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Background and purpose: Distinguishing between high-grade glioma (HGG) 
and primary central nervous system lymphoma (PCNSL) is of paramount clinical 
importance, as these entities necessitate substantially different therapeutic 
approaches. The differential diagnosis becomes particularly challenging when HGG 
presents without characteristic magnetic resonance imaging (MRI) features, making 
it difficult to differentiate from PCNSL. The diffusion tensor imaging (DTI) and neurite 
orientation dispersion and density imaging (NODDI) offer quantitative assessments 
of water molecule diffusion within tissues, thereby providing potential means to 
characterize microstructural differences between HGG and PCNSL. This study aims 
to evaluate the diagnostic efficacy of histogram analysis based on DTI and NODDI 
parameters in differentiating atypical HGG from PCNSL.

Materials and methods: We retrospectively reviewed patients who underwent 
multi-b-value diffusion-weighted imaging (DWI) at our institution. The multi-b-
value DWI was performed using a single-shot echo-planar imaging (EPI) sequence 
with six b-values (0, 500, 1,000, 1,500, 2,000, and 2,500 s/mm2) distributed across 
30 directions. The DTI and NODDI model were employed to derive the parametric 
maps of apparent diffusion coefficient (ADC), fractional anisotropy (FA), intracellular 
volume fraction (ICVF), isotropic volume fraction (ISOVF), and orientation 
dispersion index (ODI). Two regions of interest (ROIs) were manually delineated 
within the enhancing tumor area and the peritumoral edema. Histogram features 
were extracted from these ROIs. Comparisons between HGG and PCNSL were 
performed. Receiver operating characteristic (ROC) curves were drawn, and the 
area under the curve (AUC), sensitivity, specificity, and accuracy were calculated. 
p < 0.05 was considered statistically significant.

Results: A total of 55 patients (30 with atypical HGG and 25 with PCNSL), were 
included in this study. Several histogram features of parameters could be used 
to classify the HGG and PCNSL (p < 0.05). The 75th percentile of the orientation 
dispersion index (ODI75th) within the enhancing tumor region demonstrated the 
highest diagnostic performance (AUC = 0.985). At an optimal threshold of 0.604, 
ODI75th yielded a sensitivity of 96%, a specificity of 93.33%, and an accuracy of 
94.55% for distinguishing HGG from PCNSL.
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Conclusion: DTI-and NODDI-based histogram analysis demonstrates the 
potential to differentiate between atypical HGG and PCNSL. ODI75th within the 
enhancing tumor region showed the most favorable diagnostic performance.
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1 Introduction

Glioma and primary central nervous system lymphoma (PCNSL) 
are two common malignant primary brain tumors (1). Precise diagnosis 
is of great significance as the therapeutic strategies differ. PCNSLs are 
not recommended for surgery but rather receive chemotherapy, with or 
without irradiation, after biopsy. Meanwhile, HGGs necessitate surgical 
resection followed by concurrent chemoradiation (2–4). Magnetic 
resonance imaging (MRI) acts as the standard approach for brain tumor 
diagnosis. Most primary central nervous system lymphomas (PCNSLs) 
typically appear as homogeneously hyperintense lesions on T2-weighted 
images and rarely exhibit central necrosis. In contrast, high-grade 
gliomas (HGGs) are often associated with imaging features such as 
central necrosis, hemorrhage, or ring-like enhancement, which 
generally facilitate their diagnosis (5) However, it has been reported that 
approximately 22.2% of HGGs do not show obvious intra-tumoral 
necrosis (6), and about 4.4% of PCNSLs may present with ring 
enhancement, potentially complicating differential diagnosis in atypical 
cases (7). Distinguishing HGG from PCNSL can be challenging when 
conventional MRI features are atypical. To address this challenge, 
researchers are actively exploring advanced imaging analysis techniques 
(8) and functional MRI (9). Diffusion MRI can provide information on 
the tissue microenvironment and help in diagnosis. The single-
exponential model diffusion-weighted imaging (DWI), diffusion tensor 
imaging (DTI), and diffusion kurtosis imaging (DKI) have been utilized 
to differentiate HGG from PNCSL (4, 10–12). Advanced diffusion 
models have shown promising clinical applications. Recently, the 
neurite orientation dispersion and density imaging (NODDI) model 
(13) has garnered attention among radiologists (14). NODDI has been 
applied in glioma grading (15), genotyping (16), and differential 
diagnosis (17–19). In this research, we investigate the application of 
DTI-and NODDI-based histogram analysis for differentiating atypical 
HGG from PCNSL.

2 Materials and methods

This retrospective study was approved by the Scientific Research 
and Clinical Trial Ethics Committee of the First Affiliated Hospital of 
Zhengzhou University, and informed consent was waived due to the 
purely retrospective analysis (Approval Number: 2019-KY-231).

2.1 Study participants

A total of 210 patients were included in this study between 
September 2018 and October 2022, who underwent MRI including 
routine sequences and multi-b-value diffusion-weighted imaging 
(DWI), and were pathologically diagnosed with either grade 3–4 

glioma (20) or PCNSL according the 2021 World Health Organization 
(WHO) classification of central nervous system tumors at our hospital. 
A total of 155 patients were excluded for: (1) anti-tumor treatment or 
biopsy prior to MRI scanning (n = 3); (2) surgery or biopsy not 
performed within 2 weeks of the MRI examination (n = 6); (3) images 
reviewed by two radiologists (SZ with 9 years of experience and XM 
with 11 years of experience) with severe motion or susceptibility 
artifacts (n = 2); (4) lesions with more than 13% necrosis in the 
enhancing tumor (11) (n = 144). Finally, 30 patients with atypical 
HGG and 25 with PCNSL were recruited.

2.2 MRI protocol

All patients were scanned using a 3.0 T MRI scanner 
(MAGNETOM Prisma; Siemens Healthineers, Erlangen, Germany) 
with a 64-channel head and neck integrated coil. The imaging 
sequences included: (1) axial T2 dark-fluid: TR/TE, 8,000/81 ms; FOV, 
220 × 220 mm2; acquisition matrix, 314 × 314; slice thickness, 5.0 mm; 
(2) axial multi-b-value DWI: single-shot echo-planar imaging (EPI) 
sequence, with five non-zero b-values (500, 1,000, 1,500, 2,000, and 
2,500 s/mm2) distributed across 30 directions, and one zero b-value 
(b = 0 s/mm2); TR/TE, 2,500/71 ms; FOV, 220 × 220 mm2; acquisition 
matrix, 100 × 100; slice thickness, 2.2 mm; and 3. 3D contrast-
enhanced T1 magnetization-prepared rapid gradient echo (CE-T1 
MPRAGE): TR/TE, 2300/2.32 ms; FOV, 240 × 240 mm2; acquisition 
matrix, 266 × 266; slice thickness, 0.9 mm. The acquisition time for the 
multi-b-value DWI sequence was 6 min and 34 s. The T1 MPRAGE 
sequence was performed following the administration of 0.2 mol/kg 
body weight of gadopentetate dimeglumine (Magnevist, Bayer Schering 
Pharma AG, Berlin, Germany). All sequences covered the entire brain.

2.3 Image processing and analysis

Diffusion Kit Eddy tool1 (21) was used to perform eddy current 
and motion correction for the multi-b-value DWI images. NeuDilab, 
a software based on DIPY2 (22), was used for post-processing for the 
multi-b-value DWI images. The apparent diffusion coefficient (ADC), 
fractional anisotropy (FA), intracellular volume fraction (ICVF), 
isotropic volume fraction (ISOVF), and orientation dispersion index 
(ODI) were calculated. CE-T1 MPRAGE images and all parametric 
maps were registered to the axial T2 dark-fluid images. Two regions 
of interest (ROIs) were manually delineated with reference to the 

1 https://diffusionkit.readthedocs.io

2 http://nipy.org/
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CE-T1 MPRAGE and T2 dark-fluid images by two radiologists (SZ 
with 9 years of experience and XM with 11 years of experience), who 
were blinded to the pathological results. The enhancing tumor area 
(ROI 1) was outlined on the registered CE-T1 MPRAGE images 
across all slices (Figure 1), excluding cystic, necrotic, and hemorrhagic 
regions. Peritumoral edema (ROI 2) was defined as the area 
surrounding the enhancing tumor margin with high signal intensity 
on all slices of the T2 dark-fluid images (Figure 1). Registration and 
delineation were performed using ITK-SNAP software (version 3.8.0, 
http://www.itksnap.org) (23). The two ROIs and all parametric maps 
were imported into MATLAB (version. R2017b; MathWorks, Natick, 
MA, United States) to compute histogram features of parameters in 
each ROI, including minimum (min), mean, maximum (max), 10th 
percentile (10th), 25th percentile (25th), median, 75th percentile 
(75th), 90th percentile (90th), variance, skewness, and kurtosis.

2.4 Statistical analyses

Statistical analyses were conducted using SPSS software 
(version 21.0; SPSS Inc., Chicago, IL, United States). The normality 
of all histogram parameters was assessed using the Shapiro–Wilk 
test, and the homogeneity of variance was evaluated using Levene’s 
test. Data conforming to a normal distribution were presented as 
mean ± standard deviation, while non-normally distributed data 
were expressed as median (25th, 75th). Comparative analysis 
between the atypical HGG and PCNSL groups was performed 
using an independent t-test for normally distributed data with 
uniform variance, while the Mann–Whitney U test was used for 
the remaining datasets. Statistical significance was set at p < 0.05. 
Benjamini–Hochberg correction was applied to adjust the p-values 
of diffusion parameters for multiple comparisons. Receiver 
operating characteristic (ROC) analyses were conducted to 
evaluate the diagnostic efficiency of parameters showing significant 
differences. Areas under the curve (AUCs) were measured, and the 
corresponding sensitivity, specificity, and accuracy were calculated 
by selecting the cut-off value with the maximum Youden index.

3 Results

3.1 Patient demographics

Among the 55 patients, 30 were diagnosed with atypical HGG (18 
males, 12 females; age range, 20–73 years; mean age, 51 ± 12 years), and 
25 patients had PCNSL (14 males, 11 females; age range, 33–72 years; 
mean age, 59 ± 9 years). All cases were classified according to the 2021 
WHO criteria. In the atypical HGG group, 26 patients were diagnosed 
with glioblastoma, IDH-wildtype (WHO grade 4), 2 with astrocytoma, 
IDH-mutant (WHO grade 3), and 2 with oligodendroglioma, 
IDH-mutant and 1p/19q-codeleted (WHO grade 3). All patients in the 
PCNSL group were diagnosed with large B-cell lymphoma.

3.2 Histogram parameter values in the 
enhancing area

The histogram parameter (ADC, FA, ICVF, ISOVF, and ODI) in 
the enhancing area are shown in Table 1 and Figure 2. In the enhancing 
area, ADCvariance, FAkurtosis, FAskewness, ICVFmean, ICVFmax, ICVF10th, 
ICVF25th, ICVFmedian, ICVF75th, ICVF90th, ICVFvariance, ISOVFmean, 
ISOVFmax, ISOVF10th, ISOVF25th, ISOVFmedian, ISOVF75th, ISOVF90th, 
ODImean, ODImax, ODI10th, ODI25th, ODImedian, ODI75th, ODI90th and 
ODIvariance were significantly lower for atypical HGG than for PCNSL, 
whereas ADC10th, ADC25th, ADCmedian, ADCminimum, ADCmean, FA10th, 
FA25th, FAmedian, FA75th, FA90th, FAminimum, FAmean, ICVFskewness and 
ODIskewness were significantly higher for atypical HGG than for PCNSL 
(p < 0.05). The ISOVFmin values of atypical HGG and PCNSL were 
both < 0.001; therefore, no comparison was made.

3.3 Histogram parameter values in 
peritumoral edema

Table 2 and Figure 3 illustrate the histogram parameter values 
(ADC, FA, ICVF, ISOVF, and ODI) for peritumoral edema. In this 

FIGURE 1

A 62-year-old male diagnosed with atypical high-grade glioma in the right frontal lobe (a1–a6) and a 59-year-old male diagnosed with primary central 
nervous system lymphoma in the right temporal lobe (b1–b6). CE-T1-MPRAGE (a2,b2) and T2-tirm-dark-fluid (a3,b3) images depict peritumoral 
edema in green and the enhancing area in red (a1,b1). Parametric maps of NODDI (a4–a6,b4–b6) include intracellular volume fraction (a4,b4), 
isotropic volume fraction (a5,b5) and orientation dispersion index (a6,b6).
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TABLE 1 Histogram parameter values in the enhancing area.

Parameter HGG PCNSL t/U value Adjusted p

ADC10th 0.872 ± 0.162 0.712 ± 0.149 3.765a <0.001***

ADC25th 0.946 ± 0.187 0.789 ± 0.138 3.501a 0.002**

ADCmedian 1.046 ± 0.218 0.905 ± 0.148 2.737a 0.013*

ADCminimum 0.721 (0.62, 0.823) 0.557 (0.437, 0.646) 604.5c <0.001***

ADCmean 1.073 ± 0.216 0.958 ± 0.146 2.348b 0.031*

ADCvariance 0.029 (0.02, 0.054) 0.049 (0.032, 0.068) 220c 0.013*

FA10th 0.103 (0.076, 0.164) 0.046 (0.036, 0.058) 688c <0.001***

FA25th 0.139 (0.098, 0.205) 0.059 (0.046, 0.084) 689c <0.001***

FAmedian 0.194 ± 0.075 0.095 ± 0.034 6.488b <0.001***

FA75th 0.245 ± 0.092 0.15 ± 0.051 4.834b <0.001***

FA90th 0.292 ± 0.107 0.227 ± 0.082 2.487a 0.023*

FAminimum 0.051 (0.029, 0.077) 0.016 (0.011, 0.022) 675c <0.001***

FAmean 0.202 ± 0.076 0.12 ± 0.039 5.114b <0.001***

FAskewness 0.55 (0.121, 0.863) 1.656 (1.404, 2.036) 74c <0.001***

FAkurtosis 2.92 (2.532, 3.997) 5.523 (4.148, 7.874) 111c <0.001***

ICVF10th 0.235 ± 0.088 0.304 ± 0.084 −2.944a 0.008**

ICVF25th 0.272 ± 0.097 0.393 ± 0.093 −4.729a <0.001***

ICVFmedian 0.33 ± 0.105 0.487 ± 0.117 −5.232a <0.001***

ICVF75th 0.358 (0.316, 0.437) 0.581 (0.467, 0.617) 108c <0.001***

ICVF90th 0.437 ± 0.121 0.622 ± 0.144 −5.162a <0.001***

ICVFmean 0.334 ± 0.099 0.474 ± 0.102 −5.149a <0.001***

ICVFmax 0.596 (0.463, 0.852) 0.93 (0.677, 0.986) 192c 0.003**

ICVFvariance 0.006 (0.002, 0.013) 0.013 (0.008, 0.02) 191c 0.003**

ICVFskewness 0.484 (−0.065, 0.93) −0.094 (−0.457, 0.213) 562c 0.003**

ISOVF10th 0.002 (0.001, 0.008) 0.017 (0.01, 0.038) 151c <0.001***

ISOVF25th 0.011 (0.006, 0.044) 0.051 (0.041, 0.088) 163c <0.001***

ISOVFmedian 0.047 (0.026, 0.104) 0.106 (0.086, 0.166) 190c 0.003**

ISOVF75th 0.135 (0.072, 0.207) 0.187 (0.153, 0.262) 217c 0.011*

ISOVF90th 0.259 (0.116, 0.315) 0.308 (0.243, 0.447) 232c 0.022*

ISOVFmean 0.1 (0.049, 0.148) 0.14 (0.112, 0.21) 213c 0.009**

ISOVFmax 0.536 ± 0.232 0.726 ± 0.187 −3.3a 0.003**

ODI10th 0.236 ± 0.079 0.334 ± 0.107 −3.902a <0.001***

ODI25th 0.297 ± 0.073 0.476 ± 0.126 −6.261b <0.001***

ODImedian 0.372 ± 0.081 0.646 ± 0.118 −9.824b <0.001***

ODI75th 0.458 ± 0.092 0.768 ± 0.095 −12.221a <0.001***

ODI90th 0.534 (0.445, 0.637) 0.859 (0.774, 0.882) 13c <0.001***

ODImean 0.382 ± 0.075 0.611 ± 0.098 −9.815a <0.001***

ODImax 0.725 (0.658, 0.818) 0.933 (0.919, 0.946) 25c <0.001***

ODIvariance 0.013 (0.008, 0.019) 0.035 (0.027, 0.044) 49c <0.001***

ODIskewness 0.356 ± 0.417 −0.592 ± 0.439 8.188a <0.001***

aData followed a normal distribution with homogeneity of variance; independent t-test was used.
bData followed a normal distribution without homogeneity of variance; Welch’s t-test was used.
cData did not follow a normal distribution; Mann–Whitney U test was used. *0.01 < p ≤ 0.05; **0.001 < p ≤ 0.01; ***p ≤ 0.001.
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area, the values of ADC10th, ADC25th, ADCmedian, ADC75th, ADC90th, 
ADCmean, ISOVFmean, ISOVF10th, ISOVF25th, ISOVFmedian, ISOVF75th, 
ISOVF90th, ISOVFvariance, ODImax, ODIvariance and ODIskewness were 
significantly lower for atypical HGG compared to PCNSL. Conversely, 
ADCskewness, ADCkurtosis, ISOVFskewness, ISOVFkurtosis, ODImean, ODI10th, 
ODI25th and ODImedian, ODI75th were significantly higher for atypical 
HGG compared to PCNSL (p < 0.05). As both the ISOVFmin of atypical 
HGG and PCNSL were < 0.001, a comparison was not conducted.

3.4 Performance of histogram parameters 
from both ROIs in differentiating atypical 
HGG from PCNSL

Table 3 presents the ROC analyses of all significant histogram 
parameter values in the enhancing areas. Figures 4A,B present the 
ROC curves of the histogram parameters with the highest AUC from 
each model in the enhancing and peritumoral edema regions, 
respectively. Notably, the ODI75th displayed the highest AUC of 0.985 
[95% confidence interval (CI): 0.957–1.000] with an accuracy of 0.945 
(52/55) at the optimal threshold of 0.604. Its corresponding sensitivity 
and specificity were 0.96 and 0.933, respectively. The AUC of the other 
parameters ranged from 0.655–0.983.

Table  4 display the ROC analyses of all significant histogram 
parameter values for peritumoral edema. In this context, the ISOVF10th 
exhibited the highest AUC of 0.921 (95% CI: 0.839–0.98) with an 
accuracy of 0.891 (49/55) at an optimal threshold of 0.009. The 
corresponding sensitivity and specificity were 0.96 and 0.833, 
respectively. The AUCs for the remaining parameters ranged from 
0.681–0.900.

4 Discussion

In this study, we  evaluated the diagnostic value of DTI-and 
NODDI-based histogram analysis in distinguishing between atypical 
HGG and PCNSL. Multiple histogram parameters in the enhancing 
area or peritumoral edema were shown to be  effective in this 
discrimination, and the ODI75th from the enhancing area presented the 
strongest diagnostic capability.

Histogram-based features have demonstrated high applicability in 
characterizing highly heterogeneous tumor tissues (24). Compared to 
conventional summary metrics such as the mean or median, ODI75th 
and ODI90th provide more targeted information about regions where 
white matter fiber tracts are substantially disrupted by tumor 
infiltration. Unlike extreme values (e.g., maximum or minimum), 
close to percentiles are less susceptible to noise and contamination 
caused by errors in VOI delineation or image registration (15, 25), 
notably, among the histogram-derived parameters of FA, FA25th and 
FA90th exhibited the highest AUC values. Given the mathematically 
inverse relationship between FA and ODI (13), parameters such as 
FA25th/10th and ODI75th/90th may reflect similar tumor subregions—
specifically, regions within the tumor parenchyma where axonal fibers 
demonstrate pronounced alterations, including crossing, curving, or 
disorganization. Alterations in intra-tumoral neural fiber tracts are 
difficult to observe with conventional MRI but can be detected using 
advanced diffusion magnetic resonance techniques, which can 
subsequently be  employed to characterize the tumor’s growth 
behavior. ODI reflects the spread of neurite orientation. It can portray 
the microstructural complexity, particularly the bending of white 
matter axons and the pattern of gray matter dendrite expansion (13, 
26, 27). We found ODI values are lower and FA values are higher in 

FIGURE 2

Violin graphs of histogram parameter values in the enhancing area. HGG, high-grade glioma; ADC, apparent diffusion coefficient; FA, fractional 
anisotropy; ICVF, intracellular volume fraction; ISOVF, isotropic volume fraction; ODI, orientation dispersion index; PCNSL, primary central nervous 
system lymphoma. *0.01 < p ≤ 0.05; **0.001 < p ≤ 0.01; ***p ≤ 0.001. n.s., no significance.
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atypical HGG than in PCNSL. Previous study also indicated 
significantly higher FA in HGG compared to PCNSL (28), which is 
attributed to the disparity in the quantity of nerve fibers between the 
two tumors. However, explaining the parameter variations solely by 
the difference in neurite density might lead to a conflict between the 
two parameters, ODI and ICVF. In our study, atypical HGG displayed 
conspicuously lower ICVF values in contrast to PCNSL. Higher ICVF 
skewness in atypical HGG complementarily indicates the trend of 
lower ICVF values distribution in HGG. As per the definition of the 
NODDI model, water diffusion within voxels is partitioned into 
separate contributions from three compartments, with ICVF being the 
fraction of intracellular volume within voxels, representing neurite 
density (27). This variance might be  ascribed to the presence of 
microcysts in HGG (30) and the relatively high neurite density in 
PCNSL (31). Würtemberger et al. (14) confirmed the higher axonal 
density in PCNSL with histological evidence. Considering our results 
and evidence presented in these studies, we propose that while more 
axonal structures are preserved within PCNSL, the tumor’s expansive 
growth displaces, compresses, and intersects with fibrous structures, 
leading to a decrease in isotropy. In HGG, due to its invasive growth 
pattern, extensive fiber destruction occurs, leaving the remaining 

fibrous structures with greater directionality. Consequently, ODI is 
lower in HGG. In the study by Würtemberger et al. (14), a similar 
trend in ODI was observed, but without statistical significance, likely 
due to the limited sample size. ISOVF represents an isotropic diffusion 
signal from the cerebrospinal fluid compartment, and deviations in 
ISOVF values suggest a higher content of free water in PCNSL tissues. 
However, these findings are inconsistent with those reported by 
Würtemberger et al. (14). In both our study and theirs, the role of 
ISOVF in differential diagnosis appears limited, as evidenced by its 
relatively low AUC value. This suggests that the diagnostic utility of 
ISOVF remains uncertain and warrants further validation in studies 
with larger sample sizes. Lower ADC values in PCNSL suggest higher 
cellularity compared to HGG, which has been histologically confirmed 
in Haopeng et al. (29) study.

ODI demonstrated superior diagnostic performance compared to 
FA, largely owing to the NODDI model’s ability to more specifically 
represent white matter fiber architecture (13). FA is influenced by a 
variety of factors, including fiber orientation coherence and neurite 
density. In PCNSL, the disruption and displacement of white matter 
tracts typically result in a reduction of FA, while high neurite density 
can increase FA. These opposing effects may partially cancel each 

TABLE 2 Histogram parameter values in the peritumoral edema.

Parameter HGG PCNSL t/U value Adjusted p

ADC10th 0.808 ± 0.078 0.889 ± 0.096 −3.45a 0.003**

ADC25th 0.912 ± 0.122 1.056 ± 0.146 −3.996a <0.001***

ADCmedian 1.027 (0.898, 1.238) 1.302 (1.139, 1.409) 170c 0.002**

ADC75th 1.183 (1.014, 1.462) 1.522 (1.361, 1.667) 181c 0.003**

ADC90th 1.353 (1.193, 1.631) 1.677 (1.615, 1.87) 182.5c 0.003**

ADCmean 1.096 ± 0.187 1.284 ± 0.175 −3.824a 0.002**

ADCskewness 0.968 (0.217, 1.645) 0.035 (−0.211, 0.382) 592c <0.001***

ADCkurtosis 5.054 (2.563, 9.985) 2.405 (2.22, 2.884) 575c 0.002**

ISOVF10th 0.003 (0.001, 0.007) 0.025 (0.016, 0.049) 59c <0.001***

ISOVF25th 0.016 (0.007, 0.042) 0.083 (0.064, 0.13) 75c <0.001***

ISOVFmedian 0.059 (0.032, 0.136) 0.175 (0.15, 0.233) 116c <0.001***

ISOVF75th 0.124 (0.088, 0.277) 0.291 (0.258, 0.389) 151c <0.001***

ISOVF90th 0.29 ± 0.162 0.427 ± 0.108 −3.737b 0.002**

ISOVFmean 0.102 (0.07, 0.177) 0.203 (0.181, 0.264) 130c <0.001***

ISOVFvariance 0.016 (0.007, 0.025) 0.021 (0.018, 0.031) 239c 0.047*

ISOVFskewness 1.891 ± 1.137 0.753 ± 0.687 4.575b <0.001***

ISOVFkurtosis 7.089 (3.258, 13.015) 3.105 (2.215, 4.453) 567c 0.003**

ODI10th 0.154 ± 0.062 0.097 ± 0.03 4.439b <0.001***

ODI25th 0.223 ± 0.066 0.157 ± 0.044 4.436b <0.001***

ODImedian 0.308 ± 0.064 0.251 ± 0.045 3.748a 0.002**

ODI75th 0.39 (0.355, 0.439) 0.344 (0.332, 0.393) 535c 0.016*

ODImean 0.314 ± 0.058 0.27 ± 0.038 3.247a 0.005**

ODImax 0.781 ± 0.094 0.86 ± 0.077 −3.397a 0.003**

ODIvariance 0.017 (0.013, 0.019) 0.019 (0.018, 0.023) 182c 0.003**

ODIskewness 0.257 ± 0.336 0.656 ± 0.245 −4.934a <0.001***

aData followed a normal distribution with homogeneity of variance; independent t-test was used.
bData followed a normal distribution without homogeneity of variance; Welch’s t-test was used.
cData did not follow a normal distribution; Mann–Whitney U test was used. *0.01 < p ≤ 0.05; **0.001 < p ≤ 0.01; ***p ≤ 0.001.
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other out, thereby reducing the discriminatory power of FA in 
differentiating PCNSL from HGG. In contrast, the NODDI model 
decomposes these microstructural changes into distinct parameters: 
ICVF reflects neurite density, and ODI quantifies the orientation 
dispersion of fibers. By isolating orientation dispersion from 
confounding factors such as cellular density, ODI provides a more 
robust metric that more accurately reflects the architectural 
disorganization characteristic of PCNSL, yielding a clearer distinction 
from HGG.

However, the biological interpretation of NODDI-derived 
parameters in tumor tissue remains largely empirical and requires 
further histological validation. This model was originally designed to 
characterize white matter microstructure in healthy or 
neurodegenerative brains—such as in neonates or patients with 
dementia (32)—and lacks explicit modeling for neoplastic 
components. Neoplastic cells may exhibit restricted diffusion similar 
to that of neurites, and thus may be erroneously classified into the 
intracellular compartment, resulting in an artificial elevation of 
ICVF. This misclassification could misleadingly suggest preserved 
neuronal integrity in regions actually dominated by tumor cells. 
Similarly, the disorganized microstructure introduced by malignant 
proliferation may be  interpreted as increased neurite dispersion, 
contributing to inflated ODI values. Moreover, the NODDI model 
does not account for perfusion effects, which are commonly observed 
in highly vascularized tumors. This becomes particularly problematic 
at lower b-values: in our protocol, the inclusion of a b = 500 s/mm2 
shell may have introduced mild perfusion contamination. Fast 
diffusion components retained at this b-value may be misclassified as 
extracellular space, potentially leading to overestimation of ISOVF 
and underestimation of ICVF. Also, ODI may become unstable due to 

contamination by randomly flowing blood signals. Nevertheless, the 
clinical potential of the NODDI model in tumor diagnostics has been 
supported by a growing body of research. Quantitative NODDI 
parameters have been applied in glioma grading and molecular 
subtype prediction (33, 34), NODDI-based tractography has proven 
effective in evaluating corticospinal tract (CST) infiltration and 
damage caused by HGGs (35). Furthermore, multiparametric NODDI 
radiomic models have demonstrated good performance in the 
preoperative differentiation of glioblastoma and brain metastases (36). 
Compared to NODDI, several other diffusion models may offer better 
theoretical alignment and practical utility for tumor microstructure 
characterization with their assumptions that are more appropriate for 
pathological tissues. The vascular, extracellular, and restricted 
diffusion for cytometry in tumors (VERDICT) model explicitly 
incorporates perfusion and distinguishes between key 
microenvironmental components (37), providing estimates for 
intracellular volume fraction (fIC), vascular volume fraction (fVASC), 
extracellular-extravascular space (fEES), and cell radius. This enables 
a more comprehensive representation of tumor cellularity and 
vascularization. The imaging microstructural parameters using 
limited spectrally edited diffusion (IMPULSED) model is capable of 
quantifying cell membrane permeability (38), a parameter increasingly 
recognized for its value in assessing tumor viability and treatment 
response. Single-compartment models such as diffusion kurtosis 
imaging (DKI) and mean apparent propagator MRI (MAP-MRI) yield 
metrics that reflect tissue heterogeneity, and have shown promise in 
tumor subtype classification and prediction of molecular phenotypes 
(34, 39).

NODDI could be  more appropriate for characterizing the 
peritumoral edema region, where the predominant constituents are 

FIGURE 3

Violin graphs of histogram parameter values in the peritumoral edema. HGG, high-grade glioma; ADC, apparent diffusion coefficient; FA, fractional 
anisotropy; ICVF, intracellular volume fraction; ISOVF, isotropic volume fraction; ODI, orientation dispersion index; PCNSL, primary central nervous 
system lymphoma. *0.01 < p ≤ 0.05; **0.001 < p ≤ 0.01; ***p ≤ 0.001. n.s., no significance.
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edematous brain parenchyma and infiltrated white matter tracts 
rather than compact tumor cells. In these regions, the diffusion 
environment still partially conforms to the assumptions of the 
NODDI framework ISOVF demonstrated a unique diagnostic 
value in the peritumoral edema region. Although it did not exhibit 

the highest diagnostic performance in this study, it holds merit for 
elucidating the underlying pathophysiological processes and 
characterizing the microstructural differences in the edema regions 
of HGG and PCNSL. Its differential diagnostic potential is likely to 
be  further revealed in future large-scale studies that establish 

TABLE 3 ROC analyses of significant histogram parameters in the enhancing area.

Parameter AUC (95% CI) Cut-off value Sensitivity Specificity Accuracy

ADC10th 0.773 (0.64, 0.889) 0.8 0.880 0.667 0.764

ADC25th 0.755 (0.619, 0.872) 0.868 0.840 0.667 0.745

ADCmedian 0.703 (0.561, 0.836) 0.923 0.680 0.733 0.709

ADCminimum 0.806 (0.683, 0.911) 0.607 0.680 0.833 0.764

ADCmean 0.655 (0.505, 0.803) 1.072 0.880 0.467 0.655

ADCvariance 0.707 (0.561, 0.832) 0.03 0.800 0.600 0.691

FA10th 0.917 (0.833, 0.979) 0.069 0.920 0.800 0.855

FA25th 0.919 (0.84, 0.975) 0.096 0.920 0.767 0.836

FAmedian 0.9 (0.804, 0.964) 0.125 0.840 0.800 0.818

FA75th 0.812 (0.691, 0.917) 0.179 0.760 0.767 0.764

FA90th 0.684 (0.541, 0.821) 0.214 0.560 0.767 0.673

FAminimum 0.9 (0.811, 0.968) 0.025 0.800 0.833 0.818

FAmean 0.829 (0.711, 0.925) 0.147 0.800 0.733 0.764

FAskewness 0.901 (0.809, 0.971) 1.005 0.920 0.833 0.873

FAkurtosis 0.852 (0.736, 0.943) 3.218 1.000 0.667 0.818

ICVF10th 0.715 (0.573, 0.845) 0.239 0.800 0.600 0.691

ICVF25th 0.815 (0.691, 0.913) 0.296 0.840 0.700 0.764

ICVFmedian 0.855 (0.751, 0.943) 0.337 0.920 0.667 0.782

ICVF75th 0.856 (0.748, 0.94) 0.439 0.840 0.767 0.800

ICVF90th 0.849 (0.747, 0.94) 0.465 0.920 0.700 0.800

ICVFmean 0.847 (0.732, 0.936) 0.356 0.920 0.667 0.782

ICVFmax 0.744 (0.611, 0.865) 0.493 1.000 0.400 0.673

ICVFvariance 0.745 (0.609, 0.859) 0.006 0.920 0.533 0.709

ICVFskewness 0.749 (0.619, 0.867) 0.428 0.920 0.533 0.709

ISOVF10th 0.799 (0.663, 0.913) 0.005 0.880 0.700 0.782

ISOVF25th 0.783 (0.653, 0.9) 0.022 0.880 0.700 0.782

ISOVFmedian 0.747 (0.601, 0.871) 0.055 0.960 0.567 0.745

ISOVF75th 0.711 (0.567, 0.839) 0.122 0.960 0.500 0.709

ISOVF90th 0.691 (0.549, 0.82) 0.165 1.000 0.367 0.655

ISOVFmean 0.716 (0.572, 0.841) 0.084 0.960 0.467 0.691

ISOVFmax 0.733 (0.593, 0.857) 0.601 0.760 0.667 0.709

ODI10th 0.783 (0.652, 0.897) 0.3 0.600 0.867 0.745

ODI25th 0.897 (0.796, 0.972) 0.333 0.920 0.733 0.818

ODImedian 0.969 (0.927, 0.996) 0.438 1.000 0.800 0.891

ODI75th 0.985 (0.957, 1) 0.604 0.960 0.933 0.945

ODI90th 0.983 (0.952, 1) 0.687 0.960 0.933 0.945

ODImean 0.961 (0.908, 0.995) 0.451 0.960 0.833 0.891

ODImax 0.967 (0.919, 0.995) 0.86 1.000 0.833 0.909

ODIvariance 0.935 (0.861, 0.992) 0.024 0.960 0.867 0.909

ODIskewness 0.957 (0.899, 0.995) −0.059 0.880 0.933 0.909
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FIGURE 4

The ROC curves for histogram parameter values from the enhancing area (A) and the peritumoral edema (B) in distinguishing between atypical HGG 
and PCNSL. HGG, high-grade glioma; ADC, apparent diffusion coefficient; FA, fractional anisotropy; ICVF, intracellular volume fraction; ISOVF, isotropic 
volume fraction; ODI, orientation dispersion index; PCNSL, primary central nervous system lymphoma.

TABLE 4 ROC analyses of significant histogram parameters in the peritumoral edema.

Parameter AUC (95% CI) Cut-off value Sensitivity Specificity Accuracy

ADC10th 0.734 (0.594, 0.859) 0.867 0.600 0.767 0.691

ADC25th 0.778 (0.647, 0.892) 1.04 0.600 0.867 0.745

ADCmedian 0.773 (0.639, 0.885) 1.09 0.880 0.600 0.727

ADC75th 0.759 (0.623, 0.884) 1.288 0.880 0.633 0.745

ADC90th 0.757 (0.625, 0.884) 1.45 0.880 0.633 0.745

ADCmean 0.765 (0.629, 0.883) 1.122 0.880 0.600 0.727

ADCskewness 0.789 (0.661, 0.892) 0.851 0.880 0.633 0.745

ADCkurtosis 0.767 (0.633, 0.887) 3.478 0.840 0.667 0.745

ISOVF10th 0.921 (0.839, 0.98) 0.009 0.960 0.833 0.891

ISOVF25th 0.9 (0.809, 0.971) 0.024 1.000 0.700 0.836

ISOVFmedian 0.845 (0.737, 0.939) 0.092 0.960 0.733 0.836

ISOVF75th 0.799 (0.672, 0.901) 0.227 0.880 0.700 0.782

ISOVF90th 0.764 (0.629, 0.892) 0.328 0.880 0.633 0.745

ISOVFmean 0.827 (0.705, 0.925) 0.148 0.880 0.667 0.764

ISOVFvariance 0.681 (0.535, 0.815) 0.018 0.800 0.567 0.673

ISOVFskewness 0.791 (0.66, 0.897) 1.78 0.960 0.567 0.745

ISOVFkurtosis 0.756 (0.617, 0.879) 6.065 0.880 0.633 0.745

ODI10th 0.796 (0.663, 0.908) 0.127 0.880 0.633 0.745

ODI25th 0.799 (0.669, 0.911) 0.199 0.840 0.667 0.745

ODImedian 0.771 (0.644, 0.887) 0.271 0.800 0.700 0.745

ODI75th 0.713 (0.575, 0.847) 0.347 0.640 0.800 0.727

ODImean 0.745 (0.604, 0.868) 0.268 0.640 0.800 0.727

ODImax 0.743 (0.605, 0.867) 0.787 0.920 0.533 0.709

ODIvariance 0.757 (0.62, 0.879) 0.019 0.680 0.733 0.709

ODIskewness 0.829 (0.708, 0.921) 0.464 0.840 0.700 0.764
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multifactorial models. We  noticed significantly lower values of 
ISOVF, higher ISOVF skewness and ISOVF kurtosis in atypical 
HGG compared to PCNSL. This disparity might be ascribed to the 
infiltrative edema characteristic of HGG (40, 41), which comprises 
infiltrating tumor cells and vasogenic edema. Vasogenic edema 
mainly results from the tumor’s pressure on draining veins, without 
the presence of tumor cells within the edema (42). In contrast to 
the ‘pure vasogenic edema’ (with no infiltrating tumor cells) 
observed around PCNSL (43), in the peritumoral area of HGG, the 
infiltrating tumor cells reduce the free water content. ISOVF10th, the 
parameter with the highest diagnostic performance in the edema 
region (AUC = 0.921), corresponds to areas with relatively low free 
water content. This effectively reflects the invasive growth behavior 
of tumor cells in HGG, highlighting its potential as a valuable 
biomarker for characterizing tumor-related microstructural 
changes. In the peritumoral edema of atypical HGG, infiltrating 
tumor cells disrupt nerve fibers, leading to more dispersed water 
diffusion. This results in higher values for ODImean, ODI10th, ODI25th, 
ODImedian, and ODI75th in atypical HGG compared to 
PCNSL. Interestingly, however, ODImax was found to be higher in 
the edema surrounding PCNSL. This may reflect the characteristics 
of edematous brain tissue at the tumor-edema interface, where 
fiber tracts are maximally displaced or intersecting, possibly due 
to the expansile growth pattern of PCNSL. Such regions may 
harbor sharply distorted or crossing fibers compressed by the 
tumor mass rather than infiltrated by tumor cells. Despite this 
localized increase in ODImax, the overall distribution of ODI values 
is shifted higher in the peritumoral region of HGG, as supported 
by differences in skewness. These findings underscore the potential 
of ODI metrics to capture the infiltrative growth behavior of HGG, 
in contrast to the vasogenic edema in PCNSL, which primarily 
results from blood–brain barrier disruption with limited 
tumor infiltration.

This study has several limitations. First, it was conducted at a 
single center using a single scanner and involved a relatively small 
sample size. Future studies with larger cohorts, including data from 
multiple scanners and institutions, are needed to validate these 
findings. Second, the lack of a validation cohort prevented the 
development of a multifactorial diagnostic model that integrates 
parameters from both the edema and enhancement areas. We plan to 
address this limitation by enrolling more patients in subsequent 
studies. Third, the interpretation of diffusion parameter changes in this 
study is empirical and lacks histopathological validation, highlighting 
the need for future studies incorporating histological correlation.

5 Conclusion

DTI-and NODDI-based histogram analysis shows promise in 
distinguishing between atypical HGG and PCNSL, with the ODI75th 
parameter from the enhancing area demonstrating the best 
diagnostic performance.
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