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Establishment and validation of a
phenotype-driven predictive
model for the diagnostic efficacy
of trio-based whole exome
sequencing (trio-WES) in children
with genetic neurodevelopmental
disorders (g-NDDs)

Ruohao Wu?, Xiangyang Luo'?, Zhe Meng?, Wenting Tang** and
Liyang Liang™*

!Department of Children’s Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University,
Guangzhou, Guangdong, China, ?Weierkang Children’s Rehabilitation Center, Guangzhou,
Guangdong, China, *Department of Research and Molecular Diagnostics, Sun Yat-sen University
Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China

Background: Genetic neurodevelopmental disorders (g-NDDs), a complex
group of idiopathic syndromes with a heterogeneous genetic etiology, are
defined as global developmental delay/intellectual disability (GDD/ID) with
other common neurodevelopmental comorbidity (NDC), such as autism
spectrum disorder (ASD). Although significant progress has been made in
trio-based whole-exome sequencing (trio-WES) that enable the detection of
exon-level variants, the diagnostic efficacy of using trio-WES for g-NDDs is still
not satisfactory. Therefore, exploring key phenotypic variables for forecasting
the diagnostic probability of trio-WES is extremely necessary to implement
personalized diagnosis for children with g-NDDs.

Methods: A total of 265 g-NDDs children who received trio-WES at Sun Yat-sen
Memorial Hospital between Sep 2016 and Dec 2022 were enrolled and clustered
temporally into training and internal validation sets [163 cases (Oct 2016 ~ Dec
2022) and 102 cases (Sep 2016 ~ Sep 2018), respectively]. A total of 97 g-NDDs
children who underwent trio-WES at Weierkang Children’s Rehabilitation Center
between Jan 2023 and Dec 2023 were enrolled and served as an independent
external validation set. Univariate and multivariate logistic regression were
conducted in the training set to screen out independent diagnosis-related
phenotypic signifiers and establish an alignment diagram model. The model was
further validated in internal and external validation sets.

Results: Through univariate and multivariate analyses, independent diagnosis-
related predictive signifiers, including GDD/ID severity, NDC complexity, ASD,
and head circumference abnormality, were identified in the training cohort and
used to construct a model. The model showed good discrimination power with
an area under the ROC curves (AUC) in the training set of 0.821 (95% Cl: 0.756—
0.886), yielding a F1 score of 0.76. The model also showed powerful prediction
in both the internal (AUC: 0.905 with 95% CI: 0.842-0.968 and F1 score: 0.77)
and external validation sets (AUC: 0.919 with 95% ClI: 0.858-0.979 and F1 score:
0.79).
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Conclusion: We found the potential linear relationship between trio-WES-
diagnostic rates and the phenotypic enrichments in g-NDDs patients for the
first time, indicating the possibility of applying a logistic regression model based
on phenotypic features to predict the personalized diagnostic rates of using
trio-WES in children with g-NDDs.
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Introduction

Genetic neurodevelopmental disorders (g-NDDs), a complex
group of idiopathic syndromes that tends to have a heterogeneous
genetic etiology and represents a complex group of neurological
diseases with marked clinical variability and readily observable deficits
from a very early age (often <6 months), affecting approximately
1% ~ 3% of children worldwide and exerting a substantial burden on
society and patients’ families (1). They mainly comprise global
developmental delay/intellectual disability (GDD/ID), autism
spectrum disorder (ASD), attention deficit hyperactivity disorder
(ADHD), and epilepsy (EP) (2). Among these neurological disease
conditions, GDD/ID is the major and essential part of g-NDDs (3);
while other common neurological disease conditions, such as ASD,
ADHD, and EP, can present as neurodevelopmental comorbidity
(NDC), solely or jointly appearing in individuals with g-NDDs (4).
Therapeutic intervention/treatment or disease management for
g-NDDs is individualized, multidisciplinary, and mainly symptomatic
treatment, such as rehabilitation therapy and pharmacotherapy (like
encephalon glycoside and exogenous nerve growth factor).

Genetic alterations are considered to play a key role in the
pathogenesis of g-NDDs. For instance, 30-50% of g-NDDs cases were
reported to be caused by single-nucleotide variants (SN'Vs), copy-
number variants (CNVs) and chromosomal abnormalities; Rett,
fragile-X, and Down syndromes are considered as the three most
common types of g-NDDs worldwide (5). Owing to the significant
advancements in identifying genetic components of g-NDDs via next-
generation sequencing technology, especially the popularization of
trio-based (parental-offspring model) whole-exome sequencing (trio-
WES) that enable the detection of exon-level variants, including SNV's
and CNVs, genetic causes are being found more frequently than
before in many g-NDDs patients (6). Nonetheless, there still have
children with g-NDDs remain undiagnosed after undergoing
trio-WES due to a proportion of variants located outside exons (e.g.,
intron, promoter or enhancer-level variants) underlying g-NDDs (7);
the diagnostic yield of trio-WES for children with g-NDDs is still not
satisfactory (8-10). Considering the unsatisfactory diagnostic efficacy
of trio-WES in g-NDDs, it is crucial for clinicians to develop a targeted
approach for the early identification of patients who can most likely
be diagnosed by trio-WES, providing those patients with further
assessment of related medical conditions earlier in the disease course.
Moreover, owing to the exon-level sequencing feature of trio-WES,
developing a simple-to-use tool for patients and their families to assist
their decision-making in applying trio-WES in the diagnostic strategy
at the pre-diagnosis stage is also critical, which can dramatically help
facilitate individualized family medical planning.
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Alignment diagrams are one of the common graphical calculators
used to visualize the scoring system of a linear regression model (such
as logistic and cox regression models) with an operationally intuitive
manner (11). Owing to the rapid development of many R packages,
such as “rms” and “rmda” packages (12), alignment diagrams can
be directly generated in the R environment and represent a prevalent
and major subtype within the broader category of graphical
calculators, characterized by straight scales and solution via a
straightedge alignment line (i.e., drawing a straight line between
known values on two scales to read the unknown value on a third
scale), and providing a high-level snapshot of regression accuracy.
Alignment diagram models are widely applied in forecasting the risks
or outcomes of many NDDs, such as ADHD (13), ASD (14), infant
neurodevelopmental delays (15) and oppositional defiant disorder
(16). However, to the best of our knowledge, no publications have
reported the application of alignment diagrams to predict the
diagnostic probability of trio-WES in g-NDDs children. Here,
we conducted a double-center study with independent temporal
(internal) and geographical (external) validations based on phenotype-
driven methods, exploring key phenotypic variables for forecasting
the diagnostic probability of trio-WES in children with g-NDDs.
Phenotype-driven methods are important clinical genetic methods for
identifying the key clinical phenotypic characteristics of rare
monogenic disorders, allowing the identification of individuals with
a high probability of carrying relevant exon-level variants detected by
trio-WES (17, 18).

Materials and methods
Participants and patient selection criteria

As shown in Figure 1A, 871 g-NDDs children were admitted to
the tertiary Children’s Medical Center of Sun Yat-sen Memorial
Hospital (SYSMH) from September 2016 to December 2022. After
performing a series of clinical information (excluding 346 patients
without clear or complete clinical data, such as outpatient subjects),
informed consent (excluding 239 patients due to their families
decline to receive genetic tests), and routine genetic (G-band
karyotyping and fragile-X analysis) screenings (excluding 21
patients who had apparent chromosomal disorders, such as Down
syndrome and fragile-X syndrome, which had no need to use high-
throughput sequencing, such as trio-WES, as their diagnostic
strategies), a total of 265 g-NDDs patients with non-consanguineous
relationships from SYSMH who want to get a specific genetic
diagnosis via trio-WES were recruited for this retrospective study.
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871 g-NDDs children
treated at SYSMH between September 12016 to December 31 2022

Clinical information screening

Exclude 346 patients with
unclear or uncomplete
baseline clinical data such as
outpatient patients

Informed consents screening

Exclude 239 patients whose

families decline to undergo

genetic tests due to financial
or other personal issues

Routine genetic screening
(karyotyping and fragile-X analysis)

115 g-NDDs children
treated at WCRC between January 12023 to December 31 2023

Clinical information screening

Exclude 15 patients with
unclear or uncomplete
baseline clinical data such as
outpatient patients

Informed consents screening

Exclude 3 patients whose
families decline to undergo
genetic tests due to financial

or other personal issues

Routine genetic screening
|(karyotyping and fragile-X analysis)

Exclude 21 patients with

disorders, such

as Down syndrome and
fragile-X syndrome

Trio-WES testing|

265 unexplained g-NDDs patients who want to obtain a
specific genetic diagnosis via trio-WES were finally enrolled

Training cohort (n = 163)
October 12018 ~ December 31 2022

Internal validation cohort (n = 102)
September 12016 ~ September 30 2018

Trio-WES +:n =82
Trio-WES -:n=81

Exclude 0 patients with

disorders, such

as Down syndrome and
fragile-X syndrome

Trio-WES testing|

97 unexplained g-NDDs patients who want to obtain a specific
genetic diagnosis were finally enrolled

External validation cohort (n=97)
January 1 2023 ~ December 31 2023

Goodness-of-fit test o " -
(10-fold-cross&1000 time boostrap) l' iable logistic
Trio-WES +:n=42 | Internal validation | L | External validation | Trio-WES +:n=42
Trio-WES - :n= 60 | | Trio-WES -:n=55
No. Candidate variables Definitions
Mild-moderate GDD/ID: a GDD patient (< 5y) who exhibits at least two domains of the developmental quotient with a
. GDD/ID . scores >35 or a ID patient (> Sy) who shows an intelligence quotient with a score >40;
! severity Severe-profound GDD/ID: a GDD patient < 5y who exhibits at least two domains of the developmental quotient with
a scores <35 or a ID patient (> 5y) who shows an intelligence quotient with a score <40.
i ASD Yes: a patient showing social communication dysfunctions and repetitive/stereotypic patterns of movement or behavior;
No: a patient without social communication dysfunctions and repetitive/stereotypic patterns of movement or behavior.
ADHD Yes: an individual with persistent inattention and/or hyperactive-impulsive behavior;
u No: an individual has no persistent inattention and/or hyperactive-impulsive behavior.
o Yes: a subject showing repeated seizures with unexpected disturbances of neuron electrical activity;
iv EP s A 5 P o a0
No: a subject without repeated seizures or unexpected disturbances of neuron electrical activity.
v NDC complexity Simple: an individual only comorbid with one type of NDCs (ASD, ADHD, or EP);
P Complicated: an individual comorbid with two or more types of NDCs (ASD, ADHD, and EP).
Vi HCA Yes: a subject exhibiting microcephaly or macrocephaly;
No: a subject shows normal head circumference.
Yes: a child showing obvious pathological brain structure/parenchyma malformations, mainly including dysplasia of the
vii BM corpus callosum, cerebellar atrophy, gyral malformation and microgyria, detected by cranial magnetic resonance imaging;
No: a child shows normal brain structure detected by cranial magnetic resonance imaging.
Yes: a subject having visual impairment or ocular malformation diagnosed by visual evoked potential test or the Human
viii Visual impairment and ocular malformation ~ Phenotype Ontology guideline;
No: a subject has normal visual function and normal ocular phenotype.
Yes: a child exhibiting hearing impairment or ear anomaly diagnosed by auditory brainstem response test or the Human
ix Hearing impairment and ear anomaly Phenotype Ontology guideline;
No: a child has normal hearings and normal ear phenotype.
FIGURE 1

Flowchart and candidate variables description of this double-center study. (A) Flowchart of this study. (B) A description summary of candidate
phenotypic variables applied in current study. g-NDDs, genetic neurodevelopmental disorders; trio-WES, trio-based whole-exome sequencing;

SYSMH, Sun Yat-Sen Memorial Hospital; WCRC, Weierkang Children’s Rehabilitation Center; GDD/ID, global developmental delay/intellectual disability;

ASD, autism spectrum disorder; ADHD, attention deficit hyperactivity disorder; EP, epilepsy; NDC, neurodevelopmental comorbidity; HCA, head
circumference abnormality; BM, brain malformation. Note: "+/-" indicates enrolled individuals who received trio-WES and had a positive genetic
diagnosis (carrying a “likely pathogenic” or “pathogenic” variant) or a negative genetic diagnosis (carrying a “benign” or “uncertain significance” variant)
on the basis of the guidelines of the American College of Medical Genetics.

Frontiers in Neurology

03 frontiersin.org



https://doi.org/10.3389/fneur.2025.1574021
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

Wu et al.

They received trio-WES testing from September 1, 2016 to
December 31, 2022. Among them, 163 individuals recruited between
October 1, 2018 and December 31, 2021, served as training subjects,
whereas another 102 individuals with non-consanguineous
relationships recruited between September 1, 2016 and September
30, 2018, served as internal validation subjects (also called “temporal
validation subjects”). Moreover, 115 individuals diagnosed with
g-NDDs were admitted to Weierkang Children’s Rehabilitation
Center (WCRC) between January 2023 and December 2023. After a
series of screenings (excluding 15 patients without clear or complete
clinical data and 3 patients whose families decline to undergo
genetic tests), a total of 97 non-consanguineous individuals with
g-NDDs were ultimately recruited. They received trio-WES testing
from January 1, 2023 to December 31, 2023, and served as the
external validation subjects (also called “geographical
validation subjects”).

The clinical (phenotypic) definitions of g-NDDs used in the
current study included the following: (1) various severities of GDD/
ID. The clinical diagnostic criteria for GDD/ID were based on the
Diagnostic and Statistical Manual of Mental Disorders, 5th Edition
guidelines for GDD/ID (1). The severity assessment for GDD/ID was
based on the classification criteria of the International Classification
of Diseases Version 11 (19). (2) Comorbid with one or more type(s)
of common neurodevelopmental comorbidity (NDC), including ASD,
ADHD, and EP. Clinical diagnoses of ASD and ADHD were made on
the basis of the related DSM-V guidelines for ASD and ADHD (1).
The clinical diagnosis of EP was made on the basis of the International
League Against Epilepsy guidelines (20). (3) Patients with identified
non-genetic causes, such as hypoxic-ischemic encephalopathy,
bilirubin encephalopathy and intrauterine infections, were excluded.

The inclusion criteria for this study were as follows: (1) g-NDDs
individuals who were admitted to SYSMH (Sep 2016 ~ Dec 2022) or
WCRC (Jan 2023 ~ Dec 2023). (2) Underwent systematic and
standard examinations, including assessing clinical manifestations/
detailed medical history (including GDD/ID condition, history of
ASD, EP and ADHD, birth condition and family history), and
receiving cardinal neurodevelopment-related auxiliary examinations
(Gesell Developmental Scale for Infants/Wechsler Intelligence Scale
for Children, electroencephalogram, cranial magnetic resonance
imaging, auditory brainstem response/visual evoked potential tests,
echocardiography/abdominal ultrasonography). (3) The patients’
families agreed to undergo genetic tests, including routine genetic
screening (G-band karyotyping and fragile-X analysis) and trio-WES,
and want to obtain a specific genetic diagnosis through trio-WES.

The exclusion criteria for this study were as follows: (1) g-NDDs
patients whose medical records were incomplete or unclear or whose
clinical data were missing. (2) Positive routine genetic test results
indicated that there were apparent chromosomal disorders, such as
Down syndrome or fragile-X syndrome, in those individuals, which
had no need to use trio-WES as a diagnostic strategy in those patients.
(3) Those who underwent trio-WES analysis but did not permit the
use of their trio-WES results for publication.

Ethical compliance

The design and launch of this retrospective study were approved
by the Ethical Committee of the Sun Yat-sen Memorial Hospital, Sun

Frontiers in Neurology

10.3389/fneur.2025.1574021

Yat-sen University (Approval Number: SYSKY-2025-244-01). Written
informed consents for genetic investigation and participation in this
study were obtained from the parents or guardians of all 362
enrolled individuals.

Methods for variant capture of trio-WES

The principle of variant capture process and quality control system
of trio-WES have been described in previous studies (21-23) and the
methods in this study can be briefly presented as follows: DNAs were
extracted from the whole blood of the proband and their parents using
a commercialized genomic extraction kit (Qiagen, Shanghai, China).
Mumina TruSeq Exome Kit (Illumina, San Diego, CA, United States)
was used for the DNA library construction and the generation of ~10GB
exome sequencing data/individual. GeneRanger (Xunyin Biotech,
Shanghai, China) was employed for the exome sequencing data analysis.
Then, a series of the genome analysis tools were employed for the read
alignment, indel region realignment, base quality recalibration, variant
capture, and calling/transformation on the basis of the Genome
Aggregation Database (gnomAD). Variant capture control system was
set to a coverage depth >10 with a minor allele frequency <0.05%.

Criteria for identifying exon-level variant
pathogenicity assessment and subject

grouping

The pathogenicity of the detected exon-level SNVs via trio-WES
was scored on the basis of the 2015 American College of Medical
Genetics guidelines for SNV classification (24), and those candidate
SNVs were accordingly divided into “pathogenic/likely pathogenic
SNVs” and “benign/uncertainly significant SNVs” As described in
previous research (5), gnomAD and the in-house SNV population
frequency databases were employed for the assessment of SNV allele
frequency. Functional analysis of the pathogenicity of those variants
was performed via bioinformatic tools. Specifically, in silico prediction
of identified missense/frameshift/nonsense/deletion variants’
pathogenicity was conducted using local versions of Mutation Taster,
PROVEAN, Polyphen-2, REVEL and SIFT. Moreover, in silico
pathogenic prediction of detected splice variants was conducted using
local versions of CADD and Human Splice Finder. Human Genomic
Mutation Database and PubMed were employed to determine whether
identified variants had been recorded previously. GeneReviews and
OMIM databases were employed to obtain the genotype—phenotype
profiles linked to identified SNVs. The pathogenicity of exon-level
CNVs identified via trio-WES was rated on the basis of the 2019
American College of Medical Genetics guidelines for the interpretation
of postnatal CNVs (25), and those candidate CNV's were accordingly
classified as “pathogenic/likely pathogenic CNVs” and “benign/
uncertainly significant CNVs” All candidate SNVs/CNVs in this
study were manually interpreted and assessed by two or more
experienced clinical geneticists, following the American College of
Medical Genetics guidelines mentioned above. ClinVar database' was

1 http://www.ncbi.nlm.nih.gov/clinvar

frontiersin.org


https://doi.org/10.3389/fneur.2025.1574021
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://www.ncbi.nlm.nih.gov/clinvar

Wu et al.

employed to refer the report status (novel or previously reported) of
all identified SNVs and CNVs.

On the basis of the outcome indicator from the trio-WES
examination records of the hospital digital system, the enrolled
individuals were then grouped into those with positive trio-WES-
tested genetic diagnoses (i.e., those with pathogenic/likely pathogenic
exon-level SNVs or CNVs in their trio-WES analysis reports) and
those with negative trio-WES-tested genetic diagnoses (i.e., those with
benign/uncertainly significant exon-level SNVs or CNVs in their
trio-WES analysis reports and maybe the out-exon-level variants can
explain their g-NDDs conditions).

Candidate variable collection and
interpretation of collected variables

The demographic characteristics and phenotypic variables of all
enrolled subjects were collected from medical records of the hospital
digital system. This included (1) demographic characteristics, such as
sex, onset age, and admission date. (2) candidate phenotypic variables:
(i) GDD/ID severity; (ii) ASD; (iii) ADHD; (iv) EP; (v) NDC
complexity; (vi) Head circumference abnormality (HCA); (vii) Brain
structure malformation (BM); (viii) Visual impairment and ocular
malformation; (ix) Hearing impairment and ear anomaly. A summary
of those phenotypic variables and their detailed definitions were
demonstrated in Figure 1B.

Model visualization and reliability and
performance evaluation

Independent phenotypic variables were determined via univariate
and multivariate logistic regression analysis using the data from the
training cohort. Specifically, during the univariate and multivariate
regression analyses of the training cohort, variables with clinical
significance and significant differences (p < 0.05) were identified
between groups with positive and negative trio-WES-based genetic
diagnoses, and used for logistic linear model construction.

Firstly, we used Spearman’s correlation analysis to determine
whether there were confirmed bi-interdependencies among the
identified phenotypic variables. According to the classification of
statistical power for correlation analysis established by Cohen (26),
when the absolute value of Spearman’s correlation coefficient (| 7 |) < 0.5
for all pairwise comparisons among those variables, there were no
confirmed bi-interdependencies existed among them. Then, we used
collinearity analysis to further determine whether there were significant
multiple interdependencies among those phenotypic factors.
Specifically, the tolerance and variance inflation factor (VIF) were
applied to assess the multiple interdependence among identified
variables. When the value of tolerance was >0.2 and the VIF was <2 for
each identified variable, there were no multiple interdependencies
existed among those variables, and could be considered independent
phenotypic variables for linear model construction (27). Then, we used
the 10-fold-cross resampling with the 1,000-time bootstrap repeated
sampling methods to evaluate the goodness-of-fit and reliability degrees
of the linear regression model in training set. Specifically, the 10-fold-
cross resampling approach is an established and robust resampling
technique employed to assess the consistence performance and the
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reliability of constructed model, which involves partitioning the entire
dataset into 10 mutually exclusive and approximately equal-sized folds.
During iterative training, 9 folds are aggregated as the training subset;
the remaining single fold serves as the validation subset. This process is
repeated 10 times with each fold served exactly once as the validation
subset. Meanwhile, the bootstrap resampling method is another classical
approach that is drawn from the original training dataset with
replacement and is repeated 1,000 times. The established performance
metric, concordance index (C-index) of the two methods, is calculated
to examine the reliability of constructed model; when the two methods’
C-index values were >0.7, indicating the regression model can
be regarded as a good reliability linear model for explaining variance of
the set outcomes (28). Finally, we generated an alignment diagram using
R packages to visualize the scoring system of our constructed logistic
regression model.

For model performance evaluation, the discriminatory power
was first evaluated in the training set via the area under the curve
(AUC) values of the receiver operating characteristic (ROC)
curves. Then, the calibration curves with the Hosmer-Lemeshow
(H-L) test were used to evaluate the goodness of fit between the
predicted calculation and the observed data. Specifically, when the
p-value of H-L test <0.05, the dotted line (representing model-
predicted data) in calibration curve significantly differed from the
solid line (representing actual observed data) in calibration curve,
and the model did not fit well. Otherwise, the model fit well (p-
value of H-L test >0.05). Moreover, the benefit of the clinical
application of the model was also assessed via decision curve
analysis (DCA) and a clinical impact curve (CIC).

Model performance validation

According to the maximal Youden index value (corresponding to
the most optimal values of sensitivity and specificity of model)
calculated in the training set, we further set the corresponding
individual’s total score (cut-off score) for the training and internal/
external validation cohorts, then based on this cut-off score, we further
divided subjects in training and internal/external validation sets into a
“model-predicted high probability diagnostic group” and a “model-
predicted low probability diagnostic group” The AUC values of the
ROC curves, calibration curves with the H-L test and DCA/CIC were
subsequently applied to verify the discriminative performance of model
in internal and external validation sets. Finally, we calculated the model
sensitivity, specificity, accuracy, precision and F1 score for the training
and external validation sets and visualized those results (confusion
matrix) via Sankey plots.

Statistical analysis

In this study, Microsoft Excel software was used to record
individual data, and all the statistical analyses were conducted in the
R environment (version 4.4.2, https://www.r-project.org/). As in
previous studies in the R environment (12, 27, 29), the main R
packages used for statistical analysis and figure plotting in the present
research included “ggplot2,” “foreign,” “rms,” “rmda,” “caret,” “tidyverse”
and “ggDCA” The results with a p-value <0.05 were considered

statistically significant throughout the study, if not specially noted.

rms,
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Results
Patient characteristics

In total, 163, 102, and 97 pediatric and adolescent subjects with
unexplained g-NDDs were enrolled in the training, internal validation,
and external validation cohorts, respectively. A comparison of the
baseline demographics and phenotypic characteristics of the subjects in
the training and validation cohorts is shown in Table 1, and the detailed
genotypic and phenotypic data of those individuals in the training and
validation cohorts can be found in Supplementary Files 1-6, respectively.

Among the 163 enrolled subjects in the training cohort, 93
(57.1%) had mild-moderate GDD/ID, and the remainder (70/163,
42.9%) had severe-profound GDD/ID. Most children (129/163,
79.1%) presented as simple g-NDDs without comorbid ASD,
ADHD or EP. Meanwhile, parts of cases had ASD (99/163, 60.7%),
ADHD (41/163, 25.2%), EP (62/163, 38.0%), HCA (44/163,
27.0%), BM (23/163, 14.1%), impairment/ocular
malformation (8/163, 4.9%) and hearing impairment/ear anomaly
(227163, 13.%), respectively. 82 (50.3%) had a genetic diagnosis
via trio-WES. Of the 82 trio-WES diagnosed children in the
training cohort, 62 (75.6%) cases were diagnosed with
SNV-mediated syndromes (a total of 72 detected SNVs with 35
being novel variant and 37 being previously reported) and 20
(24.4%) with CNV-mediated syndromes (all these 20 identified
CNVs were novel variants).

visual

Among the 102 and 97 enrolled cases in the internal and external
validation cohorts, 42 (41.2%) individuals included in the internal
validation cohort obtained a genetic diagnosis via trio-WES. Of the
42 trio-WES diagnosed children, 36 (85.7%) cases were diagnosed
with SNV-mediated syndromes (a total of 40 detected SNV with 14
being novel variant and 26 being previously reported) and 6 (14.3%)
cases were diagnosed with CNV-mediated syndromes (all these 6
identified CNV's were novel variants). While, in external validation
cohort, 42 (43.3%) enrolled subjects received a genetic diagnosis via
trio-WES. Of the 42 trio-WES diagnosed children, 32 (76.2%) cases
were diagnosed with SNV-mediated syndromes (a total of 34 detected
SNVs with 16 being novel variant and 18 being previously reported)
and 10 cases (23.8%) diagnosed with CNV-mediated syndromes (all
these 10 identified CNVs were novel variants).

Independent predictive indicator selection
and regression model construction

First, univariate logistic analysis for all included phenotypic
variables presented in Table 1 was performed in the training set to
determine the potential trio-WES diagnosis-related phenotypic
markers. As demonstrated in Table 2, the results of univariate
logistic analysis revealed that four candidate phenotypic markers
(GDD/ID severity, NDC complexity, ASD, and HCA) had
potential predictive value. Among them, severe-profound GDD/
ID [OR (95% CI): 6.880 (3.414-13.865), p < 0.001], multiple
NDCs [OR (95% CI): 4.237 (1.783-10.067), p < 0.01], ASD [OR
(95% CI): 4.673 (2.360-9.253), p < 0.001], and HCA [OR (95%
CI): 4.286 (1.977-9.292), p < 0.001] were associated with high
possibilities of having genetic diagnosis via trio-WES in
g-NDDs subjects.
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On the basis of the univariate regression analysis, the phenotypic
factors with p < 0.05, including GDD/ID severity, NDC complexity,
ASD, and HCA (Figure 1B), were candidate indicators for multivariate
linear regression model construction. The four variables were firstly
analyzed via Spearman’s correlation analysis. As shown in Figure 2A,
the values of || for pairwise comparisons among those four variables
were all <0.5, indicating that no confirmed bi-interdependencies
existed among them. Then, the four indicators were subsequently
analyzed via collinearity analysis. As demonstrated in Table 3, the
tolerances of each phenotypic factor were all >0.2, and the values of
the VIFs of each indicator were all <2, indicating that no multiple
interdependencies existed among those four phenotypic variables.

Those four phenotypic factors without interdependencies were
incorporated into the multivariate logistic regression. As indicated in
Table 2, our multivariate analysis results further revealed that GDD/
ID severity [OR (95% CI): 4.865 (2.213-10.694), p < 0.001], NDC
complexity [OR (95% CI): 3.731 (1.399-9.950), p = 0.009], ASD [OR
(95% CI): 3.256 (1.479-7.168), p = 0.003] and HCA [OR (95% CI):
2.788 (1.148-6.774), p = 0.024] were independently associated with
the diagnostic efficacy of trio-WES among g-NDDs subjects. Then,
we used the 10-fold-cross validation and the bootstrap repeated
sampling approach for evaluation the reliability of constructed model.
As shown in Figure 2B, after conducting 10-fold-cross validation, the
C-index value was 0.797 with a 95% CI of 0.732-0.862. In the
meantime, after performing bootstrap method with 1,000-time
resampling, the C-index also show robust value with 0.800 (95% CI:
0.707-0.893) (Figure 2C). All those results (both two approaches’
C-indices were >0.7) indicated that the constructed regression model
owned good goodness-of-fit and can be regarded as a reliability linear
model for explaining variance of the set outcome (diagnosed by trio-
WES) for g-NDDs patients.

According to the multivariate logistic regression f value and the
intercept term, a novel regression model for predicting the diagnostic
efficacy of using trio-WES in pediatric patients with g-NDDs was
constructed, and the corresponding formula for predicting the
probability (P) of a g-NDDs subject being diagnosed by trio-WES was
as follows: Logit (P) = 1.582 (B,) x GDD/ID severity (severe-profound:
1; mild-moderate: 0) + 1.317 (B,) x NDC complexity (complicated: 1;
simple: 0) + 1.181 (f5) X ASD (yes: 1; no: 0) + 1.025 (B,) x HCA (yes:
I; no: 0) - 1.914 (intercept term). The most prevalent scoring
methodology for included variables is utilization of the coefficients ()
derived from regression model. The calculated score assigned to each
variable is proportional to its f value, often mapped to a 0 to 100-point
scale via linear transformation (30). Specifically, we set 100-point to a
variable with the max f value (f,..), and based on that, we can
calculate other included variables’ calculated score via formula
“calculated score, =100 X B, +Pna. Detailed coefficients of this
regression model and the corresponding calculated score for each
included variable were demonstrated in Table 4.

Model visualization via alignment diagram
and the assessment of the related
visualized scoring system

As shown in Figure 3A, by using R packages “rms” and “rmda,”

we generated an alignment diagram to visualize the constructed
logistic regression model and its related scoring system (Table 4).
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TABLE 1 Comparison of baseline demographics or phenotypic characteristics between training cohort and internal/external validation cohorts of trio-
WES tested children with g-NDDs.

Demographics | Indicators Training Internal t/p p- External t/@ p-
or cohort validation value value* validation value value**
characteristic cohort cohort
Demographic parameters
Case number (n) 163 102 97
Female 57 (35.0%) 26 (25.5%) 28 (28.9%)
Sex [11 (%)] 2.199 0.138 0.771 0.380
Male 106 (65.0%) 76 (74.5%) 69 (71.1%)
Admission Periods (MM/YY ~ MM/YY) Oct/2018 ~ Dec/2022 | Sep/2016 ~ Sep/2017 Jan/2023 ~ Dec/2023
Onset age [Mean + SEM/(y)] 4.396 + 0.261 4.610 +0.428 0.428 0.669 4.945 + 0.300 1.380 0.169
Patient sources SYSMH SYSMH WCRC
Phenotypic variates
Mild-moderate 93 (57.1%) 63 (61.8%) 63 (64.9%)
GDD/ID severity
severe- 0.397 0.529 1.267 0.260
[n(%)] 70 (42.9%) 39 (38.2%) 34 (35.1%)
profound
NDC complexity Simple 129 (79.1%) 81 (79.4%) 69 (71.1%)
0.000 1.000 1.729 0.189
[n (%)] Complicated 34 (20.9%) 21 (20.6%) 28 (28.9%)
Yes 99 (60.7%) 69 (67.6%) 58 (59.8%)
ASD [1 (%)] 1.011 0.315 0.000 0.985
No 64 (39.3%) 33 (32.4%) 39 (40.2%)
Yes 41 (25.2%) 24 (23.5%) 33 (34.0%)
ADHD [n (%)] 0.023 0.879 1.933 0.164
No 122 (74.8%) 78 (76.5%) 64 (66.0%)
Yes 62 (38.0%) 42 (41.2%) 35 (36.1%)
EP (1 (%)] 0.259 0.611 0.099 0.753
No 101 (62.0%) 60 (58.8%) 62 (63.9%)
Yes 44 (27.0%) 33 (32.4%) 27 (27.8%)
HCA [n (%)] 0.633 0.426 0.000 0.997
No 119 (73.0%) 69 (67.6%) 70 (72.2%)
Yes 23 (14.1%) 24 (23.5%) 8 (8.2%)
BM [n (%)] 3.197 0.074 1.471 0.225
No 140 (85.9%) 78 (76.5%) 89 (91.8%)
Visual impairment/ Yes 8 (4.9%) 2(2.0%) 10 (10.3%)
ocular malformation 0.799 0.371 1.979 0.160
No 155 (95.1%) 100 (98.0%) 87 (89.7%)
[n (%)]
Hearing impairment/ | Yes 22 (13.5%) 6 (5.9%) 9 (9.3%)
3.086 0.079 0.668 0.414
ear anomaly [ (%)] No 141 (86.5%) 96 (94.1%) 88 (90.7%)
Outcomes
Trio-WES-based Positive 82 (50.3%) 42 (41.2%) 42 (43.3%)
diagnostic status 1.750 0.186 0.933 0.334
[ (%)] Negative 81 (49.7%) 60 (58.8%) 55 (56.7%)
0

*, training cohort vs. internal validation cohort; **, training cohort vs. external validation cohort; g-NDDs, genetic neurodevelopmental disorders; trio-WES, trio-based whole exome
sequencing; SYSMH, Sun Yat-sen Memorial Hospital; WCRC, Weierkang Children’s Rehabilitation Center; GDD/ID, global developmental delay/intellectual disability; NDC,
neurodevelopmental comorbidity; ASD, autism spectrum disorder; ADHD, attention deficit hyperactivity disorder; EP, epilepsy; HCA, head circumference abnormality; BM, brain
malformation.

Specifically, the alignment diagram provided an estimate of the
probability of being diagnosed by trio-WES via the scored
contributions of the four included binary phenotypic indicators
and could be used for an g-NDDs child at the time of initial
admission. According to the scoring system visualized by the
alignment diagram and distinct phenotypic manifestations of all
enrolled 362 g-NDDs subjects in training and validation cohorts,
we could assign corresponding scores to each individual, thereby
deriving an aggregate score for each of them. Based on their
aggregate scores, we could further classify those subjects into
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different subgroups at each aggregate score. As revealed in
Figures 3B-D, bar charts showing the percentages of cases with
positive trio-WES diagnoses in different subgroups at each
aggregate score across the training, internal and external validation
cohorts, and we found that a higher aggregate score was
consistently and strongly associated with a significantly increased
rate of positive trio-WES diagnoses across all these three cohorts,
further demonstrating the robust predictive power of this scoring
system for identifying g-NDDs cases likely to yield a positive
genetic diagnosis via trio-WES.
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TABLE 2 Univariate and multivariate logistic regression for predicting diagnostic efficacy of using trio-WES in g-NDDs individuals in training set.

Univariate logistic analysis

Multivariate logistic analysis

Candidate Candidate
e OR (95%Cl) e OR (95%Cl)
indicators indicators
GDD/ID severity 6.880 (3.414-13.865) <0.001%3%* GDD/ID severity 4.865 (2.213-10.694) <0.001 %3
NDC complexity 4.237 (1.783-10.067) 0.001%* NDC complexity 3.731 (1.399-9.950) 0.009%*
ASD 4.673 (2.360-9.253) <0.001%** ASD 3.256 (1.479-7.168) 0.003%*
ADHD 1.196 (0.589-2.431) 0.620
EP 0.580 (0.306-1.100) 0.095
HCA 4.286 (1.977-9.292) <0.001%#** HCA 2.788 (1.148-6.774) 0.024*
BM 2.043 (0.814-5.126) 0.128
Visual impairment/ocular
0.172
malformation 3.118 (0.610-15.932)
Hearing impairment/Ear
0.669
anomaly 1.217 (0.494-2.999)

Trio-WES, trio-based whole exome sequencing; g-NDDs, genetic neurodevelopmental disorders; GDD/ID, global developmental delay/intellectual disability; NDC, neurodevelopmental
comorbidity; ASD, autism spectrum disorder; ADHD, attention deficit hyperactivity disorder; EP, epilepsy; HCA, head circumference abnormality; BM, brain malformation; OR (95%CI),

odds ratio (95% confidence interval). *p < 0.05, **p < 0.01, ***p < 0.001.

Evaluation of the predictive model in the
training cohort

In the training set, the calibration curves with the H-L test were
first used to assess the fitness of the predictive model. As revealed in
Figure 4A, the calibration plots of the model showed a good fit
between the actual and model-predicted diagnostic rates, and in the
H-L test, > =5.571 with a p-value =0.473, further indicating
satisfactory consistency between the model predictions and the actual
observed values.

ROC curves were subsequently used to assess the discriminative
performance of the predictive model. As shown in Figure 4B, the
results demonstrated that the AUC = 0.821 (95% CI: 0.756-0.886),
suggesting that the model had good predictive value in the training
set. According to the ROC curves of the training cohort, the maximal
Youden index was 0.547 and was selected to set the optimal cut-off
score (148), which generated a confusion matrix with values of
sensitivity, specificity, false negative rate (FNR), false positive rate
(FPR), accuracy, precision, and F1 score of 73.20, 81.50, 26.80, 18.50,
77.30, 80.00%, and 0.76, respectively, in the training set (Figure 5A
and Table 5).

Moreover, we also applied DCA and the CIC to evaluate the
clinical usefulness of the predictive model in the training set. As
demonstrated in Figures 4C,D, individuals with g-NDDs could obtain
greater net benefits from our model than from the hypothetical treat-
none or treat-all scenarios, suggesting that the use of this model to
predict the diagnostic efficacy of trio-WES for g-NDDs children may
bring clinicians more benefits.

Internal (temporal) and external
(geographical) validations of the model
performance

As shown in Figure 6A, the calibration curves with the H-L test
revealed excellent agreement between the model predictions and the
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actual observed results (* = 5.221 with p-value = 0.516) in the internal
set. Moreover, the ROC plots also revealed that the model had a
powerful discriminative ability in the internal set (Figure 6B, AUC:
0.905, 95% CI: 0.842-0.968). As reflected by the results of the DCA
and CIC in the internal set, applying our model to predict the
diagnostic efficacy of trio-WES for g-NDDs patients could result in
greater net benefits (Figures 6C,D). As reflected by the confusion
matrix results of the Sankey plot in the internal set, the sensitivity,
specificity, FNR, FPR, accuracy, precision and F1 score of the model
in the internal set were 76.20, 85.00, 23.80, 15.00, 81.40, 78.00%, and
0.77, respectively (Figure 5B and Table 5).

Similarly, the calibration curves with the H-L test (y* = 2.494 with
p value = 0.777), ROC curves (AUC: 0.919, 95% CI: 0.858-0.979) and
DCA/CIC were all applied in the external set (Figures 7A-D). A
confusion matrix results of the Sankey plot in the external set showing
the sensitivity, specificity, FNR, FPR, accuracy, precision and F1 score
of the model in the external set were 76.20, 87.30, 23.80, 12.70, 82.50,
82.10%, and 0.79, respectively (Figure 5C and Table 5).

Discussion

With the rapid development of next-generation sequencing
technology, genetic causes are being detected more frequently than
before in many individuals with unexplained syndrome involving
multiple organ malformations (5). The application of next-
generation sequencing has completely changed the landscape of
clinical genetics; compared with conventional tests (such as family
segregation analysis and Sanger sequencing), trio-WES provides
an effective way to identify exon-level variants and determine the
diagnosis of many rare monogenetic disorders, avoiding previous
“diagnostic odysseys” experienced by many patients and their
families (31-34). Nonetheless, we should note that technical
limitations (exon-level sequencing only), along with the complexity
of the genome (such as deep intronic or non-coding variants), may
inevitably hinder the effectiveness of trio-WES. Whole-genome
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FIGURE 2

Spearman’s correlation analysis and Goodness-of-fit tests for evaluation of the reliability of the constructed logistic regression model. (A) Bar charts
showing the pairwise comparisons of |r| values among those model-constructed variables across training cohort. (B) Point-fold line chart with 10-fold-
cross resampling approach showing the model had good stability with excellent consistence in training set (C-index, 0.797 with 95% CI, 0.732-0.862).
(C) Histogram with 1,000-time resampling bootstrap method revealing the model did not overfit and showed good reliability in training set (C-index,
0.800 with 95% CI, 0.707-0.893). ||, Spearman'’s correlation coefficient; GDD/ID, global developmental delay/intellectual disability; ASD, autism
spectrum disorder; NDC, neurodevelopmental comorbidity; HCA, head circumference abnormality.

TABLE 3 The collinearity diagnostic analysis of variables for predicting efficacy of using trio-WES in g-NDDs individuals in training set.

Candidate variables Tolerance VIF
GDD/ID severity 0.841 1.189
NDC complexity 0.947 1.056
ASD 0.898 1.114
HCA 0.884 1131

Trio-WES, trio-based whole exome sequencing; g-NDDs, genetic neurodevelopmental disorders; GDD/ID, global developmental delay/intellectual disability; NDC, neurodevelopmental

comorbidity; ASD, autism spectrum disorder; HCA, head circumference abnormality; VIF, variance inflation factor.
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TABLE 4 Coefficients of binary logistic regression for predicting diagnostic efficacy via trio-WES in children with g-NDDs in training set.

Phenotypic 95% Cl for  Calculated score
variables OR

GDD/ID severity 1.582 (B1) 0.402 15.500 <0.001 4.865 2213-10.694 100*

NDC complexity 1.317 (B2) 0.500 6.921 0.009 3.731 1.399-9.950 83 (100 x p2+41)
ASD 1.181 (B3) 0.403 8.601 0.003 3.256 1.479-7.168 75 (100 x p3=p1)
HCA 1.025 (B4) 0.453 5.124 0.024 2.788 1.148-6.774 65 (100 x Pa=p1)

Trio-WES, trio-based whole exome sequencing; g-NDDs, genetic neurodevelopmental disorders; GDD/ID, global developmental delay/intellectual disability; NDC, neurodevelopmental
comorbidity; ASD, autism spectrum disorder; HCA, head circumference abnormality; B, § value; S. E., standard error; OR, odds ratio; 95% CI, 95% confidence interval. *The variable showing

the max f# value and being set 100-point as reference-point for other included variables.

sequencing can offer advantages over trio-WES by identifying both
exon-level and out-exon-level variants (such as structural, intronic
and non-coding variants) but compared with trio-WES charges
(almost $ 1,000 ~ 1,400 in China), the costs of whole-genome
sequencing per subject in China is almost double than that of trio-
WES. Due to the higher cost and more intense analysis, the
application of whole-genome sequencing in clinical settings as a
first-tier genetic diagnostic technique is still restricted (35-37). To
date, trio-WES still provides an efficient and appropriate tool for
first-tier genetic diagnosis worldwide and is invaluable for
subsequent genetic counseling and relevant medical management.
Therefore, it is meaningful to explore effective strategies to predict
the diagnostic yield of trio-WES in clinical settings.

The diagnostic rate of trio-WES in clinical settings is likely
influenced by a large variety of factors, such as the disorder type,
phenotypic spectrum and age of onset (17, 36). For example, for
individuals with congenital dermatological syndromes, the
diagnostic rate can even reach 92% (17); perhaps the clear
phenotypic presentation of those syndromes contributes to its high
diagnostic rate. Thus, correct and precise assessment of subjects’
clinical data or phenotypic spectrum at the pre-WES stage is very
important and presents a challenge, as it involves stringent
collection and comprehensive analysis of the variable phenotypic
features of every case. In the present study, we carefully and
comprehensively collected detailed phenotypic information that
can reflect neurodevelopment conditions objectively for every
single subject to increase the diagnostic yield, and the overall
diagnostic rates in the training, internal validation, and external
validation cohorts were 50.3, 41.2 and 43.3%, respectively, which
were higher than those reported in previous WES studies of
patients with GDD/ID alone (27 to 39%) (8-10). Our findings
concerning the diagnostic yield of using trio-WES for g-NDDs
diagnosis further reinforce the conclusions presented by a research
that the presence of GDD/ID along with multiple phenotypic
features can enhance the diagnostic yield of trio-WES (2),
emphasizing the importance of phenotypic feature enrichment in
improving the exon-level variants detection rate of using trio-WES
(18). According to the theory of the phenotype-to-genotype
process and the phenotype-driven strategy, we speculate on the
possibility that using key phenotypic factors that related to a high
probability of having genetic variants detected by WES to construct
a model for predicting trio-WES diagnostic rate, which may
provide valuable information for personalized diagnostic regimens
for g-NDDs children.

Among those four phenotypic factors (GDD/ID severity, NDC
complexity, ASD, and HCA) identified in our study, the strongly
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top 3 associated features with positive trio-WES results were
severe-profound GDD/ID (OR: 4.865, 95% CI: 2.213-10.694),
followed by complicated NDC complexity (OR: 3.731, 95% CI:
1.399-9.950) and ASD (OR: 3.256, 95% CI: 1.479-7.168). The
current findings suggest that severe-profound GDD/ID, ASD and
a broad spectrum of NDCs may share genetic backgrounds in the
context of rare monogenic NDDs, leading to a higher diagnostic
rate of trio-WES. In the Simons Foundation Autism Research
Initiative (SFARI, http://gene.sfari.org/) database, there are over
one thousand genes involved in gene expression regulation and
neuronal communication functions that are implicated in
susceptibility to ASD and other coexisting NDCs, such as ADHD
(38). Alterations in the functions of neuronal communication and
gene expression regulation are also known to be closely associated
with GDD/ID-related genes (39), which may explain the shared
genetic backgrounds among severe-profound GDD/ID, ASD and
a broad spectrum of NDCs. Moreover, we also revealed that HCA
(OR: 2.788, 95% CI: 1.148-6.774) were moderately associated with
positive trio-WES results under g-NDDs conditions. We speculate
that in the process of craniofacial development, neuronal crosstalk
and reciprocal signaling between the craniofacial ectoderm and
neural crest cells play crucial roles in the regulation of craniofacial
patterning and morphogenesis (40, 41). The process of neural crest
development is regulated by epigenetic modifications, including
chromatin remodeling, histone modification and DNA methylation
(42). Alterations in gene expression regulation signaling and
associated neuronal communication can result in disruptions in
neural crest development, leading to a set of syndromes affecting a
broad spectrum of congenital craniofacial malformations, among
which HCA is prominent. Therefore, variants in genes involved in
gene expression regulation and neuronal communication may
impair multiple neurodevelopmental processes, causing severe-
profound GDD/ID, ASD, and a broad spectrum of NDCs in
addition to HCA. Our findings demonstrate that the presence of
these four phenotypic features might indicate abnormalities in
genes related to gene expression regulation or neuronal
communication and may be strongly linked to positive trio-WES
results, providing novel insights into the genotype-phenotype
associations of g-NDDs. On the other hand, previous studies had
already revealed that the four phenotypic features (severe-profound
GDD/ID, having ASD, complicated NDC complexity, and HCA)
are strongly established as signifiers of rare monogenic NDDs (2,
5, 43), and variants at exon-level had also been identified as the
main cause of rare monogenic NDDs (44); given these close
associations among them, it is reasonable to presume that a
g-NDDs subject exhibiting more phenotypic signifiers related to
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rare monogenic NDDs may have more probabilities of harboring
relevant exon-level variant(s), and thus can be diagnosed more
easily via trio-WES. However, due to the lack of enough g-NDDs
cases with confirmed variants outside exons (such as in introns),
we cannot determine whether there have significant differences of
those phenotypic signifiers between cases carrying variants at
exon-level and at out-exon-level. More genotype-phenotype
analyses are still needed to corroborate our speculation, and will
be the focus of our future work.

The present study revealed that the established logistic regression
model based on those four easily-obtained phenotypic factors
exhibited good calibration and discrimination with high accuracy
and precision in both the training and validation cohorts. However,

Frontiers in Neurology

the current model has several limitations. First, although the FNR of
this model across training and validation sets (around 23% ~ 26%)
was acceptable for a primary study, as many studies demonstrated
that the predictive model's FNR of being around 25% was tolerable
especially for a preliminary study (45-47); it still showed relatively
higher compared with the low FPR (around 12% ~ 18%) of the
model, suggesting that the predictive model needs further refinement;
perhaps it was too simplistic that all included indicators were binary
variables, which can inevitably affect the model performance. Further
improvements, such as introducing more polytomous variables or
complicated variables into model, are required. Second, this was a
pilot study, and the number of subjects enrolled in the current study
was relatively small. Moreover, it is essential to establish a rigorous
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A Group Predictive Model Trio-WES Diagnoses
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B Group Predictive Model
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FIGURE 5

Sankey plots revealing the discriminatory performance of the predictive model across training and validation cohorts. (A) Training cohort, (B) internal
validation cohort and (C) external validation cohort. Training, training cohort; inVal, internal validation cohort; exVal, external validation cohort. FP, false
positive; TP, true positive; TN, true negative; FN, false negative. Note: the maximal Youden index (0.547) based on the training cohort was chosen to set
the optimal cut-off score (148), a critical value that clustered those three cohorts (Training, inVal, and exVal cohorts) into groups with high probability
and low probability of having a genetic diagnosis via trio-WES.
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TABLE 5 Predictive performance of the constructed model in training and validation sets.

Predictive values Training set Internal validation set External validation set
Sensitivity (%) 73.20% 76.20% 76.20%

Specificity (%) 81.50% 85.00% 87.30%

ENR (%) 26.80% 23.80% 23.80%

FPR (%) 18.50% 15.00% 12.70%

Accuracy (%) 77.30% 81.40% 82.50%

Precision (%) 80.00% 78.00% 82.10%

F1 score 0.76 0.77 0.79

FNR, false negative rate; FPR, false positive rate.
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FIGURE 6
Internal verification of the discriminatory performance of the model in the internal validation set. (A) Calibration plots and (B) ROC curves verifying the
estimation accuracy of genetic diagnosis via trio-WES on the basis of the predictive model. (C) DCA and (D) CIC validating the clinical value of the
model in the internal validation set. AUC, area under the ROC curves; 95% Cl, 95% confidence interval; ROC, receiver operating characteristic; DCA,
decision curve analysis; CIC, clinical impact curve.
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decision curve analysis; CIC, clinical impact curve.

External verification of the discriminatory performance of the model in the external validation set. (A) Calibration plots and (B) ROC curves verifying the
estimation accuracy of genetic diagnosis via trio-WES on the basis of the predictive model. (C) DCA and (D) CIC validating the clinical value of the
model in the internal validation set. AUC, area under the ROC curves; 95% Cl, 95% confidence interval; ROC, receiver operating characteristic; DCA,
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evaluation framework that ensures reproducibility across hospital
and is independent of the individual physician’s judgment, which
indicated that there have insufficient evidences to support this model
could apply in the clinical practice directly; more multicenter studies
(center number > 2) with a large sample size (case size > 500) and
rigorous evaluation framework are needed to further validate our
model. Moreover, our predictive model was based on a retrospective
analysis; how it performs in prospective studies remains to
be further evaluated.

Conclusion

In conclusion, we found the potential linear relationship

between trio-WES-diagnostic rates and the phenotypic
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enrichments in g-NDDs children for the first time, indicating the
possibility of applying a logistic regression model based on
phenotypic features to predict the personalized diagnostic rates of
using trio-WES in children with g-NDDs. However, due to the
false negatives existed in the established model of this pilot study,
this model could not apply directly in the clinical practice as its
current form; further improvements are required to reduce false
negatives toward 0%.
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