personalized treatment. Current tumor assessment methods rely on clinical 
features and conventional imaging techniques, which have limited predictive 
accuracy. The aim of this study was to develop a deep learning model based on 
multiphase enhanced CT images and clinical features to improve the accuracy 
of risk stratification and prognostic assessment of NB.

Methods: Multi-phase enhanced CT images and clinical features from 202 
NB patients were collected. Four risk stratification classifiers were developed 
using the Swin Transformer model and evaluated in training and testing 
cohorts. Prognostic models were constructed using a combination of multiple 
machine learning algorithms in conjunction with CT image features and clinical 
characteristics.

Results: Swin-ART based on arterial phase images was the best risk stratification 
classifier with an AUC of 0.770 (95% CI: 0.613–0.909) and an accuracy of 
0.780  in the testing cohort. In the prognostic assessment, the combined 
model of backward stepwise Cox regression and randomized survival forest 
(RSF) obtained the highest mean C-index of 0.84. The 1-, 3-, and 5-year AUC 
values of the optimal prognostic model in the training cohort were 0.93 (95% 
CI: 0.927–0.942), 0.93 (95% CI: 0.929–0.946), and 0.96 (95% CI: 0.953–0.974), 
respectively. The corresponding AUC values for the testing cohort were 0.90 
(95% CI: 0.857–0.934), 0.87 (95% CI: 0.808–0.928), and 0.91 (95% CI: 0.718–
0.977), respectively. Multimodal models outperform single-modality clinical 
models in both predictive accuracy and stability.

Conclusion: This study successfully developed a deep learning model based on 
multiphase enhanced CT images and clinical features to predict risk stratification 
and prognosis in NB. The findings provide a new tool for clinical practice and lay 
the foundation for future precision medicine and personalized treatment.
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1 Introduction

Neuroblastoma (NB) is a common childhood malignancy 
originating from immature neural crest cells (1). NB is the most 
common and fatal tumor of infancy, with a median age of diagnosis 
of 18 months, and accounts for 15% of all childhood cancer-related 
deaths (2). Despite significant diagnostic and therapeutic advances in 
recent years, the prognosis of NB remains highly heterogeneous, 
especially between high-risk (HR) and non-high-risk (NHR) patients 
(3). Accurate risk stratification is essential for developing personalized 
treatment plans, as different risk groups require different treatment 
intensities and strategies (4). Traditional risk stratification methods 
rely heavily on clinicopathologic features such as age, stage, histologic 
type, and MYCN amplification status and so on (5). However, these 
methods are difficult to achieve all of them in the early stage of disease 
treatment and to meet the clinical needs of early tumor assessment.

In recent years, the application of deep learning in various aspects 
of oncology research has exploded and made great progress (6). 
Meanwhile, with the rapid development of medical imaging 
technology and artificial intelligence, comprehensive tumor assessment 
strategies based on imaging features have gradually gained attention. 
As a noninvasive and information-rich imaging technique, multiphase 
enhanced computed tomography (CT) can provide detailed anatomical 
and functional information of tumors at different time points, offering 
new possibilities for risk stratification and prognostic assessment of 
NB (7). However, traditional imaging analysis methods usually rely on 
manual interpretation, which is subjective and inconsistent, limiting 
their application in clinical practice.

To overcome this challenge, this study aims to develop a deep 
learning-based multi-phase enhanced CT image analysis method for 
risk stratification and prognostic assessment of NB. We chose Swin 
Transformer (Swin-T) as the main deep learning architecture because 
of its excellent performance in tasks such as image classification, target 
detection, and semantic segmentation (8). Swin-T improves the 
performance of the model while maintaining high efficiency by 
restricting the self-attention computation to localized windows through 
the shift-window strategy, while allowing cross-window connections. 
In addition, to further improve the accuracy of prognostic assessment, 
we constructed a comprehensive prognostic model by combining CT 
image features with clinical features. Through Cox regression analysis 
and multiple machine learning algorithms, we screened the features 
related to prognosis and constructed multiple prognostic models. 
Ultimately, we evaluated the predictive performance of the model by 
metrics such as C-index, survival analysis, and time-dependent ROC 
curves, and verified its application value in clinical practice.

This study not only provides a new tool for risk stratification of 
NB, but also lays the foundation for future precision medicine and 
individualized treatment. We have developed a promising tool that 
may provide clinicians with a valuable reference to improve the 
prognosis and quality of life of NB patients.

2 Materials and methods

2.1 Case screening

The study was conducted in accordance with the guiding 
principles of the Declaration of Helsinki, and the study protocol was 

approved by the Ethics Committee of the First Affiliated Hospital of 
Zhengzhou University (2024-KY-1031-001). Informed consent was 
waived due to the retrospective nature of enrollment.

In the electronic medical record database of the First Affiliated 
Hospital of Zhengzhou University, we  comprehensively searched 
pediatric patients with pathologically confirmed NB admitted from 
January 2015 to Jul 2024. The case inclusion criteria were as follows: 
(1) pathologically confirmed NB; (2) preoperative multiphase 
enhanced CT imaging consisting of at least three phases: non-contrast-
enhanced phase (NC phase), arterial phase (ART phase), and portal 
venous phase (PV phase); (3) available clinical information (including 
baseline profile, tumor markers, inflammatory markers); and (4) Clear 
risk stratification information as well as survival status and timing 
information. Case exclusion criteria were as follows: (1) age older than 
14 years; (2) more than 60 days between pathologic examination and 
preoperative multiphase enhanced CT; and (3) poor image quality. 
Strictly following the inclusion and exclusion criteria, we collected all 
cases that met the criteria and randomized them into a training cohort 
and a testing cohort in a ratio of 8:2.

2.2 CT image collection

All included patients underwent 16- or 64-slice spiral computed 
tomography. Multiphase-enhanced CT images were exported from 
the image archiving and communication system (PACS) and stored as 
BMP files. Subsequently, we manually extracted the three-phase CT 
image slices with the largest tumor cross-sectional area as the CT 
feature images of the corresponding patients. The manual extraction 
process was performed by two experienced paediatric surgeons (with 
>10 years of clinical experience) through consensus review, based on 
the following criteria: (1) Anatomical coverage: the slice with the 
largest tumor area in axial view across all phases; (2) Morphological 
consistency: exclusion of slices with significant artifacts that could 
distort measurements. In addition, we read the three-phase CT images 
separately as grayscale maps, and subsequently re-stacked them 
vertically as three-channel images and imported them into the deep 
learning model to obtain the joint features of the multi-phase images. 
Through transform function, we  normalized all CT images and 
converted them to 224 × 224 pixels to fit the inputs of our model.

2.3 Classifier structure

Given the strong performance of the Swin-T in image 
classification, object detection, and semantic segmentation, we choose 
Swin-T as the primary architecture for our classification task (8). 
Specifically, we selected a tiny Swin-T subtype to match our small 
clinical dataset, the detailed structure of which is shown in 
Supplementary Table S1. The shifted-window strategy of Swin-T 
restricts self-attention computations to disjoint local windows while 
also allowing cross-window connections, enhancing both efficiency 
and effectiveness. We used the pre-training weights of Swin-T on the 
ImageNet-1 K dataset as the initial weights of the model and modified 
the final number of output channels of the model from the default of 
1,000 to the number of categories in our classification task. To make 
the output of the model smoother, we added a hidden layer containing 
16 neurons between the original output layer of the model and the 
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fully connected layer. At the end of the model, we use the Softmax 
activation function to normalize the raw scores from the output layer 
into values between 0 and 1, which serve as the predicted probability 
values for each class.

2.4 Classifier training

In order to prevent data leakage leading to overestimation of 
model performance, we  use the training cohort for the training 
process of the model and the testing cohort is only used for the 
performance evaluation of the model. In the training cohort, 
we applied data enhancement strategies to improve the generalizable 
performance of the model. Specifically, the original image was rotated 
as it went between ±10 degrees, with a panning ratio between ±10% 
in the horizontal and vertical directions, while the image brightness 
varied randomly between 70 and 130%, and the contrast and 
saturation varied randomly between 80 and 120%. In the classification 
task, we used the cross-entropy loss function to compute the loss and 
the Adam optimizer for model gradient optimization. The cross-
entropy loss function is a widely used loss function in classification 
problems to measure the difference between the probability 
distribution predicted by the model and the actual probability 
distribution. The Adam optimizer implements an adaptive learning 
rate by calculating and storing first-order moment estimates and 
second-order moment estimates of the gradient, which indirectly 
mitigates overfitting (9). A cosine learning rate decay strategy was 
used to adjust the learning rate in a cyclic asymptotic manner, with the 
maximum number of iterations for cosine annealing set to 20, the 
maximum learning rate set to 0.00001, and the minimum learning rate 
defaulted to 0. We configured the batch size to 8 and the maximum 
number of training epochs to 100. To avoid overfitting and ensure 
adequate model training, we adopted an early stopping strategy, i.e., 
when the loss of the testing cohort after training for 25 epochs did not 
decrease for 10 consecutive epochs, model training was stopped.

In the current study, image preprocessing and classifier 
construction and training were implemented based on the PyTorch 
architecture (Python 3.7, PyTorch 1.1.0), and an RTX3090 with 24 GB 
of memory was used as the GPU to accelerate the training.

2.5 Classifier evaluation

The NC phase, ART phase, PV phase images and the integrated 
multi-phase images are fed into the Swin-T model respectively, 
and the final classifiers are obtained after a sufficient training 
process. We then freeze the model weights and comprehensively 
evaluate the performance of each classifier in the testing cohort. 
With the ROCR package and the pROC package in R (version 
4.4.3), we  calculated the area under the receiver operating 
characteristic curve (AUC) and plotted ROC curves for each 
model (10, 11). Subsequently, we plotted the confusion matrices of 
each classifier to obtain a more complete picture of the model’s 
performance on the different categories. In addition, we calculated 
sensitivity, specificity, precision, recall value, accuracy, Kappa 
value and F1 score separately to comprehensively evaluate the 
performance of each model. In addition, we  constructed four 
classic convolutional neural network (CNN) models using the 

same training strategy to serve as benchmark models for 
comparison. After a comprehensive comparison, we selection the 
model with the best performance as the best classifier for NB 
risk stratification.

2.6 Clinical data collection

To further assess the overall prognosis of NB patients, we decided 
to include clinical indicators for each tumor patient to construct a 
comprehensive model combining CT image features with clinical 
features. The clinical characteristics of the corresponding patient at the 
time of initial tumor diagnosis were retrieved from the hospital’s 
information system, which mainly included the patient’s baseline data 
and tumor markers from hematology tests as well as inflammatory 
indicators. For qualified clinical indicators, we dealt with missing 
values through multiple interpolation using the mice package, 
specifying the interpolation method as “predictive mean matching” 
(PMM) with an upper limit of 50 iterations (12). Subsequently, 
we used the Kolmogorov–Smirnov test (KS test) and overlay density 
plots to verify whether the distribution of the interpolated data was 
consistent with the non-missing parts of the original data, thereby 
avoiding bias introduced by interpolation.

2.7 Data consolidation

Considering the significant association between risk stratification 
and overall prognosis of NB patients, we utilized a transfer learning 
strategy to extract CT image features to assess overall prognosis. This 
means that we  utilized the output values of the hidden layer 
(containing 16 neurons) of the best classifier as the image features of 
the corresponding CT image. Subsequently, we  integrated the CT 
image features with the clinical data and applied standardized 
preprocessing to the combined dataset. This process primarily 
involved mean normalization and variance scaling to ensure that all 
data were adjusted to a consistent scale.

2.8 Prognosis model construction

We sequentially incorporated the integrated dataset into 
univariate Cox regression and multivariate Cox regression to initially 
screen for prognostically relevant features. In the univariate Cox 
regression analysis, a p-value threshold of 0.05 was used for feature 
selection. However, for the multivariate Cox regression, we raised the 
threshold to 0.2 to address the challenge of building an effective 
prognostic model with a limited number of features. Based on the 
screened patient characteristics, we  implemented 79 different 
combinations of machine learning algorithms using the Mime1 
package to obtain the best prognostic model for NB patients (13). 
Machine learning algorithms involved in these model combinations 
include Stepwise Cox Regression (StepCox), Randomized Survival 
Forests (RSF), LASSO Regression, Gradient Boosting Machines 
(GBM), CoxBoost, Elastic Networks (Enet), Ridge Regression, Partial 
Least Squares Regression and Cox Regression (plsRcox), Survival 
Support Vector Machines (survival-SVM), and Supervised Principal 
Component Analysis (SuperPC).
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2.9 Prognosis model evaluation

Based on the model prediction results, we separately calculated 
the C-indexes of the 79 prognostic models in the training cohort and 
the testing cohort, and we obtained the best-performing prognostic 
model based on the average C-indexes of the two cohorts. We then 
calculated prognosis-related machine learning risk scores (MLRS) for 
each patient through the optimal model and categorized all patients 
into high and low MLRS groups based on the median value of the 
MLRS. Kaplan–Meier (K-M) survival analysis was used to evaluate the 
difference in overall prognosis between the high and low MLRS 
groups. Meanwhile, we calculated the AUC values of MLRS at 1, 3, 5, 
and 7 years and plotted the corresponding time-dependent ROC 
curves. We calculated the confidence interval of the AUC value using 
the Clopper-Pearson exact interval method, which is based on the 
binomial distribution and is suitable for small sample sizes. We also 
constructed a classic LASSO-Cox model based solely on clinical 
indicators as a benchmark model to demonstrate the added value of 
multimodal data. Risk stratification and MYCN amplification status 
are well-recognized prognostic markers for NB patients (14), so 
we also explored the association between MLRS and risk stratification 
as well as MYCN amplification status. In addition, we confirmed the 
significant correlation between MLRS and some tumor markers 
through Pearson correlation analysis.

3 Results

3.1 Dataset composition

Figure 1 illustrated the overall flow of this paper, including data 
collection, model structure, and some of the important results. A total 
of 202 NB patients were enrolled in our study cohort, with 121 HR 
patients and 81 NHR patients. Eleven indicators have missing values, 
but the proportion of missing values for all indicators is less than 30% 
(Supplementary Figure S1a). The D statistics for all variables are well 
below the empirical threshold of 0.1, indicating that the maximum 
distance between the cumulative distribution functions of the data 
before and after interpolation is very small (Supplementary Figure S1b). 
The overlay density plot also shows that the two curves almost 
completely overlap, indicating that the distribution of the interpolated 
values is almost identical to that of the non-missing original values, 
and that the interpolation process did not introduce any significant 
bias (Supplementary Figure S1c).

The baseline data for all patients are shown in 
Supplementary Table S2. Although most baseline characteristics 
(such as age, gender, survival status, etc.) did not show significant 
differences between the training and testing cohorts, tumor markers 
(CA199, CA153) and C-reactive protein (CRP) may have shown 
random distribution imbalances due to limited sample size (only 41 

FIGURE 1

The overall flow of this paper, including (a) data collection, (b) model structure, and (c) some of the important results.
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cases in the testing cohort). The median diagnostic age of all included 
patients was 38.5 (20.25, 57) months and the median survival time 
was 657 (232, 1296.75) days. Risk stratification and MYCN 
amplification status were significantly associated with the overall 
prognosis of NB patients, whereas there were no significant 
differences in overall prognosis for different genders or different 
tumor locations (Supplementary Figure S2).

3.2 Optimal classifier for predicting risk 
stratification

Figure S3 showed typical multi-phase enhanced CT images of NB 
patients, including the NC phase, ART phase, and PV phase. Each 
phase of the CT images displayed the characteristics of the tumor at 
different time points, which were crucial for diagnosis and risk 
stratification. Additionally, Supplementary Figure S3 illustrated the 
integrated multi-phase images formed by reading the three-phase CT 
images as grayscale maps and stacking them vertically. These 
integrated multi-phase images provided a comprehensive reflection 
of the tumor changes over different time periods, offering rich 
information for the deep learning model. By feeding each of the 
above four types of images into the tailor-made Swin-T model and 
performing a sufficient training process, we constructed four different 
risk stratification classifiers: Swin-NC, Swin-ART, Swin-PV, and 
Swin-MP (representing the multi-phased image model). 
Supplementary Figure S4 demonstrated the changing process of 
cross-entropy loss and accuracy of each batch sample during model 
training as the epoch increased.

Swin-NC achieved AUC values of 0.928 (95% CI: 0.884–0.962) 
and 0.725 (95% CI: 0.554–0.882) for the training and testing 
cohorts, with accuracies of 0.863 and 0.732 (Figure 2a); Swin-ART 
achieved AUC values of 0.980 (95% CI: 0.961–0.994) and 0.770 
(95% CI: 0.613–0.909) for the training and testing cohorts, with 
accuracies of 0.925 and 0.780 (Figure 2b); Swin-PV achieved AUC 
values of 0.942 (95% CI: 0.906–0.972) and 0.748 (95% CI: 0.583–
0.887) for the training and testing cohorts, with accuracies of 0.857 
and 0.707 (Figure 2c); and Swin-MP achieved AUC values of 0.955 
(95% CI: 0.923–0.978) and 0.696 (95% CI: 0.507–0.858) for the 
training and testing cohorts, with accuracies of 0.870 and 0.732 
(Figure  2d). In summary, given the strong performance of the 
Swin-T model in the field of image recognition, all four models 
achieved excellent prediction performance in the training cohort. 
Therefore, we mainly compared the performance of the four models 
in the testing cohort, which reflected the generalization ability of 
the models. Based on this criterion, Swin-ART possessed the 
highest AUC value and accuracy in the testing cohort and was 
considered the best classifier for risk stratification (Figure 2b). In 
addition, Swin-ART also had a good overall performance, with a 
sensitivity of 0.706, a specificity of 0.833, a precision of 0.750, a 
recall value of 0.706, and an F1 score of 0.727 in the testing cohort. 
Unexpectedly, Swin-MP, which assembled three-phase CT image 
features, had the worst overall performance, with the lowest AUC 
value and accuracy in the testing cohort (Figure 2d). We speculated 
that this might have been due to the fact that integrating three-
phase images not only provided more tumor image features but also 
introduced additional confounding factors that complicated 
image recognition.

3.3 Comparison with CNN classifiers

Based on ART phase CT images, we constructed four classic CNN 
models: ResNet, DenseNet, AlexNet, and VGGNet, to demonstrate the 
superiority of the Swin-T model. In the training cohort, the AUC 
values predicted by the CNN model for risk stratification were all 
higher than 0.85, but in the testing cohort, they were all lower than 
Swin-ART, indicating weak generalizability (Supplementary Figure S5).

3.4 Optimal model for prognostic 
assessment

We used the 16-channel data exported from the hidden layer in 
the Swin-ART model architecture as CT image features and combined 
them with the clinical characteristics of the patients. Eleven combined 
features passed the initial screening by Cox regression analysis, 
containing 6 CT features (hidden layer channels 3, 6, 7, 10, 13, and 15 
outputs), MYCN amplification, neuron-specific enolase (NSE), risk 
stratification, CA153, and CA125 (Supplementary Table S3). In the 
comparison of prognostic models, the combined model of backward 
stepwise Cox regression and RSF achieved the highest mean C-index 
(0. 84), with a C-index of 0.87 in the training cohort and a C-index of 
0.81 in the testing cohort, and thus we considered it the best model for 
prognostic assessment (Figure  3a). Notably, the combined model 
including RSF occupied the top three places in the ranking of the 
mean C-index, suggesting the great potential of RSF in assessing the 
overall prognosis of NB patients.

Subsequently, we calculated the MLRS for each patient based on 
the best model and comprehensively evaluated its predictive 
performance. K-M survival analysis showed that patients in the high 
MLRS group had a significantly (Log-rank p < 0.0001  in training 
cohort and Log-rank p = 0.021  in testing cohort) worse overall 
prognosis than those in the low MLRS group (Figures 3b,c). Patients 
in the high MLRS group also experienced significantly higher 
mortality than those in the low MLRS group (Figures 3d,e). The 1-, 3-, 
and 5-year AUC values of the MLRS for predicting overall survival in 
the training cohort were 0.93 (95% CI: 0.927–0.942), 0.93 (95% CI: 
0.929–0.946), and 0.96 (95% CI: 0.953–0.974), respectively (Figure 3f). 
The corresponding AUC values for the testing cohort were 0.90 (95% 
CI: 0.857–0.934), 0.87 (95% CI: 0.808–0.928), and 0.91 (95% CI: 
0.718–0.977), respectively (Figure 3g). Decision curve analysis (DCA) 
also demonstrated that MLRS can achieve high net clinical benefit for 
NB patients (Supplementary Figure S6). Additionally, MLRS was 
strongly associated with existing prognostic markers. The Wilcoxon 
test showed that the overall distribution of MLRS was significantly 
(p < 1.6e-15) higher in HR patients compared to NHR patients, and 
significantly (p  < 2.22e-16) higher in MYCN-amplified patients 
compared to MYCN non-amplified patients (Supplementary Figure S7). 
In correlation analysis, MLRS showed significant positive associations 
with both Ferritin (FP) and NSE (Figures 3h,i).

4 Performance gains from 
multimodality

The benchmark model achieved C-index values of 0.74 and 
0.84 in the training and testing cohorts, respectively. The abnormal 
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jump in predictive performance from the training to the testing cohort 
may be  due to biased distribution of clinical variables and small 
sample size in the testing cohort. The 1-, 3-, and 5-year AUC values of 
the benchmark model in the training cohort were 0.79 (95% CI: 
0.778–0.802), 0.80 (95% CI: 0.794–0.821), and 0.84 (95% CI: 0.816–
0.860), respectively (Figure 3j). The corresponding AUC values for the 
testing cohort were 0.96 (95% CI: 0.926–0.979), 0.88 (95% CI: 0.826–
0.940), and 0.80 (95% CI: 0.718–0.977), respectively (Figure  3k). 
Compared with the baseline model, MLRS performs more stably 
between the training and testing cohorts, and the small difference 
between the training and testing sets indicates a low risk of overfitting. 

In the testing cohort, the predictive performance of MLRS also 
showed longitudinal temporal stability, while the performance of the 
benchmark model declined significantly over time, suggesting that 
MLRS is suitable for long-term prognosis prediction (Figures 3g,k).

5 Discussion

In this study, we successfully predicted the risk stratification and 
overall prognosis of NB patients by developing a deep learning 
model based on multiphase enhanced CT images and clinical 

FIGURE 2

Performance evaluation of risk stratification classifiers. (a) ROC curves, confusion matrices and other evaluation metrics for Swin-NC in the training and 
testing cohorts. (b) ROC curves, confusion matrices and other evaluation metrics for Swin-ART in the training and testing cohorts. (c) ROC curves, 
confusion matrices and other evaluation metrics for Swin-PV in the training and testing cohorts. (d) ROC curves, confusion matrices and other 
evaluation metrics for Swin-MP in the training and testing cohorts.
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features. The results showed that Swin-ART performed well in risk 
stratification prediction with an AUC value of 0.770 and an accuracy 
of 0.780 on the testing cohort. In addition, the integrated prognostic 

model combining CT image features and clinical features achieved 
a C-index of 0.81 on the testing cohort, which demonstrated a good 
prediction performance. These findings not only provide a new tool 

FIGURE 3

Performance evaluation of prognostic models. (a) C-index heatmaps for 79 prognostic models in the training and testing cohorts. (b,c) K-M curves for 
MLRS in training and testing cohorts. (d,e) Risk factor correlation plots for MLRS in training and testing cohorts. (f,g) Time-dependent ROC curves for 
MLRS in training and testing cohorts. (h) Scatterplot of correlation between MLRS and FP. (i) Scatterplot of correlation between MLRS and NSE. (j,k) 
Time-dependent ROC curves for baseline model in training and testing cohorts.
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for risk stratification of NB, but also lay the foundation for 
personalized treatment and prognostic assessment in 
clinical practice.

The Swin-ART model performed best on multiphase enhanced 
CT images, especially outperforming the other models on the testing 
cohort. This result may be attributed to the importance of ART phase 
images in early tumor angiogenesis, which can more accurately reflect 
tumor biology. A radiomics study based on ART phase images by 
Wang et al. identified subgroups of ultra-high-risk patients from HR 
patients to help predict early disease progression (15). These findings 
demonstrated the significant value of ART images in the early 
evaluation of NB patients. In contrast, the Swin-MP model did not 
perform as well as expected despite integrating image information 
from three periods. This may be  due to the fact that multi-phase 
images introduce more noise and interfering factors, leading to a 
decrease in the generalization ability of the model. Therefore, in 
practical applications, choosing appropriate image phases is crucial to 
improve the model performance.

The comprehensive prognostic model combining CT image 
features and clinical features performed well on several assessment 
metrics. In particular, the C-index of the model based on backward 
stepwise Cox regression and RSF reached 0.81 on the test cohort, 
indicating that the model had high predictive accuracy. In addition, 
K-M survival analysis showed that patients in the high MLRS group 
had a significantly worse prognosis, further validating the validity of 
the model. Interestingly, MLRS was significantly positively correlated 
with both FP and NSE, and both demonstrated an elevated trend in 
the group of patients with poorer prognosis. Iron is an essential metal 
for cellular metabolism and maintains iron homeostatic regulation 
under normal body conditions. Cancer cells exhibit iron homeostatic 
dysregulation and, for underlying reasons, require more iron for 
metabolism and growth (16). And NSE is an important tumor marker 
in NB patients, and serum NSE levels greater than 100 ng/mL are 
associated with poor prognosis (17). MLRS outperforms single-
modality clinical models in both predictive power and stability, 
demonstrating the value-added effects of multimodal models. These 
results demonstrate the importance of multimodal data fusion in 
prognostic assessment to provide more comprehensive and 
accurate predictions.

Multimodal data fusion in tumor patients is one of the focuses 
of future early tumor assessment. In addition to CT images and 
clinical features, the fusion of other imaging technologies (e.g., MRI, 
PET-CT) and biomarkers (e.g., gene expression profiles, proteomics 
data) can be explored in the future to further improve the predictive 
performance of the model. The integrated analysis of multimodal 
data will provide more comprehensive information for risk 
stratification and prognostic assessment of NB. Future studies could 
also explore dynamic monitoring models based on time-series data 
to assess patients’ condition changes and treatment effects in real 
time. By combining patients’ clinical data and imaging 
characteristics, personalized treatment recommendations can 
be provided for each patient to further improve treatment outcomes 
and survival rates.

Despite the remarkable results of this study, there are still some 
limitations. First, the study sample size is relatively small, and larger 
multicenter studies are needed in the future to verify the stability and 
generalization ability of the model. Second, only CT images were used 
in this study, and other imaging techniques can be explored for NB 

risk stratification and prognostic assessment in the future. In addition, 
the interpretability of the model still needs to be improved, and the 
decision-making mechanism of the model can be further revealed in 
the future through visualization techniques and feature significance 
analysis to enhance clinicians’ trust.

6 Conclusion

In summary, this study successfully achieved risk stratification 
and prognostic assessment of NB by developing a deep learning model 
based on multiphase enhanced CT images and clinical features. The 
findings not only provide new tools for clinical practice, but also lay 
the foundation for future precision medicine and individualized 
treatment. Future studies will further expand the sample size and 
explore more imaging techniques and model interpretability to 
improve the utility and clinical value of the model.
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