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Background: Genetic neurodevelopmental disorders (g-NDDs), a complex 
group of idiopathic syndromes with a heterogeneous genetic etiology, are 
defined as global developmental delay/intellectual disability (GDD/ID) with 
other common neurodevelopmental comorbidity (NDC), such as autism 
spectrum disorder (ASD). Although significant progress has been made in 
trio-based whole-exome sequencing (trio-WES) that enable the detection of 
exon-level variants, the diagnostic efficacy of using trio-WES for g-NDDs is still 
not satisfactory. Therefore, exploring key phenotypic variables for forecasting 
the diagnostic probability of trio-WES is extremely necessary to implement 
personalized diagnosis for children with g-NDDs.
Methods: A total of 265 g-NDDs children who received trio-WES at Sun Yat-sen 
Memorial Hospital between Sep 2016 and Dec 2022 were enrolled and clustered 
temporally into training and internal validation sets [163 cases (Oct 2016 ~ Dec 
2022) and 102 cases (Sep 2016 ~ Sep 2018), respectively]. A total of 97 g-NDDs 
children who underwent trio-WES at Weierkang Children’s Rehabilitation Center 
between Jan 2023 and Dec 2023 were enrolled and served as an independent 
external validation set. Univariate and multivariate logistic regression were 
conducted in the training set to screen out independent diagnosis-related 
phenotypic signifiers and establish an alignment diagram model. The model was 
further validated in internal and external validation sets.
Results: Through univariate and multivariate analyses, independent diagnosis-
related predictive signifiers, including GDD/ID severity, NDC complexity, ASD, 
and head circumference abnormality, were identified in the training cohort and 
used to construct a model. The model showed good discrimination power with 
an area under the ROC curves (AUC) in the training set of 0.821 (95% CI: 0.756–
0.886), yielding a F1 score of 0.76. The model also showed powerful prediction 
in both the internal (AUC: 0.905 with 95% CI: 0.842–0.968 and F1 score: 0.77) 
and external validation sets (AUC: 0.919 with 95% CI: 0.858–0.979 and F1 score: 
0.79).

OPEN ACCESS

EDITED BY

Joseph Alaimo,  
Children’s Mercy Hospital, United States

REVIEWED BY

Chiara Reale,  
IRCCS Carlo Besta Neurological Institute 
Foundation, Italy
Maud de Dieuleveult,  
Institut National de la Santé et de la 
Recherche Médicale (INSERM), France
Santasree Banerjee,  
Jilin University, China

*CORRESPONDENCE

Liyang Liang  
 liangliy@mail.sysu.edu.cn  

Wenting Tang  
 tangwt@sysucc.org.cn

RECEIVED 11 February 2025
ACCEPTED 02 October 2025
PUBLISHED 15 October 2025

CITATION

Wu R, Luo X, Meng Z, Tang W and 
Liang L (2025) Establishment and validation of 
a phenotype-driven predictive model for the 
diagnostic efficacy of trio-based whole 
exome sequencing (trio-WES) in children with 
genetic neurodevelopmental disorders 
(g-NDDs).
Front. Neurol. 16:1574021.
doi: 10.3389/fneur.2025.1574021

COPYRIGHT

© 2025 Wu, Luo, Meng, Tang and Liang. This 
is an open-access article distributed under 
the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE  Original Research
PUBLISHED  15 October 2025
DOI  10.3389/fneur.2025.1574021

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2025.1574021&domain=pdf&date_stamp=2025-10-15
https://www.frontiersin.org/articles/10.3389/fneur.2025.1574021/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1574021/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1574021/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1574021/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1574021/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1574021/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1574021/full
mailto:liangliy@mail.sysu.edu.cn
mailto:tangwt@sysucc.org.cn
https://doi.org/10.3389/fneur.2025.1574021
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2025.1574021


Wu et al.� 10.3389/fneur.2025.1574021

Frontiers in Neurology 02 frontiersin.org

Conclusion: We found the potential linear relationship between trio-WES-
diagnostic rates and the phenotypic enrichments in g-NDDs patients for the 
first time, indicating the possibility of applying a logistic regression model based 
on phenotypic features to predict the personalized diagnostic rates of using 
trio-WES in children with g-NDDs.

KEYWORDS

genetic neurodevelopmental disorders, neurodevelopmental comorbidity, trio-based 
whole-exome sequencing, exon-level variants, diagnostic efficacy, phenotype-driven, 
alignment diagram

Introduction

Genetic neurodevelopmental disorders (g-NDDs), a complex 
group of idiopathic syndromes that tends to have a heterogeneous 
genetic etiology and represents a complex group of neurological 
diseases with marked clinical variability and readily observable deficits 
from a very early age (often <6 months), affecting approximately 
1% ~ 3% of children worldwide and exerting a substantial burden on 
society and patients’ families (1). They mainly comprise global 
developmental delay/intellectual disability (GDD/ID), autism 
spectrum disorder (ASD), attention deficit hyperactivity disorder 
(ADHD), and epilepsy (EP) (2). Among these neurological disease 
conditions, GDD/ID is the major and essential part of g-NDDs (3); 
while other common neurological disease conditions, such as ASD, 
ADHD, and EP, can present as neurodevelopmental comorbidity 
(NDC), solely or jointly appearing in individuals with g-NDDs (4). 
Therapeutic intervention/treatment or disease management for 
g-NDDs is individualized, multidisciplinary, and mainly symptomatic 
treatment, such as rehabilitation therapy and pharmacotherapy (like 
encephalon glycoside and exogenous nerve growth factor).

Genetic alterations are considered to play a key role in the 
pathogenesis of g-NDDs. For instance, 30–50% of g-NDDs cases were 
reported to be caused by single-nucleotide variants (SNVs), copy-
number variants (CNVs) and chromosomal abnormalities; Rett, 
fragile-X, and Down syndromes are considered as the three most 
common types of g-NDDs worldwide (5). Owing to the significant 
advancements in identifying genetic components of g-NDDs via next-
generation sequencing technology, especially the popularization of 
trio-based (parental-offspring model) whole-exome sequencing (trio-
WES) that enable the detection of exon-level variants, including SNVs 
and CNVs, genetic causes are being found more frequently than 
before in many g-NDDs patients (6). Nonetheless, there still have 
children with g-NDDs remain undiagnosed after undergoing 
trio-WES due to a proportion of variants located outside exons (e.g., 
intron, promoter or enhancer-level variants) underlying g-NDDs (7); 
the diagnostic yield of trio-WES for children with g-NDDs is still not 
satisfactory (8–10). Considering the unsatisfactory diagnostic efficacy 
of trio-WES in g-NDDs, it is crucial for clinicians to develop a targeted 
approach for the early identification of patients who can most likely 
be  diagnosed by trio-WES, providing those patients with further 
assessment of related medical conditions earlier in the disease course. 
Moreover, owing to the exon-level sequencing feature of trio-WES, 
developing a simple-to-use tool for patients and their families to assist 
their decision-making in applying trio-WES in the diagnostic strategy 
at the pre-diagnosis stage is also critical, which can dramatically help 
facilitate individualized family medical planning.

Alignment diagrams are one of the common graphical calculators 
used to visualize the scoring system of a linear regression model (such 
as logistic and cox regression models) with an operationally intuitive 
manner (11). Owing to the rapid development of many R packages, 
such as “rms” and “rmda” packages (12), alignment diagrams can 
be directly generated in the R environment and represent a prevalent 
and major subtype within the broader category of graphical 
calculators, characterized by straight scales and solution via a 
straightedge alignment line (i.e., drawing a straight line between 
known values on two scales to read the unknown value on a third 
scale), and providing a high-level snapshot of regression accuracy. 
Alignment diagram models are widely applied in forecasting the risks 
or outcomes of many NDDs, such as ADHD (13), ASD (14), infant 
neurodevelopmental delays (15) and oppositional defiant disorder 
(16). However, to the best of our knowledge, no publications have 
reported the application of alignment diagrams to predict the 
diagnostic probability of trio-WES in g-NDDs children. Here, 
we  conducted a double-center study with independent temporal 
(internal) and geographical (external) validations based on phenotype-
driven methods, exploring key phenotypic variables for forecasting 
the diagnostic probability of trio-WES in children with g-NDDs. 
Phenotype-driven methods are important clinical genetic methods for 
identifying the key clinical phenotypic characteristics of rare 
monogenic disorders, allowing the identification of individuals with 
a high probability of carrying relevant exon-level variants detected by 
trio-WES (17, 18).

Materials and methods

Participants and patient selection criteria

As shown in Figure 1A, 871 g-NDDs children were admitted to 
the tertiary Children’s Medical Center of Sun Yat-sen Memorial 
Hospital (SYSMH) from September 2016 to December 2022. After 
performing a series of clinical information (excluding 346 patients 
without clear or complete clinical data, such as outpatient subjects), 
informed consent (excluding 239 patients due to their families 
decline to receive genetic tests), and routine genetic (G-band 
karyotyping and fragile-X analysis) screenings (excluding 21 
patients who had apparent chromosomal disorders, such as Down 
syndrome and fragile-X syndrome, which had no need to use high-
throughput sequencing, such as trio-WES, as their diagnostic 
strategies), a total of 265 g-NDDs patients with non-consanguineous 
relationships from SYSMH who want to get a specific genetic 
diagnosis via trio-WES were recruited for this retrospective study. 
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FIGURE 1

Flowchart and candidate variables description of this double-center study. (A) Flowchart of this study. (B) A description summary of candidate 
phenotypic variables applied in current study. g-NDDs, genetic neurodevelopmental disorders; trio-WES, trio-based whole-exome sequencing; 
SYSMH, Sun Yat-Sen Memorial Hospital; WCRC, Weierkang Children’s Rehabilitation Center; GDD/ID, global developmental delay/intellectual disability; 
ASD, autism spectrum disorder; ADHD, attention deficit hyperactivity disorder; EP, epilepsy; NDC, neurodevelopmental comorbidity; HCA, head 
circumference abnormality; BM, brain malformation. Note: “+/−” indicates enrolled individuals who received trio-WES and had a positive genetic 
diagnosis (carrying a “likely pathogenic” or “pathogenic” variant) or a negative genetic diagnosis (carrying a “benign” or “uncertain significance” variant) 
on the basis of the guidelines of the American College of Medical Genetics.
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They received trio-WES testing from September 1, 2016 to 
December 31, 2022. Among them, 163 individuals recruited between 
October 1, 2018 and December 31, 2021, served as training subjects, 
whereas another 102 individuals with non-consanguineous 
relationships recruited between September 1, 2016 and September 
30, 2018, served as internal validation subjects (also called “temporal 
validation subjects”). Moreover, 115 individuals diagnosed with 
g-NDDs were admitted to Weierkang Children’s Rehabilitation 
Center (WCRC) between January 2023 and December 2023. After a 
series of screenings (excluding 15 patients without clear or complete 
clinical data and 3 patients whose families decline to undergo 
genetic tests), a total of 97 non-consanguineous individuals with 
g-NDDs were ultimately recruited. They received trio-WES testing 
from January 1, 2023 to December 31, 2023, and served as the 
external validation subjects (also called “geographical 
validation subjects”).

The clinical (phenotypic) definitions of g-NDDs used in the 
current study included the following: (1) various severities of GDD/
ID. The clinical diagnostic criteria for GDD/ID were based on the 
Diagnostic and Statistical Manual of Mental Disorders, 5th Edition 
guidelines for GDD/ID (1). The severity assessment for GDD/ID was 
based on the classification criteria of the International Classification 
of Diseases Version 11 (19). (2) Comorbid with one or more type(s) 
of common neurodevelopmental comorbidity (NDC), including ASD, 
ADHD, and EP. Clinical diagnoses of ASD and ADHD were made on 
the basis of the related DSM-V guidelines for ASD and ADHD (1). 
The clinical diagnosis of EP was made on the basis of the International 
League Against Epilepsy guidelines (20). (3) Patients with identified 
non-genetic causes, such as hypoxic–ischemic encephalopathy, 
bilirubin encephalopathy and intrauterine infections, were excluded.

The inclusion criteria for this study were as follows: (1) g-NDDs 
individuals who were admitted to SYSMH (Sep 2016 ~ Dec 2022) or 
WCRC (Jan 2023 ~ Dec 2023). (2) Underwent systematic and 
standard examinations, including assessing clinical manifestations/
detailed medical history (including GDD/ID condition, history of 
ASD, EP and ADHD, birth condition and family history), and 
receiving cardinal neurodevelopment-related auxiliary examinations 
(Gesell Developmental Scale for Infants/Wechsler Intelligence Scale 
for Children, electroencephalogram, cranial magnetic resonance 
imaging, auditory brainstem response/visual evoked potential tests, 
echocardiography/abdominal ultrasonography). (3) The patients’ 
families agreed to undergo genetic tests, including routine genetic 
screening (G-band karyotyping and fragile-X analysis) and trio-WES, 
and want to obtain a specific genetic diagnosis through trio-WES.

The exclusion criteria for this study were as follows: (1) g-NDDs 
patients whose medical records were incomplete or unclear or whose 
clinical data were missing. (2) Positive routine genetic test results 
indicated that there were apparent chromosomal disorders, such as 
Down syndrome or fragile-X syndrome, in those individuals, which 
had no need to use trio-WES as a diagnostic strategy in those patients. 
(3) Those who underwent trio-WES analysis but did not permit the 
use of their trio-WES results for publication.

Ethical compliance

The design and launch of this retrospective study were approved 
by the Ethical Committee of the Sun Yat-sen Memorial Hospital, Sun 

Yat-sen University (Approval Number: SYSKY-2025-244-01). Written 
informed consents for genetic investigation and participation in this 
study were obtained from the parents or guardians of all 362 
enrolled individuals.

Methods for variant capture of trio-WES

The principle of variant capture process and quality control system 
of trio-WES have been described in previous studies (21–23) and the 
methods in this study can be briefly presented as follows: DNAs were 
extracted from the whole blood of the proband and their parents using 
a commercialized genomic extraction kit (Qiagen, Shanghai, China). 
Illumina TruSeq Exome Kit (Illumina, San Diego, CA, United States) 
was used for the DNA library construction and the generation of ~10GB 
exome sequencing data/individual. GeneRanger (Xunyin Biotech, 
Shanghai, China) was employed for the exome sequencing data analysis. 
Then, a series of the genome analysis tools were employed for the read 
alignment, indel region realignment, base quality recalibration, variant 
capture, and calling/transformation on the basis of the Genome 
Aggregation Database (gnomAD). Variant capture control system was 
set to a coverage depth >10 with a minor allele frequency <0.05%.

Criteria for identifying exon-level variant 
pathogenicity assessment and subject 
grouping

The pathogenicity of the detected exon-level SNVs via trio-WES 
was scored on the basis of the 2015 American College of Medical 
Genetics guidelines for SNVs classification (24), and those candidate 
SNVs were accordingly divided into “pathogenic/likely pathogenic 
SNVs” and “benign/uncertainly significant SNVs.” As described in 
previous research (5), gnomAD and the in-house SNV population 
frequency databases were employed for the assessment of SNVs allele 
frequency. Functional analysis of the pathogenicity of those variants 
was performed via bioinformatic tools. Specifically, in silico prediction 
of identified missense/frameshift/nonsense/deletion variants’ 
pathogenicity was conducted using local versions of Mutation Taster, 
PROVEAN, Polyphen-2, REVEL and SIFT. Moreover, in silico 
pathogenic prediction of detected splice variants was conducted using 
local versions of CADD and Human Splice Finder. Human Genomic 
Mutation Database and PubMed were employed to determine whether 
identified variants had been recorded previously. GeneReviews and 
OMIM databases were employed to obtain the genotype–phenotype 
profiles linked to identified SNVs. The pathogenicity of exon-level 
CNVs identified via trio-WES was rated on the basis of the 2019 
American College of Medical Genetics guidelines for the interpretation 
of postnatal CNVs (25), and those candidate CNVs were accordingly 
classified as “pathogenic/likely pathogenic CNVs” and “benign/
uncertainly significant CNVs.” All candidate SNVs/CNVs in this 
study were manually interpreted and assessed by two or more 
experienced clinical geneticists, following the American College of 
Medical Genetics guidelines mentioned above. ClinVar database1 was 

1  http://www.ncbi.nlm.nih.gov/clinvar
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employed to refer the report status (novel or previously reported) of 
all identified SNVs and CNVs.

On the basis of the outcome indicator from the trio-WES 
examination records of the hospital digital system, the enrolled 
individuals were then grouped into those with positive trio-WES-
tested genetic diagnoses (i.e., those with pathogenic/likely pathogenic 
exon-level SNVs or CNVs in their trio-WES analysis reports) and 
those with negative trio-WES-tested genetic diagnoses (i.e., those with 
benign/uncertainly significant exon-level SNVs or CNVs in their 
trio-WES analysis reports and maybe the out-exon-level variants can 
explain their g-NDDs conditions).

Candidate variable collection and 
interpretation of collected variables

The demographic characteristics and phenotypic variables of all 
enrolled subjects were collected from medical records of the hospital 
digital system. This included (1) demographic characteristics, such as 
sex, onset age, and admission date. (2) candidate phenotypic variables: 
(i) GDD/ID severity; (ii) ASD; (iii) ADHD; (iv) EP; (v) NDC 
complexity; (vi) Head circumference abnormality (HCA); (vii) Brain 
structure malformation (BM); (viii) Visual impairment and ocular 
malformation; (ix) Hearing impairment and ear anomaly. A summary 
of those phenotypic variables and their detailed definitions were 
demonstrated in Figure 1B.

Model visualization and reliability and 
performance evaluation

Independent phenotypic variables were determined via univariate 
and multivariate logistic regression analysis using the data from the 
training cohort. Specifically, during the univariate and multivariate 
regression analyses of the training cohort, variables with clinical 
significance and significant differences (p  < 0.05) were identified 
between groups with positive and negative trio-WES-based genetic 
diagnoses, and used for logistic linear model construction.

Firstly, we  used Spearman’s correlation analysis to determine 
whether there were confirmed bi-interdependencies among the 
identified phenotypic variables. According to the classification of 
statistical power for correlation analysis established by Cohen (26), 
when the absolute value of Spearman’s correlation coefficient (| r |) < 0.5 
for all pairwise comparisons among those variables, there were no 
confirmed bi-interdependencies existed among them. Then, we used 
collinearity analysis to further determine whether there were significant 
multiple interdependencies among those phenotypic factors. 
Specifically, the tolerance and variance inflation factor (VIF) were 
applied to assess the multiple interdependence among identified 
variables. When the value of tolerance was >0.2 and the VIF was <2 for 
each identified variable, there were no multiple interdependencies 
existed among those variables, and could be considered independent 
phenotypic variables for linear model construction (27). Then, we used 
the 10-fold-cross resampling with the 1,000-time bootstrap repeated 
sampling methods to evaluate the goodness-of-fit and reliability degrees 
of the linear regression model in training set. Specifically, the 10-fold-
cross resampling approach is an established and robust resampling 
technique employed to assess the consistence performance and the 

reliability of constructed model, which involves partitioning the entire 
dataset into 10 mutually exclusive and approximately equal-sized folds. 
During iterative training, 9 folds are aggregated as the training subset; 
the remaining single fold serves as the validation subset. This process is 
repeated 10 times with each fold served exactly once as the validation 
subset. Meanwhile, the bootstrap resampling method is another classical 
approach that is drawn from the original training dataset with 
replacement and is repeated 1,000 times. The established performance 
metric, concordance index (C-index) of the two methods, is calculated 
to examine the reliability of constructed model; when the two methods’ 
C-index values were >0.7, indicating the regression model can 
be regarded as a good reliability linear model for explaining variance of 
the set outcomes (28). Finally, we generated an alignment diagram using 
R packages to visualize the scoring system of our constructed logistic 
regression model.

For model performance evaluation, the discriminatory power 
was first evaluated in the training set via the area under the curve 
(AUC) values of the receiver operating characteristic (ROC) 
curves. Then, the calibration curves with the Hosmer–Lemeshow 
(H-L) test were used to evaluate the goodness of fit between the 
predicted calculation and the observed data. Specifically, when the 
p-value of H-L test <0.05, the dotted line (representing model-
predicted data) in calibration curve significantly differed from the 
solid line (representing actual observed data) in calibration curve, 
and the model did not fit well. Otherwise, the model fit well (p-
value of H-L test >0.05). Moreover, the benefit of the clinical 
application of the model was also assessed via decision curve 
analysis (DCA) and a clinical impact curve (CIC).

Model performance validation

According to the maximal Youden index value (corresponding to 
the most optimal values of sensitivity and specificity of model) 
calculated in the training set, we  further set the corresponding 
individual’s total score (cut-off score) for the training and internal/
external validation cohorts, then based on this cut-off score, we further 
divided subjects in training and internal/external validation sets into a 
“model-predicted high probability diagnostic group” and a “model-
predicted low probability diagnostic group.” The AUC values of the 
ROC curves, calibration curves with the H-L test and DCA/CIC were 
subsequently applied to verify the discriminative performance of model 
in internal and external validation sets. Finally, we calculated the model 
sensitivity, specificity, accuracy, precision and F1 score for the training 
and external validation sets and visualized those results (confusion 
matrix) via Sankey plots.

Statistical analysis

In this study, Microsoft Excel software was used to record 
individual data, and all the statistical analyses were conducted in the 
R environment (version 4.4.2, https://www.r-project.org/). As in 
previous studies in the R environment (12, 27, 29), the main R 
packages used for statistical analysis and figure plotting in the present 
research included “ggplot2,” “foreign,” “rms,” “rmda,” “caret,” “tidyverse” 
and “ggDCA.” The results with a p-value <0.05 were considered 
statistically significant throughout the study, if not specially noted.
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Results

Patient characteristics

In total, 163, 102, and 97 pediatric and adolescent subjects with 
unexplained g-NDDs were enrolled in the training, internal validation, 
and external validation cohorts, respectively. A comparison of the 
baseline demographics and phenotypic characteristics of the subjects in 
the training and validation cohorts is shown in Table 1, and the detailed 
genotypic and phenotypic data of those individuals in the training and 
validation cohorts can be found in Supplementary Files 1–6, respectively.

Among the 163 enrolled subjects in the training cohort, 93 
(57.1%) had mild–moderate GDD/ID, and the remainder (70/163, 
42.9%) had severe-profound GDD/ID. Most children (129/163, 
79.1%) presented as simple g-NDDs without comorbid ASD, 
ADHD or EP. Meanwhile, parts of cases had ASD (99/163, 60.7%), 
ADHD (41/163, 25.2%), EP (62/163, 38.0%), HCA (44/163, 
27.0%), BM (23/163, 14.1%), visual impairment/ocular 
malformation (8/163, 4.9%) and hearing impairment/ear anomaly 
(22/163, 13.%), respectively. 82 (50.3%) had a genetic diagnosis 
via trio-WES. Of the 82 trio-WES diagnosed children in the 
training cohort, 62 (75.6%) cases were diagnosed with 
SNV-mediated syndromes (a total of 72 detected SNVs with 35 
being novel variant and 37 being previously reported) and 20 
(24.4%) with CNV-mediated syndromes (all these 20 identified 
CNVs were novel variants).

Among the 102 and 97 enrolled cases in the internal and external 
validation cohorts, 42 (41.2%) individuals included in the internal 
validation cohort obtained a genetic diagnosis via trio-WES. Of the 
42 trio-WES diagnosed children, 36 (85.7%) cases were diagnosed 
with SNV-mediated syndromes (a total of 40 detected SNVs with 14 
being novel variant and 26 being previously reported) and 6 (14.3%) 
cases were diagnosed with CNV-mediated syndromes (all these 6 
identified CNVs were novel variants). While, in external validation 
cohort, 42 (43.3%) enrolled subjects received a genetic diagnosis via 
trio-WES. Of the 42 trio-WES diagnosed children, 32 (76.2%) cases 
were diagnosed with SNV-mediated syndromes (a total of 34 detected 
SNVs with 16 being novel variant and 18 being previously reported) 
and 10 cases (23.8%) diagnosed with CNV-mediated syndromes (all 
these 10 identified CNVs were novel variants).

Independent predictive indicator selection 
and regression model construction

First, univariate logistic analysis for all included phenotypic 
variables presented in Table 1 was performed in the training set to 
determine the potential trio-WES diagnosis-related phenotypic 
markers. As demonstrated in Table  2, the results of univariate 
logistic analysis revealed that four candidate phenotypic markers 
(GDD/ID severity, NDC complexity, ASD, and HCA) had 
potential predictive value. Among them, severe-profound GDD/
ID [OR (95% CI): 6.880 (3.414–13.865), p  < 0.001], multiple 
NDCs [OR (95% CI): 4.237 (1.783–10.067), p < 0.01], ASD [OR 
(95% CI): 4.673 (2.360–9.253), p < 0.001], and HCA [OR (95% 
CI): 4.286 (1.977–9.292), p  < 0.001] were associated with high 
possibilities of having genetic diagnosis via trio-WES in 
g-NDDs subjects.

On the basis of the univariate regression analysis, the phenotypic 
factors with p < 0.05, including GDD/ID severity, NDC complexity, 
ASD, and HCA (Figure 1B), were candidate indicators for multivariate 
linear regression model construction. The four variables were firstly 
analyzed via Spearman’s correlation analysis. As shown in Figure 2A, 
the values of |r| for pairwise comparisons among those four variables 
were all <0.5, indicating that no confirmed bi-interdependencies 
existed among them. Then, the four indicators were subsequently 
analyzed via collinearity analysis. As demonstrated in Table 3, the 
tolerances of each phenotypic factor were all >0.2, and the values of 
the VIFs of each indicator were all <2, indicating that no multiple 
interdependencies existed among those four phenotypic variables.

Those four phenotypic factors without interdependencies were 
incorporated into the multivariate logistic regression. As indicated in 
Table 2, our multivariate analysis results further revealed that GDD/
ID severity [OR (95% CI): 4.865 (2.213–10.694), p < 0.001], NDC 
complexity [OR (95% CI): 3.731 (1.399–9.950), p = 0.009], ASD [OR 
(95% CI): 3.256 (1.479–7.168), p = 0.003] and HCA [OR (95% CI): 
2.788 (1.148–6.774), p = 0.024] were independently associated with 
the diagnostic efficacy of trio-WES among g-NDDs subjects. Then, 
we  used the 10-fold-cross validation and the bootstrap repeated 
sampling approach for evaluation the reliability of constructed model. 
As shown in Figure 2B, after conducting 10-fold-cross validation, the 
C-index value was 0.797 with a 95% CI of 0.732–0.862. In the 
meantime, after performing bootstrap method with 1,000-time 
resampling, the C-index also show robust value with 0.800 (95% CI: 
0.707–0.893) (Figure 2C). All those results (both two approaches’ 
C-indices were >0.7) indicated that the constructed regression model 
owned good goodness-of-fit and can be regarded as a reliability linear 
model for explaining variance of the set outcome (diagnosed by trio-
WES) for g-NDDs patients.

According to the multivariate logistic regression β value and the 
intercept term, a novel regression model for predicting the diagnostic 
efficacy of using trio-WES in pediatric patients with g-NDDs was 
constructed, and the corresponding formula for predicting the 
probability (P) of a g-NDDs subject being diagnosed by trio-WES was 
as follows: Logit (P) = 1.582 (β1) × GDD/ID severity (severe-profound: 
1; mild–moderate: 0) + 1.317 (β2) × NDC complexity (complicated: 1; 
simple: 0) + 1.181 (β3) × ASD (yes: 1; no: 0) + 1.025 (β4) × HCA (yes: 
1; no: 0)  – 1.914 (intercept term). The most prevalent scoring 
methodology for included variables is utilization of the coefficients (β) 
derived from regression model. The calculated score assigned to each 
variable is proportional to its β value, often mapped to a 0 to 100-point 
scale via linear transformation (30). Specifically, we set 100-point to a 
variable with the max β value (βmax), and based on that, we  can 
calculate other included variables’ calculated score via formula 
“calculated scorex  = 100 × βx÷βmax.” Detailed coefficients of this 
regression model and the corresponding calculated score for each 
included variable were demonstrated in Table 4.

Model visualization via alignment diagram 
and the assessment of the related 
visualized scoring system

As shown in Figure 3A, by using R packages “rms” and “rmda,” 
we generated an alignment diagram to visualize the constructed 
logistic regression model and its related scoring system (Table 4). 

https://doi.org/10.3389/fneur.2025.1574021
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Wu et al.� 10.3389/fneur.2025.1574021

Frontiers in Neurology 07 frontiersin.org

Specifically, the alignment diagram provided an estimate of the 
probability of being diagnosed by trio-WES via the scored 
contributions of the four included binary phenotypic indicators 
and could be  used for an g-NDDs child at the time of initial 
admission. According to the scoring system visualized by the 
alignment diagram and distinct phenotypic manifestations of all 
enrolled 362 g-NDDs subjects in training and validation cohorts, 
we could assign corresponding scores to each individual, thereby 
deriving an aggregate score for each of them. Based on their 
aggregate scores, we  could further classify those subjects into 

different subgroups at each aggregate score. As revealed in 
Figures 3B–D, bar charts showing the percentages of cases with 
positive trio-WES diagnoses in different subgroups at each 
aggregate score across the training, internal and external validation 
cohorts, and we  found that a higher aggregate score was 
consistently and strongly associated with a significantly increased 
rate of positive trio-WES diagnoses across all these three cohorts, 
further demonstrating the robust predictive power of this scoring 
system for identifying g-NDDs cases likely to yield a positive 
genetic diagnosis via trio-WES.

TABLE 1  Comparison of baseline demographics or phenotypic characteristics between training cohort and internal/external validation cohorts of trio-
WES tested children with g-NDDs.

Demographics 
or 
characteristic

Indicators Training 
cohort

Internal 
validation 

cohort

t/χ2 
value

p- 
value*

External 
validation 

cohort

t/χ2 
value

p- 
value**

Demographic parameters

Case number (n) 163 102 97

Sex [n (%)]
Female 57 (35.0%) 26 (25.5%)

2.199 0.138
28 (28.9%)

0.771 0.380
Male 106 (65.0%) 76 (74.5%) 69 (71.1%)

Admission Periods (MM/YY ~ MM/YY) Oct/2018 ~ Dec/2022 Sep/2016 ~ Sep/2017 Jan/2023 ~ Dec/2023

Onset age [Mean ± SEM/(y)] 4.396 ± 0.261 4.610 ± 0.428 0.428 0.669 4.945 ± 0.300 1.380 0.169

Patient sources SYSMH SYSMH WCRC

Phenotypic variates

GDD/ID severity  

[n (%)]

Mild–moderate 93 (57.1%) 63 (61.8%)

0.397 0.529

63 (64.9%)

1.267 0.260severe-

profound
70 (42.9%) 39 (38.2%) 34 (35.1%)

NDC complexity  

[n (%)]

Simple 129 (79.1%) 81 (79.4%)
0.000 1.000

69 (71.1%)
1.729 0.189

Complicated 34 (20.9%) 21 (20.6%) 28 (28.9%)

ASD [n (%)]
Yes 99 (60.7%) 69 (67.6%)

1.011 0.315
58 (59.8%)

0.000 0.985
No 64 (39.3%) 33 (32.4%) 39 (40.2%)

ADHD [n (%)]
Yes 41 (25.2%) 24 (23.5%)

0.023 0.879
33 (34.0%)

1.933 0.164
No 122 (74.8%) 78 (76.5%) 64 (66.0%)

EP [n (%)]
Yes 62 (38.0%) 42 (41.2%)

0.259 0.611
35 (36.1%)

0.099 0.753
No 101 (62.0%) 60 (58.8%) 62 (63.9%)

HCA [n (%)]
Yes 44 (27.0%) 33 (32.4%)

0.633 0.426
27 (27.8%)

0.000 0.997
No 119 (73.0%) 69 (67.6%) 70 (72.2%)

BM [n (%)]
Yes 23 (14.1%) 24 (23.5%)

3.197 0.074
8 (8.2%)

1.471 0.225
No 140 (85.9%) 78 (76.5%) 89 (91.8%)

Visual impairment/

ocular malformation

[n (%)]

Yes 8 (4.9%) 2 (2.0%)

0.799 0.371

10 (10.3%)

1.979 0.160
No 155 (95.1%) 100 (98.0%) 87 (89.7%)

Hearing impairment/

ear anomaly [n (%)]

Yes 22 (13.5%) 6 (5.9%)
3.086 0.079

9 (9.3%)
0.668 0.414

No 141 (86.5%) 96 (94.1%) 88 (90.7%)

Outcomes

Trio-WES-based 

diagnostic status  

[n (%)]

Positive 82 (50.3%) 42 (41.2%)

1.750 0.186

42 (43.3%)

0.933 0.334
Negative 81 (49.7%) 60 (58.8%) 55 (56.7%)

*, training cohort vs. internal validation cohort; **, training cohort vs. external validation cohort; g-NDDs, genetic neurodevelopmental disorders; trio-WES, trio-based whole exome 
sequencing; SYSMH, Sun Yat-sen Memorial Hospital; WCRC, Weierkang Children’s Rehabilitation Center; GDD/ID, global developmental delay/intellectual disability; NDC, 
neurodevelopmental comorbidity; ASD, autism spectrum disorder; ADHD, attention deficit hyperactivity disorder; EP, epilepsy; HCA, head circumference abnormality; BM, brain 
malformation.
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Evaluation of the predictive model in the 
training cohort

In the training set, the calibration curves with the H-L test were 
first used to assess the fitness of the predictive model. As revealed in 
Figure  4A, the calibration plots of the model showed a good fit 
between the actual and model-predicted diagnostic rates, and in the 
H-L test, χ2  = 5.571 with a p-value = 0.473, further indicating 
satisfactory consistency between the model predictions and the actual 
observed values.

ROC curves were subsequently used to assess the discriminative 
performance of the predictive model. As shown in Figure 4B, the 
results demonstrated that the AUC = 0.821 (95% CI: 0.756–0.886), 
suggesting that the model had good predictive value in the training 
set. According to the ROC curves of the training cohort, the maximal 
Youden index was 0.547 and was selected to set the optimal cut-off 
score (148), which generated a confusion matrix with values of 
sensitivity, specificity, false negative rate (FNR), false positive rate 
(FPR), accuracy, precision, and F1 score of 73.20, 81.50, 26.80, 18.50, 
77.30, 80.00%, and 0.76, respectively, in the training set (Figure 5A 
and Table 5).

Moreover, we  also applied DCA and the CIC to evaluate the 
clinical usefulness of the predictive model in the training set. As 
demonstrated in Figures 4C,D, individuals with g-NDDs could obtain 
greater net benefits from our model than from the hypothetical treat-
none or treat-all scenarios, suggesting that the use of this model to 
predict the diagnostic efficacy of trio-WES for g-NDDs children may 
bring clinicians more benefits.

Internal (temporal) and external 
(geographical) validations of the model 
performance

As shown in Figure 6A, the calibration curves with the H-L test 
revealed excellent agreement between the model predictions and the 

actual observed results (χ2 = 5.221 with p-value = 0.516) in the internal 
set. Moreover, the ROC plots also revealed that the model had a 
powerful discriminative ability in the internal set (Figure 6B, AUC: 
0.905, 95% CI: 0.842–0.968). As reflected by the results of the DCA 
and CIC in the internal set, applying our model to predict the 
diagnostic efficacy of trio-WES for g-NDDs patients could result in 
greater net benefits (Figures 6C,D). As reflected by the confusion 
matrix results of the Sankey plot in the internal set, the sensitivity, 
specificity, FNR, FPR, accuracy, precision and F1 score of the model 
in the internal set were 76.20, 85.00, 23.80, 15.00, 81.40, 78.00%, and 
0.77, respectively (Figure 5B and Table 5).

Similarly, the calibration curves with the H-L test (χ2 = 2.494 with 
p value = 0.777), ROC curves (AUC: 0.919, 95% CI: 0.858–0.979) and 
DCA/CIC were all applied in the external set (Figures  7A–D). A 
confusion matrix results of the Sankey plot in the external set showing 
the sensitivity, specificity, FNR, FPR, accuracy, precision and F1 score 
of the model in the external set were 76.20, 87.30, 23.80, 12.70, 82.50, 
82.10%, and 0.79, respectively (Figure 5C and Table 5).

Discussion

With the rapid development of next-generation sequencing 
technology, genetic causes are being detected more frequently than 
before in many individuals with unexplained syndrome involving 
multiple organ malformations (5). The application of next-
generation sequencing has completely changed the landscape of 
clinical genetics; compared with conventional tests (such as family 
segregation analysis and Sanger sequencing), trio-WES provides 
an effective way to identify exon-level variants and determine the 
diagnosis of many rare monogenetic disorders, avoiding previous 
“diagnostic odysseys” experienced by many patients and their 
families (31–34). Nonetheless, we  should note that technical 
limitations (exon-level sequencing only), along with the complexity 
of the genome (such as deep intronic or non-coding variants), may 
inevitably hinder the effectiveness of trio-WES. Whole-genome 

TABLE 2  Univariate and multivariate logistic regression for predicting diagnostic efficacy of using trio-WES in g-NDDs individuals in training set.

Univariate logistic analysis Multivariate logistic analysis

Candidate 
indicators

OR (95%CI) p-value
Candidate 
indicators

OR (95%CI) p-value

GDD/ID severity 6.880 (3.414–13.865) <0.001*** GDD/ID severity 4.865 (2.213–10.694) <0.001***

NDC complexity 4.237 (1.783–10.067) 0.001** NDC complexity 3.731 (1.399–9.950) 0.009**

ASD 4.673 (2.360–9.253) <0.001*** ASD 3.256 (1.479–7.168) 0.003**

ADHD 1.196 (0.589–2.431) 0.620

EP 0.580 (0.306–1.100) 0.095

HCA 4.286 (1.977–9.292) <0.001*** HCA 2.788 (1.148–6.774) 0.024*

BM 2.043 (0.814–5.126) 0.128

Visual impairment/ocular 

malformation 3.118 (0.610–15.932)
0.172

Hearing impairment/Ear 

anomaly 1.217 (0.494–2.999)
0.669

Trio-WES, trio-based whole exome sequencing; g-NDDs, genetic neurodevelopmental disorders; GDD/ID, global developmental delay/intellectual disability; NDC, neurodevelopmental 
comorbidity; ASD, autism spectrum disorder; ADHD, attention deficit hyperactivity disorder; EP, epilepsy; HCA, head circumference abnormality; BM, brain malformation; OR (95%CI), 
odds ratio (95% confidence interval). *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 2

Spearman’s correlation analysis and Goodness-of-fit tests for evaluation of the reliability of the constructed logistic regression model. (A) Bar charts 
showing the pairwise comparisons of |r| values among those model-constructed variables across training cohort. (B) Point-fold line chart with 10-fold-
cross resampling approach showing the model had good stability with excellent consistence in training set (C-index, 0.797 with 95% CI, 0.732–0.862). 
(C) Histogram with 1,000-time resampling bootstrap method revealing the model did not overfit and showed good reliability in training set (C-index, 
0.800 with 95% CI, 0.707–0.893). |r|, Spearman’s correlation coefficient; GDD/ID, global developmental delay/intellectual disability; ASD, autism 
spectrum disorder; NDC, neurodevelopmental comorbidity; HCA, head circumference abnormality.

TABLE 3  The collinearity diagnostic analysis of variables for predicting efficacy of using trio-WES in g-NDDs individuals in training set.

Candidate variables Tolerance VIF

GDD/ID severity 0.841 1.189

NDC complexity 0.947 1.056

ASD 0.898 1.114

HCA 0.884 1.131

Trio-WES, trio-based whole exome sequencing; g-NDDs, genetic neurodevelopmental disorders; GDD/ID, global developmental delay/intellectual disability; NDC, neurodevelopmental 
comorbidity; ASD, autism spectrum disorder; HCA, head circumference abnormality; VIF, variance inflation factor.
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sequencing can offer advantages over trio-WES by identifying both 
exon-level and out-exon-level variants (such as structural, intronic 
and non-coding variants) but compared with trio-WES charges 
(almost $ 1,000 ~ 1,400  in China), the costs of whole-genome 
sequencing per subject in China is almost double than that of trio-
WES. Due to the higher cost and more intense analysis, the 
application of whole-genome sequencing in clinical settings as a 
first-tier genetic diagnostic technique is still restricted (35–37). To 
date, trio-WES still provides an efficient and appropriate tool for 
first-tier genetic diagnosis worldwide and is invaluable for 
subsequent genetic counseling and relevant medical management. 
Therefore, it is meaningful to explore effective strategies to predict 
the diagnostic yield of trio-WES in clinical settings.

The diagnostic rate of trio-WES in clinical settings is likely 
influenced by a large variety of factors, such as the disorder type, 
phenotypic spectrum and age of onset (17, 36). For example, for 
individuals with congenital dermatological syndromes, the 
diagnostic rate can even reach 92% (17); perhaps the clear 
phenotypic presentation of those syndromes contributes to its high 
diagnostic rate. Thus, correct and precise assessment of subjects’ 
clinical data or phenotypic spectrum at the pre-WES stage is very 
important and presents a challenge, as it involves stringent 
collection and comprehensive analysis of the variable phenotypic 
features of every case. In the present study, we  carefully and 
comprehensively collected detailed phenotypic information that 
can reflect neurodevelopment conditions objectively for every 
single subject to increase the diagnostic yield, and the overall 
diagnostic rates in the training, internal validation, and external 
validation cohorts were 50.3, 41.2 and 43.3%, respectively, which 
were higher than those reported in previous WES studies of 
patients with GDD/ID alone (27 to 39%) (8–10). Our findings 
concerning the diagnostic yield of using trio-WES for g-NDDs 
diagnosis further reinforce the conclusions presented by a research 
that the presence of GDD/ID along with multiple phenotypic 
features can enhance the diagnostic yield of trio-WES (2), 
emphasizing the importance of phenotypic feature enrichment in 
improving the exon-level variants detection rate of using trio-WES 
(18). According to the theory of the phenotype-to-genotype 
process and the phenotype-driven strategy, we speculate on the 
possibility that using key phenotypic factors that related to a high 
probability of having genetic variants detected by WES to construct 
a model for predicting trio-WES diagnostic rate, which may 
provide valuable information for personalized diagnostic regimens 
for g-NDDs children.

Among those four phenotypic factors (GDD/ID severity, NDC 
complexity, ASD, and HCA) identified in our study, the strongly 

top  3 associated features with positive trio-WES results were 
severe-profound GDD/ID (OR: 4.865, 95% CI: 2.213–10.694), 
followed by complicated NDC complexity (OR: 3.731, 95% CI: 
1.399–9.950) and ASD (OR: 3.256, 95% CI: 1.479–7.168). The 
current findings suggest that severe-profound GDD/ID, ASD and 
a broad spectrum of NDCs may share genetic backgrounds in the 
context of rare monogenic NDDs, leading to a higher diagnostic 
rate of trio-WES. In the Simons Foundation Autism Research 
Initiative (SFARI, http://gene.sfari.org/) database, there are over 
one thousand genes involved in gene expression regulation and 
neuronal communication functions that are implicated in 
susceptibility to ASD and other coexisting NDCs, such as ADHD 
(38). Alterations in the functions of neuronal communication and 
gene expression regulation are also known to be closely associated 
with GDD/ID-related genes (39), which may explain the shared 
genetic backgrounds among severe-profound GDD/ID, ASD and 
a broad spectrum of NDCs. Moreover, we also revealed that HCA 
(OR: 2.788, 95% CI: 1.148–6.774) were moderately associated with 
positive trio-WES results under g-NDDs conditions. We speculate 
that in the process of craniofacial development, neuronal crosstalk 
and reciprocal signaling between the craniofacial ectoderm and 
neural crest cells play crucial roles in the regulation of craniofacial 
patterning and morphogenesis (40, 41). The process of neural crest 
development is regulated by epigenetic modifications, including 
chromatin remodeling, histone modification and DNA methylation 
(42). Alterations in gene expression regulation signaling and 
associated neuronal communication can result in disruptions in 
neural crest development, leading to a set of syndromes affecting a 
broad spectrum of congenital craniofacial malformations, among 
which HCA is prominent. Therefore, variants in genes involved in 
gene expression regulation and neuronal communication may 
impair multiple neurodevelopmental processes, causing severe-
profound GDD/ID, ASD, and a broad spectrum of NDCs in 
addition to HCA. Our findings demonstrate that the presence of 
these four phenotypic features might indicate abnormalities in 
genes related to gene expression regulation or neuronal 
communication and may be strongly linked to positive trio-WES 
results, providing novel insights into the genotype–phenotype 
associations of g-NDDs. On the other hand, previous studies had 
already revealed that the four phenotypic features (severe-profound 
GDD/ID, having ASD, complicated NDC complexity, and HCA) 
are strongly established as signifiers of rare monogenic NDDs (2, 
5, 43), and variants at exon-level had also been identified as the 
main cause of rare monogenic NDDs (44); given these close 
associations among them, it is reasonable to presume that a 
g-NDDs subject exhibiting more phenotypic signifiers related to 

TABLE 4  Coefficients of binary logistic regression for predicting diagnostic efficacy via trio-WES in children with g-NDDs in training set.

Phenotypic 
variables

B S. E. Wald p-value OR 95% CI for 
OR

Calculated score

GDD/ID severity 1.582 (β1) 0.402 15.500 <0.001 4.865 2.213–10.694 100*

NDC complexity 1.317 (β2) 0.500 6.921 0.009 3.731 1.399–9.950 83 (100 × β2÷β1)

ASD 1.181 (β3) 0.403 8.601 0.003 3.256 1.479–7.168 75 (100 × β3÷β1)

HCA 1.025 (β4) 0.453 5.124 0.024 2.788 1.148–6.774 65 (100 × β4÷β1)

Trio-WES, trio-based whole exome sequencing; g-NDDs, genetic neurodevelopmental disorders; GDD/ID, global developmental delay/intellectual disability; NDC, neurodevelopmental 
comorbidity; ASD, autism spectrum disorder; HCA, head circumference abnormality; B, β value; S. E., standard error; OR, odds ratio; 95% CI, 95% confidence interval. *The variable showing 
the max β value and being set 100-point as reference-point for other included variables.
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FIGURE 3

Predictive model visualization by the alignment diagram and the assessment of this visualized scoring system across the training and validation 
cohorts. (A) The alignment diagram includes two parts: the top part (starts with “Calculated Score” and goes down to the last phenotypic factor, “HCA”) 
is used to calculate the scores of each included phenotypic biomarker, and the bottom part (starts with “Calculated Total Scores” and goes down to 
“Diagnosis by trio-WES”) is designed to determine the probability of having a genetic diagnosis via trio-WES. Bar charts revealing the percentage 
distributions of cases with positive trio-WES diagnoses at each score across the training (B), internal (C) and external (D) validation cohorts. GDD/ID, 
global developmental delay/intellectual disability; NDC, neurodevelopmental comorbidity; ASD, autism spectrum disorder; HCA, head circumference 
abnormality; trio-WES, trio-based whole-exome sequencing; g-NDDs, genetic neurodevelopmental disorders.
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rare monogenic NDDs may have more probabilities of harboring 
relevant exon-level variant(s), and thus can be diagnosed more 
easily via trio-WES. However, due to the lack of enough g-NDDs 
cases with confirmed variants outside exons (such as in introns), 
we cannot determine whether there have significant differences of 
those phenotypic signifiers between cases carrying variants at 
exon-level and at out-exon-level. More genotype–phenotype 
analyses are still needed to corroborate our speculation, and will 
be the focus of our future work.

The present study revealed that the established logistic regression 
model based on those four easily-obtained phenotypic factors 
exhibited good calibration and discrimination with high accuracy 
and precision in both the training and validation cohorts. However, 

the current model has several limitations. First, although the FNR of 
this model across training and validation sets (around 23% ~ 26%) 
was acceptable for a primary study, as many studies demonstrated 
that the predictive model’s FNR of being around 25% was tolerable 
especially for a preliminary study (45–47); it still showed relatively 
higher compared with the low FPR (around 12% ~ 18%) of the 
model, suggesting that the predictive model needs further refinement; 
perhaps it was too simplistic that all included indicators were binary 
variables, which can inevitably affect the model performance. Further 
improvements, such as introducing more polytomous variables or 
complicated variables into model, are required. Second, this was a 
pilot study, and the number of subjects enrolled in the current study 
was relatively small. Moreover, it is essential to establish a rigorous 

FIGURE 4

Discriminatory performance of the model in the training set. (A) Calibration plots, (B) ROC curves for assessing the predictive accuracy of the model in 
the training cohort, and (C) DCA and (D) CIC for examining the predicted clinical utility or impact of the model in the training set. AUC, area under the 
ROC curves; 95% CI, 95% confidence interval; ROC, receiver operating characteristic; DCA, decision curve analysis; CIC, clinical impact curve.
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FIGURE 5

Sankey plots revealing the discriminatory performance of the predictive model across training and validation cohorts. (A) Training cohort, (B) internal 
validation cohort and (C) external validation cohort. Training, training cohort; inVal, internal validation cohort; exVal, external validation cohort. FP, false 
positive; TP, true positive; TN, true negative; FN, false negative. Note: the maximal Youden index (0.547) based on the training cohort was chosen to set 
the optimal cut-off score (148), a critical value that clustered those three cohorts (Training, inVal, and exVal cohorts) into groups with high probability 
and low probability of having a genetic diagnosis via trio-WES.
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FIGURE 6

Internal verification of the discriminatory performance of the model in the internal validation set. (A) Calibration plots and (B) ROC curves verifying the 
estimation accuracy of genetic diagnosis via trio-WES on the basis of the predictive model. (C) DCA and (D) CIC validating the clinical value of the 
model in the internal validation set. AUC, area under the ROC curves; 95% CI, 95% confidence interval; ROC, receiver operating characteristic; DCA, 
decision curve analysis; CIC, clinical impact curve.

TABLE 5  Predictive performance of the constructed model in training and validation sets.

Predictive values Training set Internal validation set External validation set

Sensitivity (%) 73.20% 76.20% 76.20%

Specificity (%) 81.50% 85.00% 87.30%

FNR (%) 26.80% 23.80% 23.80%

FPR (%) 18.50% 15.00% 12.70%

Accuracy (%) 77.30% 81.40% 82.50%

Precision (%) 80.00% 78.00% 82.10%

F1 score 0.76 0.77 0.79

FNR, false negative rate; FPR, false positive rate.
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evaluation framework that ensures reproducibility across hospital 
and is independent of the individual physician’s judgment, which 
indicated that there have insufficient evidences to support this model 
could apply in the clinical practice directly; more multicenter studies 
(center number > 2) with a large sample size (case size > 500) and 
rigorous evaluation framework are needed to further validate our 
model. Moreover, our predictive model was based on a retrospective 
analysis; how it performs in prospective studies remains to 
be further evaluated.

Conclusion

In conclusion, we  found the potential linear relationship 
between trio-WES-diagnostic rates and the phenotypic 

enrichments in g-NDDs children for the first time, indicating the 
possibility of applying a logistic regression model based on 
phenotypic features to predict the personalized diagnostic rates of 
using trio-WES in children with g-NDDs. However, due to the 
false negatives existed in the established model of this pilot study, 
this model could not apply directly in the clinical practice as its 
current form; further improvements are required to reduce false 
negatives toward 0%.
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