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Background: After stroke, upper limb dysfunction seriously affects patients’ 
quality of life. The uncertain prognosis of patients poses a challenge for therapists 
in developing personalized rehabilitation programs. Electroencephalograph 
(EEG) power spectrum changes during rehabilitation training may have a 
predictive effect on the improvement of upper limb movement. Therefore, it is 
of great clinical significance to explore the EEG power spectrum related to the 
recovery of upper limb function after stroke.
Method: This study included 113 subacute stroke survivors who were treated 
with routine rehabilitation for 2 weeks. At week 0 (T0) and week 2 (T2), behavioral 
scales including Fugl-Meyer Assessment of Upper Limb (FMA-UL), action 
research arm test (ARAT), modified Barthel index (MBI), and National Institutes of 
Health Stroke Scale (NIHSS) was assessed to compare correlations and observe 
the relationship between behavioral indicators and function under conventional 
rehabilitation. Twenty-six of the 113 patients were selected to undergo resting 
state EEG detection at week 0 (T0), week 1 (T1) and week 2 (T2), respectively. 
Power spectrum (PSD) and BSI values were calculated by EEG spectral analysis. 
The relationships between beta PSD and the clinical scales, between BSI and the 
clinical scales were examined by correlation and regression analysis.
Results: Behavioral scales at T0 and T2 were positively correlated in both cohorts 
(N = 113, N = 26). Beta PSD correlated with FMA-UL (T1: r = 0.469, p = 0.016*; 
T2: r = 0.391, p = 0.048*) and ARAT (T0: r = 0.412, p = 0.037*; T1: r = 0.453, 
p  = 0.021*; T2: r  = 0.487, p  = 0.012*). Beta BSI negatively correlated with 
Brunnstrom-UL (T2: r = −0.498, p = 0.01*), FMA-UL (T1: r = −0.441, p = 0.036*; 
T2: r  = −0.507, p  = 0.008*), and MBI (T2: r  = −0.457, p  = 0.019*). PSD-T0 
predicted FMA-Hand (β = 0.997, p = 0.014*); PSD-T1 predicted ARAT (β = 1.945, 
p  = 0.014*). BSI-T1 predicted Brunnstrom-Hand (β  = −401.7, p  = 0.049*) and 
FMA-UL (β = −194.4, p = 0.041*), demonstrating beta EEG’s prognostic value.
Conclusion: Resting state EEG indicators, including beta PSD and BSI, may serve 
as prognostic biomarkers for upper limb motor function recovery of stroke 
survivors, providing valuable reference for further clinical decision-making.
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1 Introduction

Stroke is one of the leading causes of disability in adults (1), 
encompassing both cerebral hemorrhage and cerebral infarction. In 
the case of cerebral infarction, blood flow to a specific region of the 
brain is interrupted, leading to the progressive death of oxygen-
deprived brain cells. Conversely, cerebral hemorrhage results from the 
rupture of intracranial blood vessels, allowing blood to infiltrate or 
accumulate within the brain tissue. Upon hemorrhage, the 
accumulated blood forms a hematoma that exerts pressure on the 
surrounding neural tissue. Simultaneously, the disruption of blood 
supply prevents adequate perfusion to the affected area, resulting in 
rapid neuronal death due to hypoxia and exposure to toxic substances, 
such as byproducts of hemoglobin degradation (2). The death of these 
cells can result in partial or complete loss of functions associated with 
that region, such as memory and muscle control. The impact of a 
stroke on an individual depends on where in the brain the stroke 
occurs and the extent of brain damage. When the damage occurs in a 
motor area of the brain, it can lead to severe motor deficits, especially 
in the upper extremities. Upper limb weakness and functional 
impairment are major challenges for survivors, and approximately 
80% of stroke patients experience persistent upper limb movement 
disorders that require therapeutic intervention (3). Although various 
rehabilitation techniques are available to restore motor function, their 
effectiveness varies significantly among patients. Therefore, it is crucial 
to develop the individualized rehabilitation plan for each patient and 
accurately predict their potential motor recovery. A biomarker can 
be defined as “an indicator of disease state that can be used to measure 
potential molecules or cells that may be difficult to measure directly 
in humans” (3, 4). Biomarkers provide clinicians with the means to 
identify recovering patients with recovery potential, design 
personalized rehabilitation plans, and set realistic goals and 
expectations for patients and their families (5).

Recently, there has been increasing evidence supporting the use 
of biomarkers to predict motor recovery after stroke, including applied 
tools for neurophysiological and neuroimaging assessments. In the 
initial months following a stroke, functional recovery is primarily 
driven by the reorganization of brain circuits and neuroplasticity [the 
morphological and functional adaptation of the nervous system (6)]. 
Consequently, brain dynamics indicators associated with motor 
outcomes are highly relevant for characterizing patient profiles, 
serving not only as potential biomarkers but also as components of 
multimodal assessments that offer insights into post-stroke recovery 
mechanisms. Indeed, electroencephalogram (EEG) measurements 
performed after stroke onset can capture the neural reorganization 
underlying clinical recovery by detecting alterations in 
interhemispheric balance, activity changes within affected brain 
regions, and modifications in somatosensory representation maps (6, 
7). Specifically, EEG can be integrated into assessment protocols that 
correlate cortical electrical activity changes with clinically rated 
neurological impairments, highlighting its promising utility in 
rehabilitation research.

Measuring the relationship between the severity of upper limb 
motor injury and cortical activity by EEG is of great value for gaining 
insight into cortical recombination during stroke recovery (8). 
Resting-state EEG is widely used for functional assessment after 
stroke, and the intensity of spontaneous neuronal oscillations in 
different frequency bands has emerged as a potential neurobiomarker 

associated with stroke injury and recovery. Several frequency bands 
commonly used include δ, θ, α, β, and γ. Ramanathan et al. (9) recently 
found that task-related low-frequency activity in the motor cortex is 
a marker of motor control recovery in both rodents and humans, and 
attenuates early after stroke and is later associated with motor function 
recovery. Improved brain function is associated with improved clinical 
symptoms (10). However, there is limited research on the longitudinal 
association between clinical improvement and changes in cortical 
activation (4, 11). It is important to note that motor recovery is a 
complex process that is influenced not only by spontaneous recovery, 
but also by intervention-induced neuroplasticity. The extent of cortical 
deficits after stroke can be  quantified by resting state 
electroencephalography, as changes in resting state cortical activity are 
associated with motor dysfunction (12). It has been found that stroke 
is associated with increased low-frequency brain oscillations in δ 
(0.5–4 Hz) and θ (4–8 Hz) bands (13, 14), and decreased α (8–12 Hz) 
activity (15). Unilateral stroke may also affect the activity of cortical 
areas by altering the spectral power distribution in the hemisphere. 
The Brain Symmetry Index (BSI) compares the power spectra between 
the two hemispheres of the brain, providing a measure of their 
asymmetrical amplitude. It is one of the more widely used 
electroencephalographic-derived parameters in the field of stroke 
prediction. Initially developed for early detection of cerebral ischemia 
during carotid surgery (16), it has now been inferred to assess 
ischemic changes following a stroke. This observed asymmetry can 
be quantified and appears to correlate with the severity of stroke (17). 
This observed asymmetry can be  quantified (18), and appears to 
correlate with the severity of stroke (14, 19). Recent analyses have 
shown that BSI calculated in the δ band is longitudinally correlated 
with FM-UL, while BSI, δ band (BSIδ), and θ band (BSIθ) is 
longitudinally correlated with NIHSS. However, the potential of EEG 
parameters as additional prognostic biomarkers when combined with 
clinical scores of upper limb motor recovery after stroke, 
remains unknown.

In contrast to biomarkers that predict the natural course of stroke 
recovery, intervention specific biomarkers have the potential to 
predict a patient’s response to a specific treatment. This approach 
holds great promise for identifying the most appropriate patients for 
recovery in a clinical setting. Vatinno et  al. (20) investigated 
sensorimotor connectivity to predict upper limb motor recovery after 
stroke task training. Zhou et al. (21) used EEG to measure parietal 
lobe (PF) network connectivity to predict motor gain in visuospatial 
training after stroke. Previous studies have demonstrated the utility of 
EEG as a predictor of intervention-related motor gain at different time 
points before and after the intervention. However, it is important to 
note that EEG signals are non-stationary, complex, and heavily 
influenced by the stage and timing of stroke recovery.

Therefore, we  propose integrating routine rehabilitation 
interventions with EEG signal acquisition to analyze changes in EEG 
signals and brain networks during the rehabilitation process. This 
involves regularly assessing the brain’s response to rehabilitation 
interventions throughout the treatment course. At the same time, 
correlation analysis will be  conducted with clinically relevant 
indicators to find out specific biomarkers, enabling the prediction of 
prognosis for individual patients and facilitating early intervention. 
Patients with poor recovery may benefit from motor relearning 
combined with neuropharmacological intervention to promote nerve 
repair. For those with moderate recovery, intensive therapeutic 
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interventions targeting behavioral recovery can begin early. For 
patients demonstrating good recovery, advanced skills training (such 
as writing) can be intensified to further enhance functional outcomes.

After reviewing previous studies, it was found that studies on the 
longitudinal collection of EEG data were relatively rare. Therefore, the 
purpose of this study was to collect resting-state EEG longitudinally, 
analyze the correlation between the spectral characteristics of resting-
state EEG and clinical behavioral indicators, and identify the resting-
state EEG parameters related to stroke recovery; on this basis, it was 
also explored whether resting-state EEG has predictive value for upper 
limb motor impairment in patients with subacute stroke.

2 Method

2.1 Participants

In our multicenter longitudinal cohort study, patients admitted to 
the stroke units of 3 participating hospitals from June 2023 to June 
2024 were eligible for participation. Among the 1,550 patients, 113 
suitable patients were selected, all of whom completed the clinical 
baseline assessment and the assessment after 2 weeks. Among them, 
26 patients completed the EEG recording at baseline and completed 
the EEG recording at 1 and 2 weeks of recovery respectively, and were 
included in the analysis. A flowchart of screening, inclusion and drop-
outs is depicted in Figure 1.

The inclusion criteria were: (1) first-ever stroke according to 
computed tomography or magnetic resonance imaging (MRI) scan; 
(2) age from 18 to 80 years; (3) at least 2 weeks since stroke onset and 
less than 6 month; (4) able to sit on a chair independently for at least 

1 h; (5) stable vital signs, able to complete routine post-stroke 
rehabilitation assessment (6) signed informed consent and volunteered 
to participate in this study. Exclusion criteria: (1) the presence of any 
disease or symptom (secondary stroke, fall, fracture) that may 
aggravate or cause adverse effects of exercise; (2) patients with 
cognitive impairment (Mini-Mental State Examination, MMSE < 10) 
or mental illness that makes them ineligible for evaluation; (3) allergic 
to electrode gel; (4) Patients who are unable to sign informed consent 
forms; (5) Patients with neurodegenerative diseases. The baseline 
information of 113 patients whose EEG was not collected is shown in 
Table 1. This study was approved by the ethical committee of Huashan 
Hospital [(2023) Provisional Examination No. (013)] and was 
performed according to the Declaration of Helsinki, and the clinical 
registration was conducted (ChiCTR2300068400).

2.2 Behavioral indicators

Functional outcomes after stroke can be evaluated by a variety of 
clinical measures. According to the International Classification of 
Function, Disability and Health, outcome measures can be categorized 
into three domains: physical function and structure, activity and 
participation (World Health Organization, 2001). An experienced 
therapist performed all clinical measures. According to the changes in 
muscle tone and motor function, Brunnstrom divided the central 
nervous system injury after treatment into six stages to evaluate the 
recovery of motor function after nervous system injury. The Fugl-
Meyer Motor Assessment of the Upper Limb (FMA-UL) is a sensitive, 
valid, and reliable clinical test for measuring motor function (22) of 
the upper limb at the injury level. The FMA-UL, an injury scale 

FIGURE 1

Flowchart of screening, inclusion and drop-outs.
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designed for stroke survivors, determines a patient’s ability to separate 
movement from the upper limb, is a valid predictor of upper limb 
movement recovery, and is recommended to most appropriately 
reflect “true” neuromotor recovery (23), out of a score of 66. ARAT 
(24) is a standardized scale designed to evaluate upper limb motor 
dysfunction after stroke. This scale mainly assesses the patient’s ability 
to operate objects of different sizes, weights and shapes with high 
reliability and effectiveness. There are 19 items in total, which are 
divided into four groups of new sub-scale items. Through 4 basic 
movements: grasping, gripping, pinching and gross movement, the 
completion quality of each task adopts a 4-level method (0 ~ 3 points), 
0 indicates that the action cannot be completed, 3 indicates that the 
action can be completed normally; One side of the upper limb was 
rated on a scale of 0–57, with higher scores indicating better function. 
The Modified Barthel Index is used to measure activities of daily 
living. It is made up of 10 items related to different activities on a scale 
of 100, including (1) personal hygiene, (2) self-bathing, (3) eating, (4) 
using the toilet, (5) climbing stairs, (6) dressing, (7) defecating, (8) 
bladder control, (9) walking, (10) transfer. The higher the score, the 
better (25) the ability to perform activities of daily living. The NIHSS 
(26), measured hours to days after stroke onset, is an attractive 
outcome measure for stroke research, with NIHSS at visit (baseline 
NIHSS) strongly predicting subsequent NIHSS on a scale of 0–42, 
with higher scores indicating more severe nerve damage.

2.3 Routine assessment methods

The patients were routinely treated with basic rehabilitation 
therapy, including exercise therapy and occupational therapy for 1 h/
time, 5 times a week, for a total of 2 weeks. Clinical behavioral scales 
were assessed for 113 patients on day 1 (T0) and day 14 (T2) after 
admission. Among the 26 patients, EEG was collected using 64 
channels consisting of Ag/AgCl electrode of EEG cap (actiCAP; Brain 
Products, Gilching, Germany) according to the configuration of 10–20 
International System on the 1st day (T0), 7th day (T1), and 14th day 
(T2). The signal is amplified by the amplifier (Brain Products). The 
reference electrode was located in the right mastoid process, and the 
ground electrode was located in the forehead. The electrode 
impedance was kept below 20 kΩ. The original EEG signals was 
recorded at a sampling rate of 500 Hz and filtered by a bandpass filter 
between 0.1 and 60 Hz. Subjects kept relaxed and motionless during 
the experiment. The experimental environment was kept in weak 
light, quiet, and with no electromagnetic interference. Clinical 
assessments are conducted on the 1st and 14th days simultaneously. 
The patients were asked to remain quiet while their EEG was collected 

for 10 min. The upper limb of Fugl-Meyer assessment, ARAT, NIHSS 
and MBI were collected before (T0) and after the 2-weeks intervention 
(T2). EEG assessment and clinical evaluations were performed in a 
quiet room for all patients (Figure 2).

2.4 The analysis process of resting EEG

Offline analysis was conducted using MNE-Python software (27, 
28). Refer to the previous research of the research group, the left 
hemisphere was covered with FC3, CP3, C1, C3, and C5 (five 
channels) while the right with FC4, CP4, C2, C4, and C6 (five 
channels) (29). Firstly, load the raw data into MNE-Python. Then, 
load the electrode channel positions of the EEG data and delete the IO 
channel. Then use a notch filter to remove the 50 Hz power frequency 
and perform a 0.1 Hz- 60 Hz bandpass filter. Then, run an independent 
component analysis and draw the ICA component topography. 
Remove the electrooculogram component according to the ICA 
component topography, select the number of the component to 
be deleted, delete the component and apply it to the EEG data. Then 
perform the re-reference: apply the whole brain average reference. 
Finally, perform frequency band division (delta: 0.5-4 Hz, theta: 
4-8 Hz, alpha: 8-13 Hz, beta: 13-30 Hz, gamma: 30-60 Hz) and 
compute Power spectrum (PSD) of each band. The brain symmetry 
index (BSI) was calculated and exported. Figure 3 shows the schematic 
diagram of computing several brain indexes based on raw EEG data 
using MNE-Python.

2.4.1 Electrode channels
High-density 64-channel EEG recording using active shielding 

EEG cap, electrode placement in accordance with international 
standard 10–20 system, the sampling rate of 2048KZ (Ag/AgCl 
electrodes and REFA multichannel amplifier, Netherlands, with ASA 
acquisition software, ANT Software BV, The Netherlands), the 
electrodes located in the mastoid process (m1, m2) were not used, 
resulting in 62 channel recording. The ground electrode was placed 
on the mastoid. Record the signal as an average reference. Resting-
state EEG with eyes open was acquired while subjects were seated and 
focused their eyes on a computer screen for 10 min. Keep the electrode 
impedance below 20 kΩ. The EEG signal is referred to the 
average online.

2.4.2 Division of frequency bands
To facilitate analysis from clinical and cognitive scientific 

perspectives, EEG signals are divided into several frequency ranges. 
They are δ (0.5–4 Hz), θ (4–8 Hz), α (8–13 Hz), β (13–30 Hz), and γ 
(30–60 Hz). Delta band EEG is a low-frequency, high-amplitude wave 
associated with slow-wave sleep (SWS). SWS, in turn, is associated 
with long-term memory (30). In the adult brain, delta activity 
originates in the frontal cortex, hippocampus and thalamus. Human 
θ-band EEGs may come from either the cortex or the hippocampus, 
and the two forms may be independent of each other. In addition, θ 
waves are associated with memory processes in our brains. 
Interneurons in the hippocampus and prefrontal cortex essentially 
oscillate (31) at θ band frequencies.

Alpha waves originate in the posterior part, with the largest portion 
in the anterior part, especially in the occipital lobe, and may be more 
widely distributed. The power of the alpha frequency increases from early 

TABLE 1  Baseline demographics of 113 patients.

Demographics and clinical 
scores

Mean (SD)

Time post stroke (days),clinical assessment 40.89 (40.74)

Age(years) 63.23 (12)

Gender(male/female) 85/28

Affected hemisphere (left/right) 43/70

Hand dominance (left/right) 1/112

Stroke type (CI/CH) 85/28
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FIGURE 2

Clinical assessment and EEG assessment.

FIGURE 3

Schematic diagram of computing several brain indexes based on raw EEG data using MNE-Python.
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childhood to adulthood, but decreases with age or age-related neurological 
disorders. In people with dementia, as well as many other types of 
neurological disorders, the amplitude of the alpha frequency decreases, 
and it is significant in subjects with good memory.

In general, beta EEG is associated with our waking state, and 
specifically with cognitive and emotional processes. Between the two 
brain hemispheres, beta wave amplitudes in the brain hemispheres can 
vary by up to 35% (19).

Gamma rhythms occur after sensory stimulation in humans and 
other mammals, and are usually short-lived. Gamma rhythms have 
been identified in the sensory cortex as well as in the hippocampus. In 
addition to sensory information processing, perceptual gamma 
electroencephalography is involved in memory formation, language 
processing, internal thoughts (without any external stimuli), and 
behavior, especially motor movements and action plans.

2.4.3 BSI–brain symmetry index
BSI is defined as the absolute pairwise normalized spectral power 

difference between the left and right homologous channels cL and 
cR. In the frequency range of 0.5 to 60 Hz, we considered the absolute 
value of the relative difference in the average spectral density between 
the left and right hemispheres as a measure of symmetry. Since the 
spectral density is estimated via the Fast Fourier Transform, we now 
define the Brain Symmetry Index as follows (32):

	

( ) ( )
( ) ( )

= …

−
=

+
1, ,25Hz

BSI R R

R R

C C
C

C C f

P f P f
P f P f

These values were averaged over all channel pairs cp:

	 =
= ∑ /2

cp1
2BSI BSIN

cpN

BSI has an upper bound of 1, reflecting the maximum asymmetry 
of all paired channels; The lower bound is zero, indicating perfect 
symmetry. The electrodes on the middle line are excluded because 
they do not form a symmetrical channel. When one electrode with a 
symmetrical channel is considered a bad channel, the corresponding 
paired channel is excluded.

3 Statistical methods

According to FMA-UL, ARAT, MBI, NIHSS, as well as BSI and 
PSD EEG indicators, normality and homogeneity of variance tests 

were performed, ultimately leading to the selection of non-parametric 
statistical methods. Descriptive statistical results were expressed by 
median ± interquartile range. Spearman correlation analysis was 
used in the correlation analysis of statistical inference results. 
Regression analysis was performed between different times of clinical 
scales, between PSD as well as BSI and clinical scales. Repeated 
measures analysis of variance (RM-ANOVA) was performed between 
PSD and BSI in T0, T1 and T2. p < 0.05 was considered 
statistically significant.

4 Results

4.1 Behavioral scale results

Table 2 showed that the two behavioral scale evaluations on Day 
1 (T0) and Day 14 (T2) of the 113 patients were positively correlated, 
suggesting that the better the baseline motor function of patients, the 
better the later recovery. The score of the scale has a high predictive 
effect on the functional prognosis of patients in the later period.

In order to further verify which EEG spectrum was associated 
with the improvement of motor function under conventional 
intervention, we further collected EEG for 26 patients three times on 
Day 1 (T0), Day 7 (T1) and Day 14 (T2) of admission. At the same 
time, the behavioral scale was assessed on Day 1 (T0) and Day 14 (T2), 
respectively, as in the previous 113 patients. Similarly, the 26 patients 
were positively correlated with the two behavioral scales on Day 1 and 
Day 14, as shown in Table 3.

Figure 4 shows the regression results of 113 patients in T0 and T2 
(Figures  4A–D, details see Table  2), beta PSD of left and right 
hemispheres in T0, T1 and T2 (Figure 4E), and violin plots of beta BSI 
in T0, T1 and T2 (Figure 4F). For beta BSI, one-way ANOVA showed 
no significant differences among groups [F(2, 75) = 0.18, p = 0.832, 
η2  = 0.005]. One-way ANOVA revealed no significant group 
differences in left-hemisphere PSD [F(2, 75) = 0.13, p = 0.879, 
η2 = 0.003], with homogeneity of variance confirmed by Brown-
Forsythe (p = 0.792) and Bartlett’s tests (p = 0.322), indicating stable 
measures across conditions (N = 78). Similarly, right-hemisphere PSD 
showed no significant between-group differences [F(2, 75) = 0.40, 
p = 0.669, η2 = 0.011], supported by homogeneous variance (Brown-
Forsythe: p = 0.571; Bartlett’s: p = 0.237), demonstrating consistent 
measures (N = 78). The negligible to small effect sizes (left: R2 = 0.003; 
right: R2 = 0.011) further confirmed minimal between-group 
variability in both hemispheres. Variance homogeneity was confirmed 
(Brown-Forsythe: p = 0.906; Bartlett’s: p = 0.868). The effect size was 
negligible (R2 = 0.009), indicating minimal between-group variability 
(total n = 78). BSI measures were consistent across conditions.

TABLE 2  Changes, correlations and regression analysis of functional scores before and after treatment (n = 113).

Project Pre-
treatment

Post-
treatment

Pre-post change Correlation Regression

Z p ρ p B(SE) R2 p

FMA-UL 31.2 ± 20.7 39.3 ± 21.4 −8.475 <0.001 0.618 <0.001 0.929 (0.043) 0.811 <0.001

ARAT 19.1 ± 23.3 27 ± 25.2 −6.112 <0.001 0.924 <0.001 0.935 (0.052) 0.744 <0.001

MBI 52.8 ± 24.7 66.4 ± 22.9 −8.371 <0.001 0.865 <0.001 0.792 (0.046) 0.730 <0.001

NIHSS 4.2 ± 3.4 3.1 ± 3.1 −5.970 <0.001 0.807 <0.001 0.781 (0.043) 0.750 <0.001

FMA-UL, upper limb part of Fugl-Meyer scale.
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4.2 Correlation analysis results

4.2.1 PSD
We also test whether the relative powers in each frequency band 

were correlated with the Brunnstrom, FMA-UL, ARAT, MBI and 
NIHSS scales. We only found a correlation in the β band. There is a 
positive relationship between PSD T1 and FMA-UL T2 (r = 0.469, 
p = 0.016), PSD T2 and FMA-UL T2 (r = 0.391, p = 0.048), while no 

relationship between PSD T0 and FMA-UL T0/T2. There was still a 
positive correlation between PSD T0/T1/T2 and FMA-HAND T0/T2. 
ARAT T0/T2 was also positively correlated with PSDT0/T1/T2 (see 
Table 4).

4.2.2 BSI index
We test whether the relative powers in BSI were correlated with 

the Brunnstrom, FMA-UL, ARAT, MBI and NIHSS scales. We found 

TABLE 3  Changes, correlations and regression analysis of functional scores before and after treatment (n = 26).

Project Pre-
treatment

Post-
treatment

Pre-post change Correlation Regression

Z p ρ p B(SE) R2 p

FMA-UL 32.8 ± 17.2 40.2 ± 20.1 −4.290 <0.001 0.929 <0.001 1.106 (0.075) 0.901 <0.001

ARAT 19.7 ± 23.6 28.2 ± 25.5 −3.182 <0.001 0.923 <0.001 0.930 (0.111) 0.744 <0.001

MBI 68.3 ± 21.1 79 ± 17.6 −4.380 <0.001 0.912 <0.001 0.742 (0.077) 0.796 <0.001

NIHSS 2.7 ± 2.1 2.1 ± 2.2 −2.911 0.004 0.825 <0.001 0.918 (0.097) 0.790 <0.001

FMA-UL, upper limb part of Fugl-Meyer scale.

FIGURE 4

Regression analysis of 113 patients in T0 and T2, beta PSD of left and right hemispheres in T0, T1 and T2, and violin plots of BSI in T0, T1 and T2. L, left; 
R, right; T0, week 0; T1, week 1; T2, week 2.
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a negative relationship between BSI T2 and Brunnstrom UL T2 
(r = −0.546, p = 0.004), while no relationship between BSI T0/T1 and 
Brunnstrom UL T0/T2. There is a negative relationship between BSI 
T1 and FMA-UL T2 (r = −0.443, p = 0.023), BSI T2 and FMA-UL T2 
(r = −0.619, p = 0.001), while no relationship between BSI T1 and 
FMA-UL T2. There is a negative relationship between BSI T1 and 
FMA-HAND T2 (r = −0.46, p = 0.018), BSI T2 and FMA-HAND T2 
(r = −0.608, p = 0.001), while no relationship between BSI T0/T1and 
FMA-HAND T0/T2. There is a negative relationship between BSI T1 
and ARAT T2 (r  = −0.504, p  = 0.009), BSI T2 and ARAT T2 
(r = −0.554, p = 0.003), while no relationship between BSI T0 and 
ARAT T0/T2. There is a negative relationship between BSI T2 and 
MBI T2 (r = −0.568, p = 0.002), while no relationship between BSI T0/
T1 and MBI T0/T2. There is a positive relationship between BSI T2 
and NIHSS T2 (r = −0.558, p = 0.003), while no relationship between 
BSI T0/T1 and NIHSS T0/T2 (see Table 5).

4.3 Regression analysis results

For PSD, our regression analysis indicated that baseline PSD-T0 
significantly predicted only FMA-Hand scores at follow-up (β = 0.997, 
95% CI [0.22–1.79], p = 0.014), accounting for 22.8% of the variance 
in hand motor function. With respect to broader motor outcomes, 
PSD-T0 showed consistent positive trends: higher baseline power 
spectral density predicted better Brunnstrom-Hand (β = 0.163, 
p = 0.041), FMA-UL (β = 1.787, p = 0.043), and ARAT (β = 2.416, 
p = 0.030) performance, although the association with 
Brunnstrom-UL did not reach statistical significance (β = 0.080, 
p = 0.134). These findings suggest that elevated left-hemisphere PSD 
at baseline may herald more favorable functional recovery. Moreover, 
regression analyses revealed that follow-up PSD-T1 exhibited stronger 
and more widespread predictive relationships than baseline 
measurements. PSD-T1 demonstrated significant associations with 
Brunnstrom-UL (β = 0.088, 95% CI [0.02–0.16], p = 0.017), 
Brunnstrom-Hand (β = 0.145, 95% CI [0.04–0.25], p = 0.010), 
FMA-UL (β = 1.624, 95% CI [0.45–2.80], p = 0.009), FMA-Hand 
(β = 0.788, 95% CI [0.25–1.33], p = 0.006), and ARAT (β = 1.945, 95% 
CI [0.43–3.46], p = 0.014), collectively explaining 21.4–27.3% of 
outcome variance. While MBI and NIHSS displayed consistent 
directional trends, these relationships were not statistically significant 
(MBI: β = 0.907, p = 0.109; NIHSS: β = −0.131, p = 0.062). 

Collectively, the emergence of significant predictions across multiple 
motor domains at follow-up underscores that PSD measurements 
acquired during active rehabilitation possess enhanced prognostic 
utility relative to baseline assessments (see Table 6).

For BSI, our regression analysis demonstrated that baseline BSI 
(BSIT0) significantly predicted NIHSS scores at follow-up (β = 48.63, 
95%CI [0.07–97.19], p = 0.0497*), explaining 15.1% of the variance in 
neurological impairment. For motor outcomes, BSIT0 showed 
consistent predictive trends: higher baseline asymmetry predicted 
poorer Brunnstrom-UL (β  = −32.26, p  = 0.1194) and FMA-UL 
(β = −174.8, p = 0.1027) performance, though these associations did 
not reach statistical significance. This pattern suggests that greater 
interhemispheric imbalance at baseline may forecast less favorable 
functional recovery. Besides, regression analysis revealed that 
follow-up BSI (BSIT1) showed stronger predictive relationships than 
baseline measurements, demonstrating significant associations with 
Brunnstrom-Hand (β = −401.7, 95%CI[−802.8 to −0.6], p = 0.0497*) 
and FMA-UL (β  = −194.4, 95%CI[−387.5 to −1.3], p  = 0.0413*), 
collectively explaining 15.1–18.2% of outcome variance. While other 
motor scales showed consistent directional trends (ARAT: β = −214.6, 
p = 0.243; MBI: β = −16.96, p = 0.169), these relationships were not 
statistically significant. Notably, the emergence of significant 
predictions for hand motor function at follow-up suggests that BSI 
measurements during rehabilitation may have enhanced clinical 
prognostic value compared to baseline assessments (see Table 7).

5 Discussion

After a stroke, molecules that promote the remodeling of 
dendritic, axonal, and synaptic structures increase, while those that 
inhibit axonal plasticity decrease. Surviving neurons are capable of 
growing new axons and synapses; following selection and pruning 
processes, some neural connections in the penumbra and other 
denervated brain regions may be  partially restored (33, 34). 
Rehabilitation training not only improves blood flow around the 
infarcted area and promotes angiogenesis but also protects the blood–
brain barrier, thereby preserving neuronal function in the vicinity of 
the infarct (35, 36). Additionally, rehabilitation training can alter 
neuronal structure by promoting neurogenesis after brain injury as 
well as neuron differentiation and survival while inhibiting apoptosis. 
It also involves pruning dendrites around the infarcted area and 

TABLE 4  Correlation analysis between scales at week 0 and week 2, and EEG PSD in beta band (n = 26).

Subgroup T0 scales with first 
PSD

T2 scales with first 
PSD

T2 scales with second 
PSD

T2 scales with third 
PSD

r p r p r p r p

Brunnstrom-UL 0.352 0.077 0.254 0.210* 0.425 0.03* 0.319 0.112

Brunnstrom-H 0.438 0.025* 0.367 0.066 0.421 0.032* 0.452 0.02*

FMA-UL 0.358 0.073 0.342 0.087 0.469 0.016* 0.391 0.048*

FMA-HAND 0.44 0.024* 0.455 0.019* 0.518 0.007* 0.455 0.019*

ARAT 0.435 0.026* 0.452 0.02* 0.428 0.029* 0.409 0.038*

MBI 0.199 0.329 0.289 0.153 0.399 0.043* 0.37 0.063

NIHSS −0.164 0.425 −0.198 0.333 −0.396 0.045* −0.171 0.403

* p < 0.05. Brunnstrom-UL, upper limb part of Brunnstrom scale; Brunnstrom-H, hand part of Brunnstrom scale; FMA-UL, upper limb part of Fugl-Meyer scale; FMA-HAND, hand part of 
Fugl-Meyer scale.
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regulating synaptic plasticity (36, 37), providing a morphological basis 
for sustained functional recovery. Exercise training enhances cortical 
plasticity on the affected side by increasing dendritic pruning and 
synaptic remodeling around the ischemic region while simultaneously 
elevating astrocyte numbers (37). Imaging studies [such as positron 
emission tomography (PET), electroencephalography (EEG), and 
functional magnetic resonance imaging (fMRI)] have shown extensive 
changes in brain activation patterns when simple movements are 
performed with the affected hand post-stroke; these temporal changes 
align with gradual reorganization within sensory-motor systems. In 
the affected hemisphere, activation of primary motor cortex (M1) 

decreases; depending on both location and extent of ischemic damage, 
its activity may shift to more posterior (38) or anterior areas (39), 
particularly toward regions such as supplementary motor area (SMA) 
that are typically unaffected by standard middle cerebral artery 
occlusion, particularly toward regions such as supplementary motor 
area (SMA) that are typically unaffected by standard middle cerebral 
artery occlusion (40).

Currently, there exist two predictive models regarding 
interhemispheric competition: “the substitution model” and “the 
interhemispheric competition model.” The former is based on research 
utilizing transcranial magnetic stimulation to disrupt motor region 

TABLE 5  Correlations between BSI in beta band and Brunnstrom, FMA-UL, ARAT, MBI and NIHSS scales (n = 26).

Subgroup T0 scales with first BSI T2 scales with
first BSI

T2 scales with
second BSI

T2 scales with
third BSI

r p r p r p r p

Brunnstrom-UL −0.361 0.07 −0.233 0.251 −0.292 0.147 −0.546 0.004*

Brunnstrom-H −0.173 0.399 −0.182 0.373 −0.489 0.066 −0.477 0.014*

FMA-UL −0.405 0.04* −0.282 0.163 −0.443 0.023* −0.619 0.001*

FMA-HAND −0.355 0.075 −0.25 0.217 −0.46 0.018* −0.608 0.001*

ARAT −0.352 0.078 −0.343 0.087 −0.504 0.009* −0.554 0.003*

MBI −0.356 0.074 −0.358 0.072 −0.299 0.138 −0.568 0.002*

NIHSS 0.456 0.019* 0.367 0.065 0.369 0.063 0.558 0.003*

*p < 0.05. Brunnstrom-UL, upper limb part of Brunnstrom scale; Brunnstrom-H, hand part of Brunnstrom scale; FMA-UL, upper limb part of Fugl-Meyer scale; FMA-HAND, hand part of 
Fugl-Meyer scale.

TABLE 6  Regression analysis between PSD measures in beta band and clinical outcomes (n = 26).

Predictor PSD-T0 (Baseline) PSD-T1 (Follow-up)

T2 scales β (SE) 95% CI R2 p β (SE) 95% CI R2 p

NIHSS −0.127 (0.096) −0.33, 0.07 0.068 0.2 −0.131 (0.067) −0.27, 0.01 0.138 0.062

Brunnstrom-UL 0.080 (0.051) −0.03, 0.19 0.091 0.134 0.088 (0.034)* 0.02, 0.16* 0.214 0.017*

Brunnstrom-H 0.163 (0.075)* 0.01, 0.32* 0.163 0.041* 0.145 (0.051)** 0.04, 0.25** 0.25 0.010**

FMA-UL 1.787 (0.836)* 0.06, 3.51* 0.16 0.043* 1.624 (0.570)** 0.45, 2.80** 0.253 0.009**

FMA-HAND 0.997 (0.374)** 0.22, 1.79** 0.228 0.014* 0.788 (0.262)** 0.25, 1.33** 0.273 0.006**

ARAT 2.416 (1.047)* 0.26, 4.58* 0.182 0.030* 1.945 (0.736)* 0.43, 3.46* 0.226 0.014*

MBI 0.625 (0.788) −1.00, 2.25 0.026 0.436 0.907 (0.546) −0.22, 2.03 0.103 0.109

*p < 0.05, **p < 0.01. Brunnstrom-UL, upper limb part of Brunnstrom scale; Brunnstrom-H, hand part of Brunnstrom scale; FMA-UL, upper limb part of Fugl-Meyer scale; FMA-HAND, 
hand part of Fugl-Meyer scale.

TABLE 7  Regression analysis between BSI measures in beta band and clinical outcomes (n = 26).

Predictor BSIT0 (Baseline) BSIT1 (Follow-up)

T2 scales β (SE) 95% CI R2 p β (SE) 95% CI R2 p

NIHSS 48.63 (23.53) 0.07, 97.19 0.151 0.0497* 36.48 (21.84) −7.56, 80.52 0.104 0.1079

Brunnstrom-UL −32.26 (19.96) −73.49, 8.67 0.096 0.1194 −39.73 (17.19) −75.20, −4.26 0.182 0.0297*

Brunnstrom-H −395.5 (219.0) −847.5, 86.53 0.117 0.0835 −401.7 (194.3) −802.8, −0.6 0.151 0.0497*

FMA-UL −174.8 (103.0) −387.5, 37.84 0.107 0.1027 −194.4 (90.18) −387.5, −1.3 0.162 0.0413*

FMA-HAND −523.8 (276.2) −1,004, 46.34 0.13 0.07 −464.1 (250.3) −980.7, 52.5 0.125 0.0761

ARAT −306.9 (194.4) −706.1, 64.29 0.094 0.1275 −214.6 (179.3) −584.2, 155.0 0.056 0.243

MBI −19.71 (13.18) −46.90, 7.47 0.085 0.1178 −16.96 (11.96) −41.63, 7.71 0.077 0.169

*p < 0.05. Brunnstrom-UL, upper limb part of Brunnstrom scale; Brunnstrom-H, hand part of Brunnstrom scale; FMA-UL, upper limb part of Fugl-Meyer scale; FMA-HAND, hand part of 
Fugl-Meyer scale.
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functionality which suggests that activity from an unaffected 
hemisphere may facilitate functional recovery post-stroke; under this 
model residual network activity compensates for lost functions in 
damaged areas. This process likely occurs entirely within an intact 
hemisphere. Conversely, “the interhemispheric competition model” 
posits a reciprocal inhibitory balance between both hemispheres in a 
healthy brain. When one hemisphere suffers damage due to stroke, 
this balance is disrupted leading to diminished inhibition exerted by 
the affected hemisphere upon its unaffected counterpart resulting in 
enhanced inhibition from it instead. Consequently arises what is 
termed “dual impairment,” where ipsilateral damage combines with 
excessive contralateral suppression (41). The two proposed 
recombination models provide opposing predictions regarding 
whether the optimal neuroregulatory treatment for individual patients 
should primarily focus on inhibition or excitation. However, 
we  contend that both the “substitution model” and the 
“interhemispheric competition model” exhibit significant 
shortcomings. Electroencephalography (EEG), as an effective and 
cost-efficient method, can be utilized to assess the state of residual 
brain regions and assist in selecting non-invasive brain stimulation 
(NIBS) protocols. Furthermore, it enables exploration of brain activity 
and connectivity during resting states, providing immediate 
information for evaluating cortical tissue functional integrity. 
Research has indicated that symmetrical spectral power between 
hemispheres is associated with mild neurological deficits (42), while 
increased asymmetry suggests acute deterioration and poor prognosis 
(13, 43). The results revealed that BSI was closely associated with 
functional recovery.

Studies have shown that EEG indicators provide valuable 
information for predicting functional recovery in patients with acute 
stroke (13, 44), and they help to distinguish patients with acute stroke 
from healthy controls (45). On the other hand, its effectiveness in the 
subacute phase of stroke remains poorly understood. Several studies 
have also investigated the predictive relationship between brain 
electrical frequency and behavioral data. Research has demonstrated 
a significant correlation between EEG activity monitored in real-time 
during fixed upper limb movements and various clinical measures, 
including the Fugl-Meyer upper limb score, movement duration, 
smoothness metrics, and peak velocity. Furthermore, EEG 
measurements indicate that patients with better clinical conditions 
exhibit a tendency for the healthy hemisphere to compensate for the 
affected hemisphere. This finding underscores the important 
relationship between kinematic indicators—particularly movement 
duration and smoothness—and EEG biomarkers in assessing recovery 
following a stroke (46). BSI, particularly in the theta and δ bands, 
correlated with motor recovery after stroke. A reduction in BSI-delta 
reflected an improvement in overall nerve damage and was also 
particularly associated with early upper limb motor recovery after 
stroke (18). However, no studies have been conducted on the 
distribution of the power spectrum of spontaneous EEG in the 
subacute phase with conventional rehabilitation interventions. In 
patients with poor motor function, brain activity appeared in bilateral 
brain regions, while in patients with good motor function, brain 
activity was limited to the ipsilateral region.

In addition, quantitative EEG analysis is becoming a standardized 
procedure, thus guaranteeing repeatability of EEG results from different 
centers. Furthermore, EEG measurements can capture a wealth of 
information on neural activity including oscillations (PSD), neural 

interactions (connectivity), networks and spatial distribution (BSI). 
Therefore, EEG is undoubtedly a general-purpose tool with which many 
clinicians are becoming increasingly familiar with quantitative analysis. 
Biomarkers hold the potential to provide valuable information about 
patients, enabling researchers and clinicians to identify specific 
biological subgroups and/or those that may benefit from a treatment 
approach. Given the heterogeneity of stroke, biomarkers have the 
potential to significantly impact the field of stroke rehabilitation. 
Previous neurophysiological studies have revealed that low-frequency 
oscillations in resting-state EEG recordings from stroke patients can 
reflect both the extent of neural damage and subsequent recovery 
processes. These oscillatory patterns may serve as potential biomarkers 
for evaluating post-stroke rehabilitation outcomes (47). Furthermore, 
cortical motor coherence (CMC) has emerged as an effective 
neurophysiological approach for monitoring the reorganization of 
neural circuits associated with motor function recovery. Longitudinal 
assessment of CMC amplitude and frequency variations could provide 
valuable insights into the dynamic process of motor system 
reorganization during recovery (48). Additionally, in the acute phase 
following stroke, motor evoked potentials (specifically event-related 
desynchronization, ERD) have demonstrated predictive value for 
assessing the potential of motor function recovery (49). This study 
aimed to identify EEG biomarkers of post-stroke brain function, with 
the strongest findings occurring in the high-frequency β band. The 
information potential of EEG, combined with its portability and 
maneuverability, may provide clinicians with an additional tool to 
facilitate the judgment of patient prognosis, the allocation of treatment 
and the evaluation of treatment effects. The current study adds to the 
body of evidence describing the clinical potential of EEG biomarkers in 
stroke rehabilitation and recovery.

From a practical perspective, EEG is easy to set up, offers excellent 
temporal resolution, and are widely available in clinical settings. 
Recovery after stroke is dependent on brain circuit reorganization and 
neuroplasticity (morpho-functional reorganization of the nervous 
system). Therefore, measures of brain dynamics associated with motor 
outcomes are valuable for characterizing patients, both as potential 
biomarkers and as components of multimodal measures that can 
inform mechanisms of recovery after stroke. Indeed, EEG 
measurements conducted after stroke can capture the reorganization 
of brain regions that facilitate clinical recovery by revealing dynamic 
changes in brain activity. EEG can be used in measures designed to 
combine changes in electrical cortical activity with a patient’s clinical 
deficits as assessed by a clinical rating scale, a potentially clinically 
significant approach. EEG measurements taken after a stroke can 
document the reorganization of brain regions that support clinical 
recovery, by revealing changes in interhemispheric balance, changes 
in activity in regions associated with damaged areas, and the 
reorganization (7) of body representation maps. Combined with data 
from clinical assessments, EEG based quantifiers can help maximize 
recovery potential by supporting prognostic accuracy through patient 
characteristics and facilitating the identification of rehabilitation 
strategies appropriate to the subject’s functional state.

To our knowledge, this is the first study to explore the dynamic 
tracking of resting EEG changes during routine rehabilitation 
intervention. EEG was measured at three time points: Day 1(T0), Day 
7(T1) and Day 14 (T2). We compared behavioral scales—FMA-UL, 
ARAT, MBI, and NIHSS—in 113 patients before and after the routine 
rehabilitation intervention. The results demonstrated significant 
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improvements in upper limb function, daily living ability, and 
neurological function following the intervention compared to baseline. 
The correlation between EEG parameters and behavioral assessments, 
including FMA-UL, ARAT, MBI and NIHSS were analyzed.

In terms of EEG results, we  also compared the relationship 
between BSI and behavioral data. We found that BSI was negatively 
correlated with behavioral data in Brunnstrom-UL, FMA-UL, FMA 
HAND and MBI after intervention, indicating that with functional 
recovery, the BSI value showed a negative correlation. The 
asymmetrical differences in bilateral brain gradually narrowed, this is 
consistent with previous research (18). The changes in excitability and 
connectivity following a stroke, encompassing both the acute and 
chronic phases, have been well-documented. Previous studies indicate 
that variations in interhemispheric coupling strength within 
homologous regions are associated with the degree of motor function 
recovery, particularly between primary motor areas (50). This may 
explain the observed downward trend in BSI values. Under normal 
resting conditions, there is an active interaction network between the 
two hemispheres of the brain; however, alterations in cortical activity 
during resting states post-stroke are linked to motor dysfunction 
during movement (51). In this study, EEG results demonstrated a 
reduction in bilateral interhemispheric coherence after rehabilitation 
interventions. This suggests that plastic changes within the brain’s 
integrative functional network are related to upper limb recovery 
following a stroke (52). Collectively, all spectral findings suggest that 
relevant connectivity involved in restoration (or enhancement) 
positively impacts subsequent upper limb movement recovery. This 
presents new opportunities for future research into functional 
connectivity within brain networks following strokes.

The analysis between the two scales and the three different EEG 
frequency bands found that only the β band was positively correlated 
with behavioral data, while no significant correlations were detected in 
the other bands. In this study, the increase in beta activity appeared to 
be associated with favorable clinical outcomes, suggesting that higher 
frequency bands of brain activity may contribute to better patient 
responsiveness and receptivity, which may be associated with better 
patient responsiveness and receptivity (5). Beta activity in the 20–30 Hz 
band was associated with cortical output from pyramidal neurons, 
suggesting that beta band EEG measurements may serve as a potential 
biomarker of CST injury (53). The β band shows a positive correlation 
in the unaffected hemisphere, possibly reflecting compensatory 
mechanisms in stroke recovery in patients with subacute stroke, the 
brain activates neuroplasticity mechanisms to facilitate functional 
reorganization. The unaffected hemisphere compensates for the 
impaired functions of the damaged brain regions, thereby maintaining 
motor functions. During this process of functional reorganization, the 
corresponding neural networks in the unaffected hemisphere become 
more active and efficient, leading to an increase in the power spectral 
density of the beta frequency band in EEG signals.

The aim of this study was to demonstrate that simple EEG 
measures can predict motor rehabilitation outcomes in patients with 
subacute stroke. The BSI indices are straightforward to calculate and 
interpret, making them practical for clinical use. Similarly, the β bands 
are simple values and can therefore provide valuable information for 
clinical decision making. However, further complementary EEG 
measurements, such as resting state connectivity analysis, should 
provide a more comprehensive overview of brain state and better 
predict motor recovery.

The main limitation of this study is the short hospital stay of the 
patients, which resulted in brief intervals between EEG tests, a high 
frequency of testing, and a relatively small sample size during the 
study design phase. However, it is important to note that despite the 
limited sample size, the study encompassed a diverse dataset, 
including three EEG tests, pre- and post-training FMA, ARAT, MBI, 
and NIHSS assessments, yielding a substantial volume of data. 
Despite the small sample size, we think our results show interesting 
trends in subacute patients and remain attractive given the lack of 
research in this area of study, and the inconsistent results found in the 
literature. Our results show interesting trends in patients during 
routine rehabilitation interventions in the subacute phase that have 
not been studied before. The results of this study should be regarded 
as the first exploratory insight into EEG indicators in predicting 
motor rehabilitation outcomes in patients with subacute stroke.

6 Conclusion

The results of this study suggest that EEG indicators may serve as 
valuable tools for predicting motor prognosis, providing valuable 
information for clinical decision making. Such information is essential 
for tailoring individualized treatment plans for patients. Although the 
results of this study suggest that patients with significantly elevated 
β-band energy spectrum are more likely to experience motor 
improvements, further studies in larger samples are needed to validate 
the role of EEG in predicting motor recovery.
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