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Gastrodia elata Blume (GE), a traditional Chinese medicine clinically employed to 
treat neurological disorders, demonstrates therapeutic efficacy supported by robust 
clinical evidence. Nowadays, conventional pharmacotherapies for neurological 
conditions—such as cholinesterase inhibitors for Alzheimer’s or Ldopa for Parkinson’s—
often provide limited symptom relief, exhibit side effects, and fail to halt disease w, 
underscoring the need for alternative strategies. The primary bioactive compounds 
of Gastrodia elata Blume (GE) include gastrodin, p-hydroxybenzyl alcohol, Vanillyl 
alcohol, Polysaccharides, and β-sitosterol. Modern research has demonstrated that 
GE and its active components exhibit neuropharmacological effects, including 
neuron protection, reduction of neurotoxicity, and promotion of nerve regeneration 
and survival. For example, Gastrodin, exerts neuroprotection by scavenging reactive 
oxygen species, suppressing pro-inflammatory cytokines, and enhancing GABAergic 
transmission, thereby alleviating oxidative stress and neuronal apoptosis. Vanillin, 
potentiates GABA receptor activity, enhancing inhibitory neurotransmission and 
reducing seizure susceptibility.GE polysaccharides modulate the gut-brain axis 
and suppress microglial activation, mitigating neuroinflammation. Current studies 
primarily focus on GE and its active ingredients for the treatment of neurological 
diseases such as Parkinson’s disease, Alzheimer’s disease, epilepsy, convulsions, 
depression, schizophrenia, as well as enhancing learning and memory, and preventing 
or treating cerebral ischemic injury. This review explores the neuropharmacological 
effects of GE and its active compounds, elucidates the underlying mechanisms, 
and suggests potential preventive and therapeutic strategies for neurological 
diseases using herbal remedies.
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Highlights

	•	 Gastrodin significantly protected astrocytes exposed by regulating autophagy 
and apoptosis.

	•	 Gastrodin promoted neuro-regenerative signaling cascades by controlling chaperone/
proteasomal degradation pathways, inhibiting stress-related proteins, and modulating 
other neuroprotective genes and proteins with various regenerative modalities as well as 
capacities related to neuro-synaptic plasticity.

	•	 Gastrodin extracts and its major bioactive components protect DA neurons, regulate the 
level of monoamines in the brain.

	•	 P-hydroxybenzyl alcohol can penetrate the blood-brain barrier, protect against brain I/R 
injury and antioxidant stress and reduce inflammatory nerve injury.
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TABLE 1  The neuropharmacological mechanisms of action exerted by the primary bioactive components in GE.

Compound Class Neuropharmacological effects Mechanisms

Gastrodin Phenolic glycoside Antioxidant, anti-inflammatory, anti-apoptotic, 

neuroprotection

	-	 Scavenges ROS

	-	 Inhibits NF-κB/NLRP3 pathways

	-	 Modulates BDNF/TrkB signaling

	-	 Enhances GABAergic transmission

p-hydroxybenzyl alcohol Phenolic compound Neuroprotection, anti-epileptic, anti-inflammatory 	-	 Reduces glutamate excitotoxicity

	-	 Suppresses TNF-α/IL-6

	-	 Inhibits mitochondrial apoptosis (↑Bcl-2, ↓Bax/caspase-3)

Vanillyl alcohol Phenolic derivative Anti-seizure, neuroprotection 	-	 Potentiates GABAA receptors

	-	 Attenuates oxidative stress

Polysaccharides Carbohydrates Immunomodulation, anti-neuroinflammatory 	-	 Inhibits microglial activation

	-	 Reduces COX-2/iNOS expression

	-	 Modulates gut-brain axis

β-sitosterol Phytosterol Neuroprotection, anti-inflammatory 	-	 Lowers cholesterol-induced neurotoxicity

	-	 Inhibits NF-κB signaling

1 Introduction

Gastrodia elata Blume (GE), a member of the Orchidaceae family, 
grows in Chinese woodlands and has long been used as a traditional 
herbal medicine for neurological disorders. The bioactive compounds 
in GE, including gastrodin, 4-hydroxybenzyl alcohol, benzyl alcohol, 
4-(4-hydroxy-3-methoxybenzyl) alcohol, bis-(4-hydroxyphenyl) 
methane, and gastrodin, are able to cross the blood–brain barrier 
(BBB) (1–3). Other compounds (4-(4′-hydroxybenzyl) phenyl 
glucoside (gastrodin B, 1) and 1′-hydroxymethyl-phenyl 4-hydroxy-3-
(4″-hydroxybenzyl) benzyl ether (gastrol B, 2)) isolated from the 
rhizomes of Gastrodia elata show strong neuroprotective effects against 
H₂O₂-induced damage in PC12 cells (4). Additionally, Gastrodia elata 
has been shown to modulate brain protein metabolism at the proteomic 
level (5). Gastrodia elata playing a neuropharmacological role through 
modulating numerous signaling pathways, like nuclear factor-erythroid 
2-related factor (Nrf2), Wnt, neuronal nitric oxide synthase (nNOS), 
nuclear factor kappa-B (NF-κB), mitogen-activated protein kinase 
(MAPK) (6). Together, these findings suggest that GE is a promising 
candidate for treating neurological diseases.

The primary bioactive compounds of Gastrodia elata Blume (GE), 
including gastrodin, p-hydroxybenzyl alcohol (p-HB), vanillyl alcohol, 
polysaccharides, and β-sitosterol, collectively contribute to its 
neuropharmacological effects through multifaceted mechanisms. 
Gastrodin, the major glycoside, exhibits antioxidant and anti-
inflammatory properties by modulating Nrf2/HO-1 and NF-κB 
pathways, reducing oxidative stress and neuroinflammation in 
neurodegenerative and ischemic conditions. p-HB and vanillyl 
alcohol, phenolic derivatives, enhance GABAergic transmission and 
scavenge free radicals, supporting neuroprotection and alleviating 
seizures or anxiety-related behaviors. Polysaccharides mitigate 
neuroinflammation by inhibiting microglial activation and cytokine 
release (e.g., TNF-α, IL-6), while also promoting synaptic plasticity via 
BDNF upregulation. β-sitosterol, a phytosterol, modulates cholesterol 
metabolism and neuronal membrane stability, synergizing with other 
compounds to attenuate apoptosis and mitochondrial dysfunction. 
The specific mechanisms by which they exert their 
neuropharmacological effects are shown as Table 1.

Research on GE and its active compounds primarily focuses on their 
effects in neurological conditions, including Parkinson’s disease, 
Alzheimer’s disease, epilepsy and convulsions, depression, schizophrenia, 
cognitive dysfunction, and cerebral ischemic injury. Therefore, this 
review addresses each of these areas in detail, summarizing recent 
studies on the pharmacological effects of GE. By understanding the 
mechanisms of GE, we may uncover novel therapeutic opportunities for 
patients with neurological disorders (Figure 1).

2 Pharmacological mechanisms of GE 
and its active ingredients

2.1 GE and its active ingredients prevented 
neuronal death

Glutamate (Glu), the major excitatory neurotransmitter in the 
central nervous system (CNS), regulates fast synaptic transmission, 
neuronal plasticity, outgrowth, survival, memory, learning, and 
behavior, while excessive Glu triggers receptor-mediated Ca2+ influx 
through ionic channels, leading to excitotoxicity and subsequent 
neuronal dysfunction, damage, or death (7). As the common pathway 
in neurologic disorders, Glu-mediated neurotoxicity contributes to 
the pathogenesis of multiple neuropathological conditions (8). 
Glutamate (GLU)-induced neuronal death serves as a well-established 
injury model. In HT22 hippocampal cells, GLU exposure significantly 
increases both phosphorylated p38 and dephosphorylated 
phosphatidylinositol-3-kinase (PI3K) expression. However, 
pretreatment with the methanol extract of GE (MEGE) inhibits the 
expression of both phosphorylated p38 and dephosphorylated PI3K, 
thereby reducing GLU-induced HT22 hippocampal cell death. 
Additionally, MEGE pretreatment lowers reactive oxygen species 
(ROS) levels induced by GLU and enhances the expression of 
phosphorylated PI3K, cAMP response element-binding protein 
(CREB), and mature brain-derived neurotrophic factor (BDNF). 
These findings indicate that MEGE protects neurons primarily by 
upregulating the PI3K signaling pathway in conjunction with BDNF 
(9).GLU exposure also triggers a gradual and sustained rise in 
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intracellular Ca2+ concentration, a key mechanism driving neuronal 
apoptosis. In IMR32 human neuroblastoma cells, the active GE 
components vanillin (VAN) and p-hydroxybenzaldehyde (p-HB) 
significantly inhibit both GLU-induced intracellular Ca2+ elevation 
and neuronal apoptosis (10). Furthermore, in PC12 cells subjected to 
serum deprivation, GE targets the adenosine A (2A) receptor (A 
(2A)-R), promoting cAMP formation, increasing protein kinase A 
(PKA) activity, and enhancing CREB phosphorylation, which 
collectively inhibit apoptosis in PC12 cells (11).

In PC12 cells, gastrodin, a key active compound in GE, effectively 
inhibits GLU-induced oxidative stress. Specifically, gastrodin reduces 
GLU-induced intracellular Ca2+ influx, thereby blocking the activation 
of calmodulin-dependent kinase II (CaMKII) and apoptosis signaling-
regulating kinase-1 (ASK-1). Additionally, gastrodin suppresses the 
phosphorylation of p38 mitogen-activated protein kinase (MAPK), 
p53, caspase-3, and cytochrome C, while decreasing the GLU-induced 
bax/bcl-2 ratio in PC12 cells (12). Another study demonstrated that 
GE polysaccharides protect PC12 cells from corticosterone-induced 
apoptosis by inhibiting the endoplasmic reticulum (ER) stress-
mediated pathway (13).

Autophagy, a programmed cell death mechanism, is also 
influenced by GE. Gastrodin significantly protects astrocytes from 
autophagy and apoptosis when exposed to lipopolysaccharides (LPS). 
Further analysis shows that gastrodin reduces the expression of 
LC3-II, P62, and Beclin-1, protecting astrocytes from autophagy. 
Gastrodin also modulates the Bcl-2 and Bax signaling pathways to 
prevent astrocyte apoptosis (14). Network pharmacology studies (15) 
indicate that alexandrin (an active GE component) enhances STAT3 
expression to exert anti-inflammatory and anti-apoptotic effects, while 
para-hydroxybenzaldehyde and gastrodin inhibit myeloperoxidase 
(MPO) and matrix metalloproteinase-9 (MMP9) expression, 
respectively, attenuating neuroinflammation and blood–brain barrier 

disruption (15). These actions help protect ischemic neurons, 
contributing to the anti-cerebral ischemia/reperfusion injury (CIRI) 
effects of GE (15).

2.2 GE and its active ingredients reduced 
neurotoxicity

Several studies have demonstrated that gastrodin can mitigate 
amyloid β (Aβ) (1–42)-induced neurotoxicity in primary neural 
progenitor cells (NPCs). Gastrodin enhances cell viability, reduces the 
release of pro-inflammatory cytokines and nitric oxide (NO), and 
alleviates Aβ (1–42)-induced apoptosis in NPCs. One study found that 
GAS suppressed NLRP3 inflammasome signaling pathway, and 
therefore suppressed pyroptosis and exerted neuroprotective effect 
(16). Additionally, gastrodin reverses the Aβ (1–42)-induced increase 
in phosphorylation of MEK-1/2, extracellular signal-regulated kinases 
(ERK), and c-Jun N-terminal kinase (JNK). Apoptosis plays a critical 
role in ischemia/reperfusion (I/R)-induced neuronal death. In a middle 
cerebral artery occlusion (MCAO) rat model, gastrodin preserved the 
expression of the anti-apoptotic protein Bcl-2 while suppressing the 
expression of the pro-apoptotic Bax protein. It also reduced the levels 
of cleaved caspase-3, a key marker of apoptosis, induced by cerebral I/R 
(17). In Aβ (1–42)-injected C57BL/6 mice, gastrodin promoted 
hippocampal neurogenesis (18). Yang et al. (19) demonstrates that 
gastrodin mitigates methamphetamine-induced autophagic 
neurotoxicity in SH-SY5Y dopaminergic neurons by dose-and time-
dependently suppressing LC3B/Beclin-1 overexpression and 
autophagosome formation, mechanistically linked to AKT/mTOR 
pathway activation. Additionally, gastrodin effectively counteracted 
neurotoxicity induced by hypoxia, glutamate, and N-methyl-D-
aspartate (NMDA) receptors in primary rat cortical neurons (20, 123). 

FIGURE 1

Chemical structure formula of active ingredients of GE.
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Under ischemic conditions, inducible nitric oxide synthase (iNOS) 
astrocytes typically exhibit increased expression of, leading to excessive 
NO production, which contributes to neurotoxicity. Gastrodin protects 
astrocytes from I/R injury by inhibiting iNOS expression and reducing 
NO-induced neurotoxicity (21). Additionally, gastrodin can 
downregulate NLRP3, NLRC4, caspase-1, and IL-18  in astrocytes 
subjected to ischemic stress, while also reducing STAT3 and NF-κB 
pathway activity. Furthermore, gastrodin regulates the PI3K/AKT-Sirt3 
axis, enhancing antioxidant defenses by suppressing ROS production 
and promoting FOXO3a phosphorylation in activated microglia, 
thereby alleviating oxidative stress and inflammation.

Lead is a well-known environmental toxin that causes significant 
damage to the nervous system. Exposure to lead impairs synaptic 
plasticity in the hippocampal CA1 region of rats at postnatal day 22 
(P22), but gastrodin effectively mitigates these lead-induced 
impairments. The study showed that lead exposure disrupts synaptic 
plasticity, reduces BDNF levels, and triggers neuroinflammation, 
apoptotic neurodegeneration, and deficits in neuronal plasticity, 
cognition, and brain development (22). Gastrodin reduces the 
accumulation of phosphorylated tau (p-tau) and amyloid-beta (Aβ), 
inhibits lead-induced brain inflammation, and increases the 
expression of NR2A and BDNF. Additionally, gastrodin alleviates 
oxidative stress via nuclear factor erythroid 2-related factor 2 (Nrf2)-
mediated antioxidant signaling modulation, activates the Wnt/β-
catenin pathway, and decreases the expression of the Wnt inhibitor 
Dickkopf-1 (Dkk-1) (23). These findings suggest that gastrodin may 
offer therapeutic potential for lead-induced neurotoxicity (23, 24). 
Several phenolic compounds isolated from GE have also been shown 
to counteract KCl-induced neurotoxicity in PC12 cells (25). 
Furthermore, GE effectively reduce (MPP+)-induced cytotoxicity in 
human dopaminergic SH-SY5Y cells (26). Both gastrodin and vanillyl 
alcohol protect against MPP(+)-induced cytotoxicity by upregulating 
the Bcl-2 protein, thereby inhibiting the apoptotic pathway in 
Parkinson’s disease cell models (27–29).

2.3 GE and its active ingredients promote 
nerve regeneration and survival

Research indicates that GE stimulates the proliferation and 
differentiation of human neural stem cells (NSCs) derived from 
embryonic stem cells (30).

Using an iTRAQ (isobaric tag for relative and absolute 
quantitation)-based proteomics approach, researchers identified 406 
proteins modified by GE treatment in differentiated human neuronal 
SH-SY5Y cells. These findings suggest that GE promotes 
neuroregenerative signaling pathways by regulating chaperone/
proteasomal degradation, inhibiting stress-related proteins, and 
modulating other neuroprotective genes that enhance neuroplasticity 
and regeneration (31, 32).GE enhances neurogenesis by activating 
pathways like BDNF/TrkB and Wnt/β-catenin, promoting neural 
stem/progenitor cell proliferation in hippocampal and subventricular 
zones. Additionally, gastrodin (GAS) and 4-hydroxybenzyl alcohol 
(HBA), active compounds in GE, improve learning and memory, 
reduce neuronal damage and Aβ deposition, and decrease Tau 
phosphorylation. In rats, these compounds also improve energy 
metabolism in the brain and protect cells from mitochondrial 
dysfunction caused by H₂O₂-induced oxidative stress (33). Studies 

further indicate (34) that GE exerts neuroprotective effects through 
upregulation of Ncam1, Hsp90aa1, Tpi1, and Ppia alongside 
downregulation of Sept2 and Uchl1, restoring metabolic balance and 
promoting neuronal survival (34).

In another study, p-HBA promoted astrocyte-to-neuron 
conversion by inhibiting the Notch1 signaling pathway and activating 
NeuroD1 transcription. Within 14 days, these converted neurons 
matured, demonstrating GE’s potential for neuronal differentiation 
(35). Moreover, GE has been found to regulate the hyperactivation of 
G2019S, a mutant protein in dopaminergic neurons, and to counteract 
Mad signaling via Nrf2 pathway activation in glial cells, both of which 
contribute to its neuroprotective effects (36). These effects hold 
significant implications for regenerative medicine, particularly in 
treating neurodegenerative diseases (e.g., Alzheimer’s, Parkinson’s) 
and brain injuries, as GE may stimulate endogenous repair 
mechanisms or synergize with stem cell therapies to restore neural 
function. Further exploration of GE-derived compounds could yield 
novel neuroregenerative therapeutics (Figure 2).

3 GE and its active ingredients in 
treating neurological diseases

3.1 Anti-Parkinson’s disease

Neuroinflammation in PD is mostly linked to the reactive state of 
glial cells in the brain. The secretion of pro-inflammatory cytokines 
such as Interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α 
(TNF-α) to the brain microenvironment may accelerate 
neurodegeneration in PD (37). Reducing microglia-mediated 
neuroinflammation can thus decrease the degeneration of 
dopaminergic neurons (38). A Parkinson’s disease (PD) cell model was 
established by exposing PC12 cells to rotenone. In this model, 
neuroinflammation was characterized by elevated levels of 
pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α, 
alongside reduced resting microglia in the substantia nigra (SN) of 
rotenone-induced PD rats (39). Gastrodin treatment effectively 
reduced these inflammatory markers. Furthermore, a bibenzyl 
compound isolated from GE dose-dependently mitigated rotenone-
induced apoptosis and oxidative stress in PC12 cells (40). Another 
widely used in vitro PD model involves 1-methyl-4-phenylpyridinium 
(MPP+)-treated MN9D dopaminergic cells. In this model, GE extracts 
and their primary bioactive components protected dopaminergic 
MN9D cells from MPP + -induced apoptosis by alleviating oxidative 
stress and modulating the apoptotic pathways (41). A separate study 
showed that gastrodin (GTD) alleviated PD-related motor deficits and 
dopaminergic neuronal damage by enhancing MEK-dependent 
regulation of VMAT2, which is involved in dopamine homeostasis 
(42). Additionally, in a rotenone-induced PD rat model, co-treatment 
with vanillin and levodopa-carbidopa significantly improved motor 
deficits and reduced oxidative stress markers, such as lipid 
peroxidation, and increased levels of GSH and catalase in the 
brain (43).

The underlying mechanism of GE’s neuroprotective effects may 
involve multiple pathways, including the enhancement of the body’s 
antioxidant capacity, protection of dopaminergic (DA) neurons, 
regulation of brain monoamine levels, inhibition of various apoptosis-
related signaling pathways, and activation of Wnt signaling pathways 
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(44, 45). Additionally, GE may regulate the Keap1-Nrf2/HO-1 
pathway, leading to increased expression of downstream antioxidant 
genes and enhanced superoxide dismutase (SOD) enzyme activity 
(46). In a 6-OHDA-induced PD rat model, vanillin treatment 
significantly reduce apomorphine-induced contralateral rotation and 
maintained dopamine levels (47).

Moreover, gastrodin increases the expression of HO-1 through the 
activation of the p38 MAPK/Nrf2 signaling pathway, which protects 
SH-SY5Y cells from MPP + -induced oxidative stress and cell death in 
a PD cell model (28). In the subchronic MPTP-induced mouse PD 
model, gastrodin also exhibited neuroprotective effects, improving 
bradykinesia and motor impairments (27).

Currently, L-3,4-dihydroxyphenylalanine (L-DOPA), a dopamine 
precursor, is the gold-standard treatment for PD. However, long-term use 
of L-DOPA can lead to L-DOPA-induced dyskinesia (LID). Therefore, it is 
crucial to identify safe and effective alternative treatments. Some studies 
suggest that GE may benefit PD patients by modulating the insulin-like 
DAF-2/DAF-16 signaling pathway (48, 49).

3.2 Anti-Alzheimer’s disease

As previously described, amyloid β (Aβ)-induced 
neurotoxicity plays a central role in the pathogenesis of 
Alzheimer’s disease (AD). Several studies have demonstrated that 
GE significantly reduces Aβ-induced neuronal cell death in vitro 

(50, 51). One study showed that 4,4′-methylenediphenol, a key 
active component of Gastrodia elata, enhances the expression of 
DAF-16, SOD-3, SKN-1, and GST-4 by activating the DAF-16/
FOXO and SKN-1/NRF2 signaling pathways. These actions 
improve antioxidant capacity, which, in turn, reduces ROS and Aβ 
aggregation, thereby alleviating Aβ toxicity (52). Further 
investigations (53) suggested that the inhibitory mechanisms of 
GE may involve the reduction of β-and γ-secretase activities. 
Zhang et  al. (54) reported that gastrodin, another active 
compound in Gastrodia elata, suppresses β-secretase expression 
by inhibiting the protein kinase/eukaryotic initiation factor-2α 
(PKR/eIF2α) pathway in an AD mouse model. In the Tg2576 
mouse model of AD, gastrodin significantly improved memory 
impairments, as assessed by the Morris water maze and probe 
tests. Additionally, gastrodin enhanced cell viability in an Aβ25-
35-induced cell culture model of AD, reducing lactate 
dehydrogenase (LDH) release and thereby protecting neurons 
from Aβ toxicity (55). Moreover, gastrodin significantly reduced 
Aβ deposition and glial activation in the brains of these mice (56). 
Further research indicated that gastrodin alleviates intracellular 
oxidative stress in the hippocampi of Tg2576 mice and mitigates 
memory deficits by inhibiting the PKR/eIF2α pathway (54).

We established a rat model of AD by injecting Aβ25-35 into the 
bilateral hippocampi. The rats were then intragastrically administered 
GE, and the results demonstrated that GE treatment significantly 
improved spatial memory. Moreover, GE treatment markedly reduced 

FIGURE 2

Pharmacological mechanisms of GE and its active ingredients.
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amyloid deposits in the hippocampus, increased choline 
acetyltransferase expression in the medial septum and hippocampus, 
and inhibited acetylcholinesterase activity in the prefrontal cortex, 
medial septum, and hippocampus of these AD rats (57). Gastrodia 
elata also alleviates cognitive deficits in vascular dementia (VD) rats 
by reducing the accumulation of toxic substances, including Aβ and 
tau proteins (58), and by decreasing excessive autophagy and neuronal 
cell apoptosis (59). Another study found that HBA effectively 
increased neurotrophic factors while reducing inflammatory markers, 
thus improving both working and spatial memory in AD model 
mice (60).

3.3 Anti-epilepsy and anti-convulsions

Several studies have established that GE and its components 
exhibit anti-epileptic and anti-convulsive properties in in vivo models. 
A clinical study has also demonstrated that vanillin, a key component 
of GE, has anti-epileptic effects (61). Furthermore, GE has been shown 
to scavenge ROS and reactive nitrogen species (RNS) and to prevent 
the occurrence of epileptic discharges in iron-injected rat models (62). 
Other studies suggest that GE may modulate GABA levels, which 
could contribute to its anti-epileptic effects (63–65). In vivo, gastrodin 
has been shown to inhibit the activities of enzymes responsible for 
GABA degradation—namely, GABA transaminase (GABA-T), 
succinic semialdehyde reductase (SSAR), and SSADH—in the 
hippocampus of seizure-sensitive gerbils (63). Yang et  al. (66) 
demonstrates that gastrodin ameliorates lithium-pilocarpine-induced 
seizure severity, and exerts neuroprotective effects against 
hippocampal neuronal damage at acute/subacute phases, mediated 
through upregulation of GABAA receptor expression, highlighting its 
potential as a novel therapeutic agent derived from traditional Chinese 
medicine for epilepsy management. Additionally, brain inflammation 
plays a crucial role in epileptogenesis. Chen et al. (67) demonstrated 
that gastrodin could reduce levels of pro-inflammatory cytokines, 
such as interleukin-1beta (IL-1β) and tumor necrosis factor-alpha 
(TNF-α), while reversing the decrease in the anti-inflammatory 
cytokine interleukin-10 (IL-10) in the brains of PTZ-induced mice.

In an in vivo experiment, mice were treated with the ether fraction 
of methanol extracts (EFME) of GE for 14 days prior to kainic acid 
(KA) injection. The EFME of GE significantly delayed the onset of 
neurobehavioral changes and notably reduced the severity of 
convulsions and hippocampal neuronal damage in the CA1 and CA3 
regions (68). In another study, oral administration of GE significantly 
reduced the frequency of wet dog shakes (WDS), paw tremors (PT), 
and facial myoclonia (FM) in KA-treated rats. Additionally, GE 
delayed the onset of WDS in these rats, further supporting its anti-
convulsive effects (69). GE also modulated the expression of activator 
protein 1 (AP-1) through the JNK signaling pathway, which may 
underlie one of its anti-convulsive mechanisms (70). Furthermore, 
some studies suggest that the anti-convulsive effects of GE could 
be attributed to its vanillyl alcohol (VA) component (71, 72).

3.4 Anti-depression

Numerous in vivo studies have demonstrated that GE exhibits 
anti-depressant effects (73). The GE extract significantly increased DA 

levels while decreasing the concentration of 3,4-dihydroxyphenylacetic 
acid (DOPAC), leading to a reduction in DA turnover in the striatum 
of Sprague–Dawley rats (74). Similarly, the GE extract raised serotonin 
(5-HT) levels in the frontal cortex and DA levels in the striatum. It 
also decreased the ratios of 5-HIAA/5-HT and (DOPAC + HVA)/DA, 
indicating reduced turnover of both 5-HT and DA in rats during the 
forced-swimming test (FST) (75). Another study found that in rats 
exposed to the unpredictable chronic mild stress (UCMS) model, the 
GE extract significantly reversed sucrose preference and other 
abnormal behaviors. It also restored cerebral turnover rates of 5-HT 
and DA while lowering serum corticosterone levels (76). These 
findings suggest that the anti-depressant effects of GE may involve the 
modulation of both serotonergic and dopaminergic systems. 
Additionally, proteomic and bioinformatics analyses indicated that the 
GE extract influenced the core protein network, particularly by down-
regulating the Slit-Robo pathway. Since the Slit-Robo pathway is 
involved in neuronal cytoskeletal remodeling, these results imply that 
both the Slit-Robo pathway and neuronal cytoskeletal remodeling 
may contribute to the anti-depressant-like effects of the GE extract 
(77, 78).

Network pharmacology predictions suggest that G. elata exerts 
its anti-depressant effects through reticulon 4 receptors (RTN4R) 
and apoptosis-related targets (79). Parishin C (Par), a prominent 
bioactive compound in G. elata, has been shown to significantly 
alleviate depression-like behaviors induced by chronic social 
defeat stress (CSDS) in mice. This effect was accompanied by a 
reduction in serum corticosterone levels and an increase in the 
concentrations of serotonin (5-HT), DA, and norepinephrine 
(NE) in the hippocampus and prefrontal cortex (80).GE also 
engages CB1R-dependent PKA/RhoA signaling to restore synaptic 
protein expression and dendritic spine density in hippocampal 
neurons, mitigating post-stroke depressive behaviors linked 
to neuroinflammation.

Furthermore, G. elata improved depression-like behaviors and 
reversed stress-induced elevations of corticosterone in C57BL/6 mice 
exposed to the CSDS model. It achieved this by increasing the protein 
expression of BDNF and enhancing the phosphorylation ratio of 
cAMP CREB and protein kinase B (Akt) in the hippocampus (81). In 
a chronic unpredictable stress (CUS)-induced depression rat model, 
the expression of glial fibrillary acidic protein (GFAP) and BDNF was 
reduced in the hippocampus; however, gastrodin reversed these 
changes. In vitro, gastrodin also improved levels of phospho-ERK1/2 
and BDNF in hippocampal-derived astrocytes. These findings suggest 
that the anti-depressant effects of gastrodin are linked to the 
enhancement of BDNF levels and the modulation of astrocyte 
activation (21). In conclusion, The antidepressant mechanism 
involves an increase in the neurotransmitters, anti-inflammatory 
effects, increases in the number of new neurons, the rearrangement 
of the nerve cytoskeleton, and regulation of the expression of related 
inflammatory factors (82).

3.5 Anti-schizophrenia

The 5-HT (1A) receptors play a crucial role in the pathophysiology 
of schizophrenia, and since GE modulates the serotonergic system, 
we investigated its effects on abnormal behavior in mice induced by 
phencyclidine (PCP). GE significantly attenuated these abnormal 
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behaviors, with effects comparable to those of 8-OH-DPAT, a 5-HT 
(1A) receptor agonist. Furthermore, the effects of GE were reversed 
by WAY 100635, a 5-HT (1A) receptor antagonist. These findings 
suggest that GE exerts an anti-schizophrenic effect through the 
activation of 5-HT (1A receptors) (83). Similarly, parishin C, a major 
component of GE, exhibits comparable pharmacological effects (84). 
GE also downregulates the Slit-Robo pathway, linked to neuronal 
cytoskeletal remodeling, and reduces stress-induced corticosterone, 
addressing neuroinflammation and oxidative stress.

3.6 Improvement in learning and memory

Several preclinical studies have demonstrated that GE and its extracts 
can improve learning and memory deficits in rats (59, 85–88). The 
phenolic compound 4-hydroxybenzyl methyl ether (HBME), isolated 
from GE, significantly increased step-through latency at all three stages 
of memory (acquisition, consolidation, and retrieval) in the step-through 
passive avoidance task in mice. Furthermore, the pharmacological effects 
of HBME were reversed by the dopamine D1 receptor antagonist 
SCH23390 or the PKA antagonist H-89. HBME also increased the 
phosphorylation of PKA and cAMP CREB in the cortex and 
hippocampus. Notably, these enhancing effects were blocked by 
SCH23390. In contrast, HBME alleviated memory impairments 
induced by SCH23390 (89). Gastrodin effectively mitigated 
3,3′-iminodipropionitrile (IDPN)-induced working memory deficits in 
the Y-maze task in rats. Additionally, gastrodin prevented the reduction 
of DA and its metabolites, as well as the increase in the DA turnover ratio 
[(DOPAC + HVA)/DA], induced by IDPN. Gastrodin also preserved 
dopamine D2 receptor and dopamine transporter protein levels in the 
hippocampus of rats (90). In the context of ADHD treatment, gastrodin 
may enhance DA release and transport by modulating DA receptor 
function, while also inhibiting proinflammatory cytokines and GIRK 
channels (91). These findings suggest that the effects of GE and its 
components on cognitive function are likely mediated, at least in part, by 
dopaminergic neurotransmitter signaling (92).

Additionally, gastrodin inhibited the reduction of γ-aminobutyric 
acid (GABA) levels and the increase in α2 GABAA receptor protein 
expression in the prefrontal cortex and hippocampus of rats induced 
by IDPN (93). These findings suggest that the effects of GE and its 
components on cognitive function may, in part, involve the 
normalization of the GABAergic system (94). Furthermore, GE and 
its components enhanced cognitive function by increasing plasma 
adrenal steroid levels (95), inhibiting β-site APP-cleaving enzyme 1 
activity, and promoting neuroprotective α-secretase activity (96).

3.7 Prevention and treatment of cerebral 
ischemic injury

GE and its extracts have demonstrated the ability to prevent and 
treat cerebral ischemic injury in numerous studies (97). Wang et al. 
(98) indicate that GAS significantly improves neurological function 
and neuronal survival in a permanent cerebral infarction model, 
potentially through mechanisms involving suppression of 
inflammatory responses, inhibition of apoptosis, and enhancement 
of revascularization in the ischemic hemisphere. Administration of 

gastrodin prior to ischemia significantly reduced glutamate elevation 
during the postischemic period and increased extracellular GABA 
levels during reperfusion in the rat hippocampus. This shift led to a 
decrease in the glutamate/GABA ratio during both ischemia and 
reperfusion (99–103). Gastrodin also markedly reduced infarct and 
edema volumes while improving neurological function (104). 
Additionally, gastrodin enhanced the secretion of brain-derived 
neurotrophic factor, which further contributed to the recovery of 
neurological function and protected neural cells from injury (105, 
106). EAA-induced neurotoxicity is considered a primary 
pathological mechanism in ischemic brain damage. Gastrodin 
significantly inhibited the release of cerebral amino acids, 
particularly EAAs, thereby modulating the imbalance between EAAs 
and inhibitory amino acids (IAAs) during I/R (21).

Furthermore, 3,4-dihydroxybenzaldehyde (DBD), an active 
compound in GE, significantly reduced infarct volume and 
alleviated neurological deficits in rats. This effect was mediated 
by the inhibition of microglia activation, selective modulation of 
microglial polarization, and a reduction in inflammatory 
mediators and cytokine production through the suppression of 
MAPK and NF-κB activation (107). P-HBA, an active compound 
in GE, prevents cerebral ischemic injury by modulating 
cytoprotective genes, including Nrf2 and PDI, as well as 
neurotrophic factors (108). PHBA penetrates the BBB, protects 
against brain I/R injury, reduces oxidative stress, and mitigates 
inflammatory neural damage (109). Additionally, HBA and other 
active GE ingredients increase the expression of genes encoding 
antioxidant and anti-inflammatory proteins (107, 110, 111). For 
instance, they promote PSD-95-AMPAR activity, elevate protein 
expression levels of PSD-95 and GluA1, and suppress apoptosis-
related pathways (112) to alleviate cerebral ischemic injury (113).

Evidence suggests that enhancing the pentose phosphate 
pathway may serve as a therapeutic target for ischemic brain 
injury (114). Gastrodin increases ribose 5-phosphate levels, 
influencing the pentose phosphate pathway and improving 
ischemic brain damage (115). The Wnt/β-catenin signaling 
pathway also plays a crucial role in regulating hippocampal 
development and synaptogenesis (116). One study showed that 
gastrodin enhances neurogenesis and reduces ischemic damage 
in a cerebral ischemia model through activation of the Wnt/β-
catenin pathway (117). Additionally, gastrodin accelerates 
hippocampal neurogenesis after cerebral ischemia via the PDE9-
cGMP-PKG signaling pathway (118) (Figure 3).

4 Conclusion

GE, a traditional Chinese medicine, has been used clinically for 
thousands of years (119). Recent studies demonstrate that GE and its 
active compounds exhibit neuropharmacological effects, including 
neuroprotection, reduction of neurotoxicity, and promotion of nerve 
regeneration and survival. For currently incurable neurological 
disorders such as AD, PD, epilepsy, convulsions, depression, 
schizophrenia, and cerebral ischemic injury, available therapies offer 
only limited symptom relief or modest slowing of disease progression. 
Thus, there is an urgent need for new therapeutic agents that can 
effectively treat and support recovery from these neurological 
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conditions. A series of studies confirms that GE and its active ingredients 
possess a range of beneficial effects, including anti-Parkinson’s, anti-
Alzheimer’s, anti-epileptic, anticonvulsant, antidepressant, 
antipsychotic, cognitive-enhancing, and neuroprotective actions, 
especially against cerebral ischemic injury. As a result, GE shows 
promise as a potential alternative treatment for various intractable 

neurological diseases. Notably, gastrodin, a major active component of 
GE, has seen extensive clinical application, although its pharmacological 
properties require further exploration (120–122). In this review, 
we summarize the applications and mechanisms of GE and its active 
ingredients in neurological diseases, aiming to provide new therapeutic 
strategies for these challenging conditions.

FIGURE 3

The mechanism of GE and its active ingredients in the treatment of neurological diseases.
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